1
|
Mavai S, Bains A, Kumar A, Goksen G, Dhull SB, Ali N, Shazly GA, Chawla P. Optimized microwave-assisted extraction and characterization of spray dried Luffa aegyptiaca nanomucilage: Physicochemical properties, biological activities, and anticancer efficacy against MCF-7 human breast cancer cells. Int J Biol Macromol 2025; 299:139756. [PMID: 39798751 DOI: 10.1016/j.ijbiomac.2025.139756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Microwave-assisted extraction conditions were optimized using response surface methodology to evaluate the effects of extraction parameters on the yield and carbohydrate content of Luffa aegyptiaca mucilage. The optimal extraction parameters were determined at 540 W for 2 min with a 1:20 (g/mL) ratio, yielding a maximum of 5.90 % (w/w) and comprising 63 % carbohydrate content, which includes glucose, galactose, maltose, mannose, and galacturonic acid, characterized by β (1 → 4) and β (1 → 6) glycosidic bonds. The nanomucilage exhibited a monomodal particle size distribution of 145.3 ± 4.60 nm, high thermal stability (-1363.08 J/g), oil and water retention capacity, emulsifying ability (93.06 ± 0.48 %), emulsifying stability (75.02 ± 0.96 %), solubility (95.36 ± 0.89 %), and foaming ability (93.06 ± 0.48 %). Mucilage demonstrated potential in vitro anti-oxidant activity (2.05 ± 0.10 %) against Caco-2 cells, anti-inflammatory activity during membrane stabilization (30.47 ± 0.42 % to 70.46 ± 0.31 %,) and protein denaturation (20.47 ± 0.42 % to 78.39 ± 0.40 %) assays and anticancer activity against human breast cancer cells (MCF-7), with growth inhibition of 100.5 ± 12.45 %. Hence, this evaluation of Luffa aegyptiaca nanomucilage highlights its potential as a multifunctional biomaterial with significant applications in the healthcare industry.
Collapse
Affiliation(s)
- Sayani Mavai
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Ankur Kumar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat 131028, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O.Box 2457, Riyadh 11451, Saudi Arabia
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India.
| |
Collapse
|
2
|
Choudhury N, Nickhil C, Deka SC. Optimization and characterization of physicochemical, morphological, structural, thermal, and rheological properties of microwave-assisted extracted pectin from Dillenia indica fruit. Int J Biol Macromol 2025; 295:139583. [PMID: 39788261 DOI: 10.1016/j.ijbiomac.2025.139583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Microwave-assisted extraction of pectin from Dillenia indica (DI) fruit was optimized using Box-Behnken design to maximize yield and quality. Parameters such as solid:solvent (1:10-1:30), microwave power (200-600 W), and extraction time (4-10 min) were varied to determine the optimal conditions. Through experimentation, the optimized extraction parameters were identified as 1:23.66 solid:solvent, 400 W microwave power, and 7 min of extraction time, under which the predicted yield and equivalent weight were 19.68 % and 915.93, respectively. The optimized conditions were validated experimentally (yield:19.4 ± 0.35 %) and equivalent weight:914.57 ± 0.62), showing close agreement with predicted values. Physicochemical properties of the extracted pectin were determined, revealing an effective pore radius of 0.263 ± 0.005 mm and a swelling index order of: water(1) > pH 6(0.7) > HCl(0.3). Moisture content was measured as 7.23 ± 0.25 %, while ash content was found to be 2.23 ± 0.25 %. Further analysis included the determination of methoxyl value, anhydrouronic acid content, degree of esterification, and protein content, which were 9.61 ± 0.31 %, 73.56 ± 1.86 %, 74.15 ± 0.28 %, and 1.16 ± 0.16 %, respectively. Monosaccharide composition revealed presence of neutral sugars, glucose, arabinose and rhamnose and molecular weight was 71,489 g/mol. Morphological characteristics, assessed using scanning electron microscopy, showed a rough, irregular surface of DI fruit pectin. Fourier-transform infrared spectroscopy (FTIR) indicated similarity to standard high methoxyl pectin, while nuclear magnetic resonance (NMR) confirmed characteristic functional groups. Thermal behaviour, determined via differential scanning calorimetry (DSC), exhibited endothermic and exothermic transitions at 83.6 °C and 260.027 °C, respectively. Rheological and functional properties revealed DI fruit pectin solution as a non-Newtonian fluid with shear thinning behaviour, forming weak gels and that its emulsion capacity increased with increase in pectin concentration. Overall, this study provides a comprehensive characterization of microwave-assisted extracted pectin from Dillenia indica fruit, offering insights into its potential applications in food industries.
Collapse
Affiliation(s)
- Nitamani Choudhury
- Department of Food Engineering and Technology, Tezpur University, Napaam, Sonitpur, Tezpur, Assam, India
| | - C Nickhil
- Department of Food Engineering and Technology, Tezpur University, Napaam, Sonitpur, Tezpur, Assam, India
| | - Sankar Chandra Deka
- Department of Food Engineering and Technology, Tezpur University, Napaam, Sonitpur, Tezpur, Assam, India.
| |
Collapse
|
3
|
Cherian E, Ts K, Kn S, Ks A, Poothicote NG. Investigation into pectin extraction and technological implementations in the food industry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9102-9110. [PMID: 38850093 DOI: 10.1002/jsfa.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024]
Abstract
Pectin, a complex polysaccharide found abundantly in the cell walls of fruits and vegetables, plays a pivotal role in various food applications owing to its unique gelling, thickening and stabilizing properties. As consumer preferences lean towards natural and sustainable ingredients, the demand for pectin as a food additive has surged. This burgeoning interest has prompted a comprehensive exploration into both the extraction methods of pectin from its natural sources and its diverse technological applications in the food industry. The extraction process involves breaking down the plant cell wall to release the pectin. Traditional methods such as hot acid extraction have been widely used, but advances in technology have spurred the development of novel techniques like enzyme-assisted extraction and microwave-assisted extraction. These methods aim not only to enhance the yield and purity of extracted pectin but also to minimize environmental impact and energy consumption. Pectin's versatility has positioned it as a valuable ingredient in the food industry. Its ability to form gels under specific conditions makes it a key component in the production of jams, jellies and fruit preserves. Additionally, pectin acts as a stabilizer in dairy products, prevents syneresis in baked goods and improves the texture of confectionery items. The application of pectin goes beyond its role as a gelling agent; it is also employed in the encapsulation of bioactive compounds, enhancing the functional properties of various food products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elsa Cherian
- Department of Food Technology, Saintgits College of Engineering, Kottayam, India
| | - Khadeeja Ts
- Department of Food Technology, Saintgits College of Engineering, Kottayam, India
| | - Saheersha Kn
- Department of Food Technology, Saintgits College of Engineering, Kottayam, India
| | - Ashitha Ks
- Department of Food Technology, Saintgits College of Engineering, Kottayam, India
| | - Nisha G Poothicote
- Department of Food Technology, Saintgits College of Engineering, Kottayam, India
| |
Collapse
|
4
|
Wang X, Sun Y, Yu Y, Huang D, Liu Y, Huang M, Jiang Y, Li D. Sequential extraction of hawthorn pectin: An attempt to reveal their original mode of being in plants and functional properties. Int J Biol Macromol 2024; 282:136756. [PMID: 39437959 DOI: 10.1016/j.ijbiomac.2024.136756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/06/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Hawthorn is rich in pectin, which is much higher than most cultivated fruits, but conventional extraction methods do not meet the requirements of low energy consumption and green production. Pectin in hawthorn is divided into soluble and insoluble parts, and with the ripening of hawthorn, the original pectin is converted into soluble pectin and pectic acid under the action of enzymes. Therefore, based on the characteristics of hawthorn pectin, this study sequentially extracted hawthorn pectin using water-soluble pectin (WSP) and hot acid-soluble pectin (HAP) method, verifying the feasibility of extracting hawthorn pectin with pure water at room temperature, and systematically analyzing and comparing the physicochemical properties and functional characteristics of the two methods. The combination of texture analysis and gel rheology revealed that WSP formed a more uniform and dense network structure during the gelation process. Additionally, microscopic observations and emulsification index results indicated that the emulsion prepared with WSP (WSE) had a smaller particle size and better stability. This indicates that hawthorn pectin is suitable for extraction with pure water at room temperature, which can maintain its good physical properties while reducing energy consumption, providing a new approach for the large-scale extraction of pectin in the food industry.
Collapse
Affiliation(s)
- Xinyue Wang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Yunxuan Sun
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Yitian Yu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Dongjie Huang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Yiyan Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China.
| | - Mingming Huang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Yang Jiang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China.
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| |
Collapse
|
5
|
Yi L, Cheng L, Yang Q, Shi K, Han F, Luo W, Duan S. Source, Extraction, Properties, and Multifunctional Applications of Pectin: A Short Review. Polymers (Basel) 2024; 16:2883. [PMID: 39458710 PMCID: PMC11511015 DOI: 10.3390/polym16202883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Pectin, a heteropolysaccharide derived from plant cell walls, is essential in the food, pharmaceutical, and environmental industries. Currently, citrus and apple peels are the primary sources for commercial pectin production. The yield and quality of pectin extracted from various plant sources significantly differ based on the extraction methods employed, which include physical, chemical, and biological processes. The complex structures of pectin, composed of polygalacturonic acid and rhamnogalacturonan, influence its physicochemical properties and, consequently, its functionality. As a common polysaccharide, pectin finds applications across multiple sectors. In the food industry, it acts as a gelling agent and a packaging material; in pharmaceuticals, it is utilized for drug delivery and wound healing. Environmentally, pectin contributes to wastewater treatment by adsorbing pollutants. Current research focuses on alternative sources, sustainable extraction methods, and multifunctional applications of pectin. Ongoing studies aim to enhance extraction technologies and broaden the applications of pectin, thereby supporting sustainable development goals.
Collapse
Affiliation(s)
- Le Yi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, No. 348 Xianjia Road, Changsha 410205, China
| | - Lifeng Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, No. 348 Xianjia Road, Changsha 410205, China
| | - Qi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, No. 348 Xianjia Road, Changsha 410205, China
| | - Ke Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, No. 348 Xianjia Road, Changsha 410205, China
| | - Fengbo Han
- Luntai County Star Bo Clothing Co., Ltd., Bazhou 841600, China
| | - Wei Luo
- Key Laboratory of Carbohyrate Chemistry and Biotechnology, Jiangnan University, Ministry of Education, No. 1800 Lihu Road, Wuxi 214122, China
| | - Shengwen Duan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, No. 348 Xianjia Road, Changsha 410205, China
| |
Collapse
|
6
|
Yang X, Liu X, Zhao S, Huo M, Tian G, Sang Y. Pectin from steam explosion-treated citrus peel exhibits good emulsion properties and bioavailability-promoting effect in vitro of nobiletin. Int J Biol Macromol 2024; 278:134758. [PMID: 39151846 DOI: 10.1016/j.ijbiomac.2024.134758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/07/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Steam explosion (SE) is a potential method to modify pectin structure, which might be connected to its emulsifying characteristics and the bioavailability of encapsulated polymethoxyflavone like nobiletin. However, the relationship between SE-modified pectin and the bioavailability of encapsulated nobiletin is still unclear. In this study, nobiletin-loaded emulsion was fabricated using citrus pectin modified with SE (0.15-0.9 MPa, 3 min) as emulsifier for in vitro digestion study, and the transport and absorption of nobiletin in Caco-2 cells to investigate the bioavailability-promoting effect. The results showed that SE treatment lowered the droplet size of emulsion from 21.38 ± 2.30 μm to 2.14 ± 0.12 μm, enhanced the nobiletin encapsulation efficiency from 23.73 ± 0.78% to 86.27 ± 3.81%, improved the nobiletin bioaccessibility in vitro from 2.48 ± 0.10% to 25.42 ± 0.10% and increased the intracellular accumulation of nobiletin by over 10 times, even higher than that of Tween 80. In conclusion, pectin from SE-treated citrus peel exhibited good emulsion properties and bioavailability-promoting effect in vitro of nobiletin.
Collapse
Affiliation(s)
- Xiaohan Yang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Xiaohan Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Shaojie Zhao
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Man Huo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Guifang Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
7
|
Akhmetova S, Zharmagambetova A, Talgatov E, Auyezkhanova A, Malgazhdarova M, Zhurinov M, Abilmagzhanov A, Jumekeyeva A, Kenzheyeva A. How the Chemical Properties of Polysaccharides Make It Possible to Design Various Types of Organic-Inorganic Composites for Catalytic Applications. Molecules 2024; 29:3214. [PMID: 38999166 PMCID: PMC11243343 DOI: 10.3390/molecules29133214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Recently, the use of plant-origin materials has become especially important due to the aggravation of environmental problems and the shortage and high cost of synthetic materials. One of the potential candidates among natural organic compounds is polysaccharides, characterized by a number of advantages over synthetic polymers. In recent years, natural polysaccharides have been used to design composite catalysts for various organic syntheses. This review is devoted to the current state of application of polysaccharides (chitosan, starch, pectin, cellulose, and hydroxyethylcellulose) and composites based on their catalysis. The article is divided into four main sections based on the type of polysaccharide: (1) chitosan-based nanocomposites; (2) pectin-based nanocomposites; (3) cellulose (hydroxyethylcellulose)-based nanocomposites; and (4) starch-based nanocomposites. Each section describes and summarizes recent studies on the preparation and application of polysaccharide-containing composites in various chemical transformations. It is shown that by modifying polysaccharides, polymers with special properties can be obtained, thus expanding the range of biocomposites for catalytic applications.
Collapse
Affiliation(s)
| | | | | | - Assemgul Auyezkhanova
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan; (S.A.); (A.Z.); (E.T.); (M.M.); (M.Z.); (A.A.); (A.J.); (A.K.)
| | | | | | | | | | | |
Collapse
|
8
|
Nguyen TTT, Ho HT, Hoang D, Nguyen QAP, Tran TV. Novel films of pectin extracted from ambarella fruit peel and jackfruit seed slimy sheath: Effect of ionic crosslinking on the properties of pectin film. Carbohydr Polym 2024; 334:122043. [PMID: 38553239 DOI: 10.1016/j.carbpol.2024.122043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Here, we prepared ionically crosslinked films using pectin extracted from agro-wastes, specifically ambarella peels (AFP) and jackfruit seed slimy sheath (JFS). Physiochemical properties of pectins, including moisture content, molecular weight (Mw), degree of esterification (DE), and galacturonic acid (GA), were analyzed. Optimal extraction was determined, i.e., citric acid concentration 0.3 M, time 60 min, solid/liquid ratio 1:25, and temperature 90 °C for AFP or 85 °C for JFS. Pectin yields under these conditions were 29.67 % ± 0.35 % and 29.93 ± 0.49 %, respectively. AFP pectin revealed Mw, DE, and GA values of 533.20 kDa, 67.08 % ± 0.68 %, and 75.39 ± 0.82 %, while JFS pectin exhibited values of 859.94 kDa, 63.04 % ± 0.47 %, and 78.63 % ± 0.71 %, respectively. The pectin films crosslinked with Ca2+, Cu2+, Fe3+, or Zn2+ exhibited enhanced tensile strength and Young's modulus, along with reduced elongation at break, moisture content, water solubility, water vapor permeability, and oxygen permeability. Structural analyses indicated metal ions were effectively crosslinked with carboxyl groups of pectin. Notably, the Cu2+-crosslinked film demonstrated superior water resistance, mechanical properties, and exhibited the highest antioxidant and antibacterial activities among all tested films. Therefore, the pectin films represent a promising avenue to produce eco-friendly food packaging materials with excellent properties.
Collapse
Affiliation(s)
| | - Hao Tan Ho
- Nong Lam University Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - DongQuy Hoang
- Faculty of Materials Science and Technology, University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Quynh Anh Phan Nguyen
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Department of Organic Chemical Technology, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| |
Collapse
|
9
|
Yu Y, Lu P, Yang Y, Ji H, Zhou H, Chen S, Qiu Y, Chen H. Differences in physicochemical properties of pectin extracted from pomelo peel with different extraction techniques. Sci Rep 2024; 14:9182. [PMID: 38649422 PMCID: PMC11035564 DOI: 10.1038/s41598-024-59760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
In order to obtain high yield pomelo peel pectin with better physicochemical properties, four pectin extraction methods, including hot acid extraction (HAE), microwave-assisted extraction (MAE), ultrasound-assisted extraction, and enzymatic assisted extraction (EAE) were compared. MAE led to the highest pectin yield (20.43%), and the lowest pectin recovery was found for EAE (11.94%). The physicochemical properties of pomelo peel pectin obtained by different methods were also significantly different. Pectin samples obtained by MAE had the highest methoxyl content (8.35%), galacturonic acid content (71.36%), and showed a higher apparent viscosity, thermal and emulsion stability. The pectin extracted by EAE showed the highest total phenolic content (12.86%) and lowest particle size (843.69 nm), showing higher DPPH and ABTS scavenging activities than other extract methods. The pectin extracted by HAE had the highest particle size (966.12 nm) and degree of esterification (55.67%). However, Fourier-transform infrared spectroscopy showed that no significant difference occurred among the different methods in the chemical structure of the extracted pectin. This study provides a theoretical basis for the industrial production of pomelo peel pectin.
Collapse
Affiliation(s)
- Yangyang Yu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ping Lu
- China Tobacco Fujian Industrial Co., Ltd, Xiamen, 361012, China
| | - Yongfeng Yang
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China
| | - Huifu Ji
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hang Zhou
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Siyuan Chen
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yao Qiu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongli Chen
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
10
|
Suo H, Xiao S, Wang B, Cai YX, Wang JH. Waste to Wealth: Dynamics and metabolic profiles of the conversion of jackfruit flake into value-added products by different fermentation methods. Food Chem X 2024; 21:101164. [PMID: 38328698 PMCID: PMC10847767 DOI: 10.1016/j.fochx.2024.101164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
Thus far, little is known about whether jackfruit flake, a byproduct of jackfruit, can be used as a fermentation substrate to obtain value-added products through microbial fermentation. Here, jackfruit flake puree was fermented by three different ways: spontaneous fermentation (JF), inoculated with LAB (JFL), inoculated co-fermentation with LAB and yeast (JFC). In contrast to JF, the total polyphenol and flavonoid content and syndrome-associated enzyme inhibition are significantly increased in JFC at the end of fermentation. Electronic tongue analysis revealed that the JFC was significantly lower in astringency and higher in bitterness. 41 volatile compounds were identified during fermentation by HS-SPME-GC-MS, and JFC was richer in honey, rose, and fruity flavors. A total of 290 compounds were screened for discriminative pre- and post-fermentation differential metabolites by non-target metabolomics analysis. These results provide a potential reference for the conversion of jackfruit waste into functional products using fermentation.
Collapse
Affiliation(s)
- Hao Suo
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan University of Technology, Dongguan 523808, China
- Dongguan Prefabricated Food Innovation Development and Quality Control Key Laboratory, Dongguan 523808, China
| | - Shan Xiao
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan University of Technology, Dongguan 523808, China
- Dongguan Prefabricated Food Innovation Development and Quality Control Key Laboratory, Dongguan 523808, China
| | - Bo Wang
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan University of Technology, Dongguan 523808, China
- Dongguan Prefabricated Food Innovation Development and Quality Control Key Laboratory, Dongguan 523808, China
| | - Yan-Xue Cai
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan University of Technology, Dongguan 523808, China
- Dongguan Prefabricated Food Innovation Development and Quality Control Key Laboratory, Dongguan 523808, China
| | - Ji-Hui Wang
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan University of Technology, Dongguan 523808, China
- Dongguan Prefabricated Food Innovation Development and Quality Control Key Laboratory, Dongguan 523808, China
| |
Collapse
|
11
|
Koshy J, Sangeetha D. Recent progress and treatment strategy of pectin polysaccharide based tissue engineering scaffolds in cancer therapy, wound healing and cartilage regeneration. Int J Biol Macromol 2024; 257:128594. [PMID: 38056744 DOI: 10.1016/j.ijbiomac.2023.128594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Natural polymers and its mixtures in the form of films, sponges and hydrogels are playing a major role in tissue engineering and regenerative medicine. Hydrogels have been extensively investigated as standalone materials for drug delivery purposes as they enable effective encapsulation and sustained release of drugs. Biopolymers are widely utilised in the fabrication of hydrogels due to their safety, biocompatibility, low toxicity, and regulated breakdown by human enzymes. Among all the biopolymers, polysaccharide-based polymer is well suited to overcome the limitations of traditional wound dressing materials. Pectin is a polysaccharide which can be extracted from different plant sources and is used in various pharmaceutical and biomedical applications including cartilage regeneration. Pectin itself cannot be employed as scaffolds for tissue engineering since it decomposes quickly. This article discusses recent research and developments on pectin polysaccharide, including its types, origins, applications, and potential demands for use in AI-mediated scaffolds. It also covers the materials-design process, strategy for implementation to material selection and fabrication methods for evaluation. Finally, we discuss unmet requirements and current obstacles in the development of optimal materials for wound healing and bone-tissue regeneration, as well as emerging strategies in the field.
Collapse
Affiliation(s)
- Jijo Koshy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - D Sangeetha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|