1
|
Inamassu CH, Raspini E Silva L, Marchioni C. Recent advances in the chromatographic analysis of endocannabinoids and phytocannabinoids in biological samples. J Chromatogr A 2024; 1732:465225. [PMID: 39128236 DOI: 10.1016/j.chroma.2024.465225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Endocannabinoid system, including endocannabinoid neurotransmitters (eCBs), has gained much attention over the last years due to its involvement with the pathophysiology of diseases and the potential use of Cannabis sativa (marijuana). The identification of eCBs and phytocannabinoids in biological samples for forensic, clinical, or therapeutic drug monitoring purposes constitutes a still significant challenge. In this scoping review, the recent advantages, and limitations of the eCBs and phytocannabinoids quantification in biological samples are described. Published studies from 2018-2023 were searched in 8 databases, and after screening and exclusions, the selected 38 articles had their data tabulated, summarized, and analyzed. The main characteristics of the eCBs and phytocannabinoids analyzed and the potential use of each biological sample were described, indicating gaps in the literature that still need to be explored. Well-established and innovative sample preparation protocols, and chromatographic separations, such as GC, HPLC, and UHPLC, are reviewed highlighting their respective advantages, drawbacks, and challenges. Lastly, future approaches, challenges, and tendencies in the quantification analysis of cannabinoids are discussed.
Collapse
Affiliation(s)
- Carolina Henkes Inamassu
- Program on Pharmacology, Federal University of Santa Catarina, Campus Universitário, s/n, Sala 208, Bloco E, Prédio Administrativo - Córrego Grande, Florianópolis, SC 88040-900, Brazil
| | - Luisa Raspini E Silva
- Program on Pharmacology, Federal University of Santa Catarina, Campus Universitário, s/n, Sala 208, Bloco E, Prédio Administrativo - Córrego Grande, Florianópolis, SC 88040-900, Brazil
| | - Camila Marchioni
- Department of Pathology, Federal University of Santa Catarina, Rua Engenheiro Agronômico Andrei Cristian Ferreira, s/n - Trindade, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
2
|
Yang S, Sun M. Recent Advanced Methods for Extracting and Analyzing Cannabinoids from Cannabis-Infused Edibles and Detecting Hemp-Derived Contaminants in Food (2013-2023): A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38857901 DOI: 10.1021/acs.jafc.4c01286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Cannabis-infused edibles are food products infused with a cannabis extract. These edibles include baked goods, candies, and beverages, offering an alternative way to consume cannabis instead of smoking or vaporizing it. Ensuring the accurate detection of cannabis-infused edibles and identification of any contaminants is crucial for public health and safety. This is particularly important for compliance with legal regulations as these substances can have significant psychoactive effects, especially on unsuspecting consumers such as children or individuals with certain medical conditions. Using efficient extraction methods can greatly improve detection accuracy, ensuring that the concentration of cannabinoids in edibles is measured correctly and adheres to dosage guidelines and legal limits. This review comprehensively examines the preparation and extraction techniques for cannabinoid edibles. It covers methods such as solid-phase extraction, enhanced matrix removal-lipid, QuEChERS, dissolution and dispersion techniques, liquid-phase extraction, and other emerging methodologies along with analytical techniques for cannabinoid analysis. The main analytical techniques employed for the determination of cannabinoids include liquid chromatography (LC), gas chromatography (GC), direct analysis in real time (DART), and mass spectrometry (MS). The application of these extraction and analytical techniques is further demonstrated through their use in analyzing specific edible samples, including oils, candies, beverages, solid coffee and tea, snacks, pet food, and contaminated products.
Collapse
Affiliation(s)
- Siyun Yang
- Department of Biology, Kean University, Union, New Jersey 07083, United States
| | - Mingjing Sun
- Department of Chemistry and Physics, Kean University, Union, New Jersey 07083, United States
| |
Collapse
|
3
|
Huang S, van Beek TA, Claassen FW, Janssen HG, Ma M, Chen B, Zuilhof H, Salentijn GI. Comprehensive cannabinoid profiling of acid-treated CBD samples and Δ 8-THC-infused edibles. Food Chem 2024; 440:138187. [PMID: 38134831 DOI: 10.1016/j.foodchem.2023.138187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Δ8-Tetrahydrocannabinol (Δ8-THC) is increasingly popular as a controversial substitute for Δ9-tetrahydrocannabinol (Δ9-THC) in cannabinoid-infused edibles. Δ8-THC is prepared from cannabidiol (CBD) by treatment with acids. Side products including Δ9-THC and other isomers that might end up in Δ8-THC edibles are less studied. In this paper, three orthogonal methods, namely reversed-phase (RP)-UHPLC-DAD/HRMS, normal-phase/argentation (silica-Ag(I))-HPLC-DAD/MS, and GC-FID/MS were developed for analysis of cannabinoid isomers, namely Δ8-THC, Δ9-THC, CBD, Δ8-iso-THC, Δ(4)8-iso-THC, and hydrated THC isomers. Eight acid-treated CBD mixtures contained various amounts of Δ8-THC (0-89%, w/w%), high levels of Δ9-THC (up to 49%), Δ8-isoTHC (up to 55%), Δ(4)8-iso-THC (up to 17%), and three hydrated THC isomers. Commercial Δ8-THC gummies were also analyzed, and issues like overclaimed Δ8-THC, excessive Δ9-THC, undeclared Δ8-iso-THC, and Δ(4)8-iso-THC were found. These findings highlight the urgency of improving regulations towards converting CBD to Δ8-THC for use as food ingredients.
Collapse
Affiliation(s)
- Si Huang
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, No.36, Lushan Road, 410081 Changsha, China; Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Teris A van Beek
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Frank W Claassen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Hans-Gerd Janssen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands; Unilever Foods Innovation Centre - Hive, Bronland 14, 6708 WH Wageningen, The Netherlands
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, No.36, Lushan Road, 410081 Changsha, China
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, No.36, Lushan Road, 410081 Changsha, China.
| | - Han Zuilhof
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, No.36, Lushan Road, 410081 Changsha, China; Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - G Ij Salentijn
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands; Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands.
| |
Collapse
|
4
|
Meyer G, Adisa M, Dodson Z, Adejumo E, Jovanovich E, Song L. A liquid chromatography electrospray ionization tandem mass spectrometry method for quantification of up to eighteen cannabinoids in hemp-derived products. J Pharm Biomed Anal 2024; 238:115847. [PMID: 37976987 DOI: 10.1016/j.jpba.2023.115847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/24/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
A LC-ESI/MS/MS method was developed for quantification of up to eighteen cannabinoids, the maximum number published so far. A thorough study of published LC-ESI/MS/MS methods using triple quadrupole mass spectrometers revealed a possible misconception that multiple reaction monitoring (MRM) was able to definitively differentiate structural isomers of cannabinoids, especially Δ8-/Δ9-tetrahydrocannabinol (THC), which explained why many of those methods were developed for a limited number of cannabinoids, as small as two, and did not include Δ8-THC. In this study, the use of a quadrupole time-of-flight (QTOF) mass spectrometer for targeted analysis indicated that MRM could not definitively distinguish structural isomers of Δ9-THC, with a possible exception of cannabicyclol (CBL) for less accurate quantification, so their baseline separation was essential for their accurate quantification. After the developed method was successfully validated according to the ISO 17025 guidelines, it was further applied for the analysis of eighteen hemp-derived products, including drinks, water-soluble oils, topical serum, body lotion, face cream, lip balm, gummies, hard candy, coffee, snacks, and pet treats. The LOQ was 0.00008% (w/w) for drinks with the analysis of 12.5 mg/mL extracts, while the LOQ was 0.008% (w/w) for other samples because 125 μg/mL extracts were analyzed due to higher content of cannabinoids in non-drink samples. For the first-time, extraction recovery and matrix effect were tracked in real-time for each sample being analyzed, obtaining 92.9-106.3% and 91.3-120.2% in triplicate measurements, respectively, by spiking abnormal cannabidiol (ACBD), a cannabinoid not naturally present in hemp, into each sample before extraction and ACBD-d3 into each sample after extraction.
Collapse
Affiliation(s)
- Grant Meyer
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| | - Mojisola Adisa
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| | - Zachary Dodson
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| | - Emmanuel Adejumo
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| | - Emily Jovanovich
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| | - Liguo Song
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA.
| |
Collapse
|