1
|
Xu C, Tan J, Li Y. Application of Electrospun Nanofiber-Based Electrochemical Sensors in Food Safety. Molecules 2024; 29:4412. [PMID: 39339407 PMCID: PMC11434313 DOI: 10.3390/molecules29184412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Food safety significantly impacts public health and social welfare. Recently, issues such as heavy metal ions, drug residues, food additives, and microbial contamination in food have become increasingly prominent. Electrochemical sensing technology, known for its low cost, simplicity, rapid response, high sensitivity, and excellent selectivity, has been crucial in food safety detection. Electrospun nanofibers, with their high specific surface area, superior mechanical properties, and design flexibility, offer new insights and technical platforms for developing electrochemical sensors. This study introduces the fundamental principles, classifications, and detection mechanisms of electrochemical sensors, along with the principles and classifications of electrospinning technology. The applications of electrospun nanofiber-based electrochemical sensors in food safety detection over the past five years are detailed, and the limitations and future research prospects are discussed. Continuous innovation and optimization are expected to make electrospun nanofiber-based electrochemical sensors a key technology in rapid food safety detection, providing valuable references for expanding their application and advancing food safety detection methods.
Collapse
Affiliation(s)
- Changdong Xu
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China
| | - Jianfeng Tan
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China
| | - Yingru Li
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
2
|
Gao J, Yin J, Wang G, Wang X, Zhang J, Sun B, He D, Suo H, Zhao C. A novel electrode for simultaneous detection of multiple heavy metal ions without pre-enrichment in food samples. Food Chem 2024; 448:138994. [PMID: 38522301 DOI: 10.1016/j.foodchem.2024.138994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/02/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Integrating a pre-enrichment step into electrochemical detection methodologies has traditionally been employed to enhance the performance of heavy metal detection. However, this augmentation also introduces a degree of intricacy into the sensing process and increases energy consumption. In this work, Mo-doped WO3 is grown in situ on carbon cloth by one-step electrodeposition. The electrode detect multiple heavy metal ions simultaneously in the range of 0.1-100.0 μM with LODs ranging from 11.2 to 17.1 nM. The electrode successfully detected heavy metal ions in diverse food samples. This pioneering detection strategy realized the direct and simultaneous detection of multiple heavy metal ions by utilizing the valence property of WO3 and oxygen vacancies generated by molybdenum doping. The Mo-WO3/CC pre-enrichment-free detection electrode boasts straightforward preparation, a streamlined detection procedure, swift response kinetics, and superior performance relative to previously reported electrodes, which makes it possible to develop a portable heavy metal ion detection device.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130000, PR China
| | - Jun Yin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130000, PR China
| | - Guanda Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130000, PR China
| | - Xiangyue Wang
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130000, PR China
| | - Jingwen Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130000, PR China
| | - Bangning Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130000, PR China
| | - Dong He
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130000, PR China
| | - Hui Suo
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130000, PR China
| | - Chun Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130000, PR China.
| |
Collapse
|
3
|
Zhao J, Li X, Yin Y, Xiong R, Ling G, Zhang P. Applications of cerium-based materials in food monitoring. Food Chem 2024; 444:138639. [PMID: 38330609 DOI: 10.1016/j.foodchem.2024.138639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
With the rapid development of society, food safety to public health has been a topic that cannot be ignored. In recent years, lanthanide-based materials are studied to be potential candidates in the detection of food samples. Cerium (Ce)-based materials (such as Ce ions, CeO2, Ce-metal organic framework (Ce-MOF), etc.) have also attracted more attention in food detection by virtue of colorimetric, fluorescence, sensing, and other methods. This is because the mixed valence of Ce (Ce3+ and Ce4+), the formation of oxygen vacancies, and their optical and electrochemical properties. In this review, Ce-based materials will be introduced and discussed in the field of food detection, including biogenesis, construction, catalytic mechanisms, combination, and applications. In addition, the current challenges and future development trend of these Ce-based materials in food safety detection are also proposed and discussed. Therefore, it is meaningful to explore the Ce-based materials for detection of biomarkers in food samples.
Collapse
Affiliation(s)
- Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xiaodan Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yannan Yin
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ruru Xiong
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
4
|
Si L, Wu Q, Jin Y, Wang Z. Research progress in the detection of trace heavy metal ions in food samples. Front Chem 2024; 12:1423666. [PMID: 38867762 PMCID: PMC11168114 DOI: 10.3389/fchem.2024.1423666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Food safety is the basis for ensuring human survival and development. The threat of heavy metal ions to food safety has become a social concern with the rapid growth of the economy and the accompanying environmental pollution. Some heavy metal ions are highly toxic even at trace levels and pose significant health risks to humans. Therefore, ultrasensitive detection of heavy metal ions in food samples is important. In this mini-review, recent advances in the analytical methods based on nanomaterials for detecting trace heavy metal ions in food samples are summarized in three categories: electrochemical, colorimetric, and fluorescent methods. We present the features and sensing mechanisms of these three methods, along with typical examples to illustrate their application in the detection of heavy metal ions in foods. This mini-review ends with a discussion of current challenges and future prospects of these approaches for sensing heavy metal ions. The review will help readers understand the principles of these methods, thereby promoting the development of new analytical methods for the detection of heavy metal ions in food samples.
Collapse
Affiliation(s)
| | | | - Yulong Jin
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
5
|
Li B, Xie X, Meng T, Guo X, Li Q, Yang Y, Jin H, Jin C, Meng X, Pang H. Recent advance of nanomaterials modified electrochemical sensors in the detection of heavy metal ions in food and water. Food Chem 2024; 440:138213. [PMID: 38134834 DOI: 10.1016/j.foodchem.2023.138213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
As one of the main pollutants, heavy metal ions can accumulate in the human body and cause a cascade of damage. Electrochemical sensors provide great prospects for tracing heavy metal ions because of their properties of high sensitivity, low detection limits and fast response. Electrode surface modification materials play a key role in enhancing the performance of electrochemical sensors. Herein, we summarize in detail the recent work on electrochemical sensors modified by carbon nanomaterials (graphene and its derivatives, carbon nanofibers and carbon nanotubes), metal nanomaterials (gold, silver, bismuth and iron), complexes (MOFs, ZIFs and MXenes) and their composites for the detection of heavy metal ions (mainly include Cd(II), Hg(II), Pb(II), As(III), Cu(II) and Zn(II)) in food and water. The synthetic strategies, mechanisms, innovations, advantages, challenges and prospects of various electrode modification nanomaterials for the detection of heavy metal ions in food and water are discussed.
Collapse
Affiliation(s)
- Bing Li
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China; College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, PR China.
| | - Xiaomei Xie
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China
| | - Tonghui Meng
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China
| | - Xiaotian Guo
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China
| | - Qingzheng Li
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China
| | - Yuting Yang
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China
| | - Haixia Jin
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, PR China
| | - Xiangren Meng
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China.
| | - Huan Pang
- College of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu, 225002, PR China.
| |
Collapse
|
6
|
Dong J, Li X, Wen L, Ma Y, Xu J, Luo H, Hou J, Hou C, Huo D. A novel electrochemical strategy based on MXene@rGO composite aerogel-doped UiO-66-NH 2 for simultaneous detection of cadmium and lead in grain and water samples. Food Chem 2024; 437:137835. [PMID: 37944365 DOI: 10.1016/j.foodchem.2023.137835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Herein, a novel electrochemical sensing platform is designed for the simultaneous detection of Cd2+ and Pb2+, using MXene@rGO composite aerogel-doped UiO-66-NH2. The MXene@rGO composite aerogel not only serves as the support structure for UiO-66-NH2, but also improves the conductivity of the composite by accelerating the electron transport in the matrix. The amino group of UiO-66-NH2 offers binding sites for heavy-metal ions, and the existence of PhNH2/PhNH3+ in the composite promotes the redox processes of the metal ions to be detected on the electrode surface. The proposed sensing strategy can detect Cd2+ and Pb2+ independently and concurrently, with detection limits of 0.46 ppb and 0.40 ppb, respectively. Remarkably, when this strategy is used for simultaneous detection of Cd2+ and Pb2+ in grain and water samples, it exhibits excellent accuracy and reliability, aligning with the standard method (e.g., AAS and ICP-MS) demonstrating considerable promise in practical applications.
Collapse
Affiliation(s)
- Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Xinyao Li
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Li Wen
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin 644000, PR China
| | - Jingbing Xu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin 644000, PR China
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; Postdoctoral Research Station, Chongqing University, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin 644000, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; Postdoctoral Research Station, Chongqing University, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
7
|
Jagirani MS, Zhou W, Nazir A, Akram MY, Huo P, Yan Y. A Recent Advancement in Food Quality Assessment: Using MOF-Based Sensors: Challenges and Future Aspects. Crit Rev Anal Chem 2024:1-22. [PMID: 38252119 DOI: 10.1080/10408347.2023.2300660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Monitoring food safety is crucial and significantly impacts the ecosystem and human health. To adequately address food safety problems, a collaborative effort needed from government, industry, and consumers. Modern sensing technologies with outstanding performance are needed to meet the growing demands for quick and accurate food safety monitoring. Recently, emerging sensors for regulating food safety have been extensively explored. Along with the development in sensing technology, the metal-organic frameworks (MOF)-based sensors gained more attention due to their excellent sensing, catalytic, and adsorption properties. This review summarizes the current advancements and applications of MOFs-based sensors, including colorimetric, electrochemical, luminescent, surface-enhanced Raman scattering, and electrochemiluminescent sensors. and also focused on the applications of MOF-based sensors for the monitoring of toxins such as heavy metals, pesticide residues, mycotoxins, pathogens, and illegal food additives from food samples. Future trends, as well as current developments in MOF-based materials.
Collapse
Affiliation(s)
- Muhammad Saqaf Jagirani
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Weiqiang Zhou
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Ahsan Nazir
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Muhammad Yasir Akram
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
8
|
Xie F, Tang F, Li X, Wu X, Wang S, Xie H, Wang P, Li Y, Liu Q. Photo-assisted "co-movement catalysis": CoFe 2O 4/CNS heterojunction based portable electrochemical sensor for simultaneous detection of Pb 2+ and Cd 2+ in natural water. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132420. [PMID: 37703735 DOI: 10.1016/j.jhazmat.2023.132420] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
Heavy metal ions (HMIs) seriously threaten human health even under trace conditions. Therefore, accurate, efficient and simultaneous detection of multiple HMIs is of great significance. Here, a strategy of "co-movement catalysis" based on photo-assisted electrochemical catalysis is proposed by constructing a flexible electrochemical sensor with CoFe2O4/CNS heterojunction-modified nickel foam as the working electrode for simultaneous detection of HMIs. Regarding photo-assisted catalysis, CoFe2O4/CNS nanocomposites formed a p-n type heterojunction, effectively separating photo-generated electron-hole pairs and reducing photo-generated carriers' recombination rate, leading to the catalytic reaction of photogenerated electrons and holes with HMIs and atoms to improve the efficiency of preconcentration and stripping, further amplifying the electrochemical signal. Regarding electrochemical catalysis, the CoFe2O4 spinel contains variable valence transition metal ions Fe2+/Fe3+ and Co2+/Co3+, which can reduce and oxidize HMIs circularly, further enhancing the sensor's sensitivity. The portable sensor based on "co-movement catalysis" exhibited sensitive detection performance. The linear range is 0.100-10.0 μM for Pb2+ and 1.00-10.0 μM for Cd2+, with the detection limit of 0.0310 μM for Pb2+ and 0.219 μM for Cd2+, respectively. The recovery rate of the sensor to natural water samples is between 96% and 105%, which proves its development potential in environmental monitoring.
Collapse
Affiliation(s)
- Fengqian Xie
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Feng Tang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Xinli Li
- Zibo Central Hospital, Zibo 255036, PR China
| | - Xiaoran Wu
- Zibo Central Hospital, Zibo 255036, PR China
| | - Shujun Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| | | | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| |
Collapse
|