1
|
Zhang Z, Zhang X, Lin B, Zhong Y, Zhang W, Zhong S, Chen X. Characterization and application of Cinnamaldehyde-loaded zein nanoparticles in a polyvinyl alcohol/chitosan film for silver pomfret ( Pampus argenteus) packaging. Food Chem X 2024; 24:102012. [PMID: 39651374 PMCID: PMC11625282 DOI: 10.1016/j.fochx.2024.102012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024] Open
Abstract
This study aims to prepare and characterize cinnamaldehyde-loaded zein/sodium alginate nanoparticles (ZCNPs) and incorporate them into polyvinyl alcohol/chitosan (PVA/CS) bioactive films (PSCN) to investigate their compatibility, physicochemical properties, and their application as a preservation material for pomfret fish. The results indicate that the anionic sodium alginate coating improved the particle size, zeta potential, and PDI of zein nanoparticles. The ZCNPs were uniformly dispersed within the films, enhancing the mechanical properties and water vapor barrier performance. The X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analyses confirmed the amorphous structure of the films and the formation of hydrogen bonds. In the PVA/CS film, with the increase of ZCNPs, the thermal decomposition temperature of the film increased from 298 °C to 308 °C, while the film thickness and water contact angle were not significantly affected, remaining around 0.31 cm and 23°, respectively. Additionally, after the incorporation of ZCNPs, the DPPH radical scavenging rate of the film increased from 14.58 % to 95.38 %, significantly delaying the quality deterioration of pomfret during storage.
Collapse
Affiliation(s)
- Zhan Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
- Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, China
| | - Xiaojun Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
- Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, China
| | - Bing Lin
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
- Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, China
| | - Yaqian Zhong
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
- Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, China
| | - Wenxiu Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
- Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, China
| | - Shangrong Zhong
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
- Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, China
| | - Xiaxia Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
- Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, China
| |
Collapse
|
2
|
Wang X, Yang Y, Chen Y, Liu T, Ren J, Li H, Lei W, Li S, Gao Z. Encapsulation and Sustained Release of Quercetin-Loaded pH-Responsive Intelligent Nanovehicles Based on the Coassembly of Pea Protein Isolate and Hyaluronic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39704191 DOI: 10.1021/acs.jafc.4c08659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A pea protein isolate (PPI)-hyaluronic acid (HA) nanocarrier delivery system was created for quercetin (Que) encapsulation using the pH conversion strategy. The self-assembly of the PPI-HA binary nanocomplex (HPP) were mainly driven by electrostatic and hydrophobic interactions. Que was successfully encapsulated in HPP nanocomposites (Que@HPP), which exhibited preferable redispersibility, and encapsulation efficiency (87.51%), loading capacity (14.50%). Que@HPP provided superior resistance to external environmental stresses (pH, ionic strength, high temperature, light exposure, and long-term storage), while maintaining its primary antioxidant activity after 15 days. Compared to free Que, the encapsulated Que shifted from a crystalline to an amorphous form, diffusing more easily through nanoparticle pores. Moreover, the encapsulated Que (Que@HPP) were stable in simulated gastric fluid (SGF, pH = 1.2) and released slowly in simulated intestinal fluid (SIF, pH = 6.8) compared to naked Que, demonstrating its potential to respond to specific external pH environments. Thus, the fabrication of HPP nanovehicles for Que encapsulation is a viable solution to improve its stability and release behaviors.
Collapse
Affiliation(s)
- Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yang Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanting Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ting Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingyi Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenzhi Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
3
|
Lin B, Zhang X, Zhong Y, Chen Y, Chen X, Chen X. Preparation of vanillin nanoparticle/polyvinyl alcohol/chitosan film and its application in preservation of large yellow croaker. Int J Biol Macromol 2024; 287:138440. [PMID: 39645123 DOI: 10.1016/j.ijbiomac.2024.138440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The novel polyvinyl alcohol/chitosan films incorporated with vanillin/zein/κ-carrageenan nanoparticles (VZCNPs) were developed. The polyvinyl alcohol/chitosan/vanillin nanoparticles (PVA/CS/NPs) films had exhibited enhanced tensile strength, hydrophobicity, antioxidant activities and antimicrobial efficacy, all of which varied with the different concentrations of VZCNPs. Notably, the PVA/CS/NPs-10 film exhibited exceptional performance, with a reduced Moisture Content of 15.68 ± 0.46 %, an increased water contact angle of 65.75°, and improved ABTS scavenging rate of 77.39 ± 0.54 %, demonstrating outstanding antioxidant activity and antimicrobial properties. The PVA/CS/NPs films were further applied to the packaging of large yellow croaker (Pseudosciaena crocea) to evaluate their preservation capability at 4 °C. The results indicated that the PVA/CS/NPs films effectively inhibited microbial growth and lipid oxidation, thereby delaying the spoilage of large yellow croaker. High-throughput sequencing study showed that the films effectively inhibited spoilage bacteria, including Comamonas, Pseudomonas, and, Burkholderia and affected the distribution of bacterial populations during storage. This study provides new insights into prolonging the shelf life of fresh-frozen large yellow croaker and developing advanced preservation methods for the future development of the aquatic product.
Collapse
Affiliation(s)
- Bing Lin
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Xiaojun Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China.
| | - Yaqian Zhong
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Yu Chen
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Xiaxia Chen
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Xuechang Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| |
Collapse
|
4
|
Zhang A, Huang J, Liu Y, Gong H, Guan F, Li W, Han F, Wang Y. Hyaluronic acid application strategies for plant bioactive component delivery: A review. Int J Biol Macromol 2024; 282:137129. [PMID: 39486733 DOI: 10.1016/j.ijbiomac.2024.137129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/21/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Despite the notable therapeutic effects of bioactive components derived from naturally occurring medicinal plants, various factors such as low solubility, poor bioavailability, possible toxicity, and inadequate tumor targeting capabilities generally hinder their full potential. Hyaluronic Acid (HA), a naturally occurring polysaccharide, has recently attracted significant research interest from scientists owing to its ability to precisely target tumors, anionic polysaccharide properties, and easily modifiable unique structure. In addition to offering a solid backing for delivering plant bioactive constituents, these remarkable attributes also have considerable implications for drug delivery systems in the future. This review delves into HA's application in delivering plant bioactive components, starting with a summary of HA's functional characteristics and detailing its strategies for single and dual-component delivery. The review also provides a forward-looking analysis of the challenges encountered in developing HA-based drug delivery systems.
Collapse
Affiliation(s)
- Ailin Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Jianchang Huang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Yutong Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Hexin Gong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Feng Guan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Fengjuan Han
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
5
|
Li Z, Zhang L, Shan Y, Zhao Y, Dai L, Wang Y, Sun Q, McClements DJ, Cheng Y, Xu X. Fabrication of high internal phase emulsions (HIPEs) using pea protein isolate-hyaluronic acid-tannic acid complexes: Application of curcumin-loaded HIPEs as edible inks for 3D food printing. Food Chem 2024; 460:140402. [PMID: 39059330 DOI: 10.1016/j.foodchem.2024.140402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024]
Abstract
Pea protein isolate (PPI)-hyaluronic acid (HA)-tannic acid (TA) ternary complexes were assembled using non-covalent interactions, their potential application in 3D printing and delivery of curcumin were investigated. As the HA-to-TA ratio in the complexes changed from 1:0 to 0:1, the oil-water interfacial tension first decreased and then increased, and the secondary structure of the proteins changed. The composition of the complexes (HA-to-TA ratio) was optimized to produce high internal phase emulsions (HIPEs) containing small uniform oil droplets with good storage and thermal stability. When the HA to TA ratio is 7:1 (P-H7-T1), HIPEs exhibited better viscosity, viscoelasticity, and thixotropy, which contributed to its preferable 3D printing. Moreover, curcumin-loaded HIPEs stabilized by P-H7-T1 showed a high lipid digestibility (≈101%) and curcumin bioaccessibility (≈79%). In summary, the PPI-HA-TA-stabilized HIPEs have good potential to be 3D-printable materials that could be loaded with bioactive components.
Collapse
Affiliation(s)
- Zhiying Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China
| | - Liwen Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China
| | - Yuehan Shan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China
| | - Yue Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China
| | | | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China; Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Xu W, McClements DJ, Zhang Z, Zhang R, Qiu C, Zhao J, Jin Z, Chen L. Effect of tannic acid modification on antioxidant activity, antibacterial activity, environmental stability and release characteristics of quercetin loaded zein-carboxymethyl chitosan nanoparticles. Int J Biol Macromol 2024; 280:135853. [PMID: 39306164 DOI: 10.1016/j.ijbiomac.2024.135853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The stability of quercetin remains a challenge for their application in industrial food production. In order to solve this shortcoming, zein-tannic acid covalent complex was prepared. Fourier transform infrared spectroscopy demonstrated the formation of CN bond between zein and tannic acid. Quercetin loaded nanoparticles (QZTC) were prepared by zein-tannic acid complex and carboxymethyl chitosan by anti-solvent co-precipitation and pH migration method. The structure of the nanoparticles was characterized and the effects of tannic acid modification and carboxymethyl chitosan addition on the encapsulation efficiency, oxidation resistance, antibacterial property, environmental stability and microstructure of the nanoparticles were studied. The results showed that compared with zein nanoparticles, QZTC had higher encapsulation rate, smaller and more uniform spherical microstructure. Compared with free quercetin and the other two nanoparticles, QZTC showed higher light, heat, storage stability, antioxidant and antibacterial abilities (p < 0.05). It was also found that the improvement of stability mainly depended on the formation of CN covalent bond, hydrogen bond, electrostatic interaction and hydrophobic interaction between components. This study provides new ideas for improving the environmental stability, antioxidant and antibacterial properties of quercetin and for developing nanoparticles that can be used in food processing.
Collapse
Affiliation(s)
- Wen Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | | | - Zipei Zhang
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Ruojie Zhang
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Chao Qiu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jianwei Zhao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
7
|
Huang J, Liao J, Li X, Zhao H, Li H, Kuang J, Li J, Guo J, Huang T, Li J. Tea saponin-Zein binary complex as a quercetin delivery vehicle: preparation, characterization, and functional evaluation. Int J Biol Macromol 2024; 279:135485. [PMID: 39255893 DOI: 10.1016/j.ijbiomac.2024.135485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
In this study, in order to solve the application problems of poor water solubility and low bioavailability of quercetin, we prepared a nano-delivery system with core-shell structure by anti-solvent method, including a hydrophilic shell composed of tea saponin and a hydrophobic core composed of Zein, which was used to improve the delivery efficiency and biological activity of quercetin. Through the optimal experiments, the loading rate and encapsulation rate of nanoparticles reached 89.41 % and 7.94 % respectively. And the water solubility of quercetin is improved by 30.16 times. At the same time, the quercetin acted with Zein through non-covalent interaction and destroyed its spatial network through structural characterization, while tea saponin covered the surface of Zein through electrostatic interaction, making it change into amorphous state. In addition, the addition of tea saponin makes the nanoparticles remain stable under the changes of external environment. During simulating gastrointestinal digestion procedure, ZQTNPs has higher release rate and bioavailability than free quercetin. Importantly, ZQTNPs can overcome the limitations of a single substance through synergy. These results will promote the innovative development of quercetin precision nutrition delivery system.
Collapse
Affiliation(s)
- Jianyu Huang
- College of Food Science and Engineering, Ningbo University, Ningbo, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiahao Liao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hui Zhao
- Changzhi Traditional Chinese Medicine Research Institute Affiliated Hospital, Changzhi, China
| | - Hongxia Li
- Changzhi Traditional Chinese Medicine Research Institute Affiliated Hospital, Changzhi, China
| | - Jian Kuang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianqiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinbin Guo
- Changzhi Traditional Chinese Medicine Research Institute Affiliated Hospital, Changzhi, China
| | - Tao Huang
- College of Food Science and Engineering, Ningbo University, Ningbo, China.
| | - Jinjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
8
|
Lin Z, Zhan L, Qin K, Li Y, Qin Y, Yang L, Sun Q, Ji N, Xie F. Design and Characterization of a Novel Core-Shell Nano Delivery System Based on Zein and Carboxymethylated Short-Chain Amylose for Encapsulation of Curcumin. Foods 2024; 13:1837. [PMID: 38928779 PMCID: PMC11202432 DOI: 10.3390/foods13121837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Curcumin is a naturally occurring hydrophobic polyphenolic compound with a rapid metabolism, poor absorption, and low stability, which severely limits its bioavailability. Here, we employed a starch-protein-based nanoparticle approach to improve the curcumin bioavailability. This study focused on synthesizing nanoparticles with a zein "core" and a carboxymethylated short-chain amylose (CSA) "shell" through anti-solvent precipitation for delivering curcumin. The zein@CSA core-shell nanoparticles were extensively characterized for physicochemical properties, structural integrity, ionic stability, in vitro digestibility, and antioxidant activity. Fourier-transform infrared (FTIR) spectroscopy indicates nanoparticle formation through hydrogen-bonding, hydrophobic, and electrostatic interactions between zein and CSA. Zein@CSA core-shell nanoparticles exhibited enhanced stability in NaCl solution. At a zein-to-CSA ratio of 1:1.25, only 15.7% curcumin was released after 90 min of gastric digestion, and 66% was released in the intestine after 240 min, demonstrating a notable sustained release effect. Furthermore, these nanoparticles increased the scavenging capacity of the 1,1-diphenyl-2-picrylhydrazyl (DPPH•) free radical compared to those composed solely of zein and were essentially nontoxic to Caco-2 cells. This research offers valuable insights into curcumin encapsulation and delivery using zein@CSA core-shell nanoparticles.
Collapse
Affiliation(s)
- Zhiwei Lin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Linjie Zhan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Kaili Qin
- School of Public Health, Anhui University of Science and Technology, Huainan 232001, China;
| | - Yang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Lu Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK;
| |
Collapse
|
9
|
Liu X, Zhang M, Zhou X, Wan M, Cui A, Xiao B, Yang J, Liu H. Research advances in Zein-based nano-delivery systems. Front Nutr 2024; 11:1379982. [PMID: 38798768 PMCID: PMC11119329 DOI: 10.3389/fnut.2024.1379982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Zein is the main vegetable protein from maize. In recent years, Zein has been widely used in pharmaceutical, agriculture, food, environmental protection, and other fields because it has excellent biocompatibility and biosafety. However, there is still a lack of systematic review and research on Zein-based nano-delivery systems. This paper systematically reviews preparation and modification methods of Zein-based nano-delivery systems, based on the basic properties of Zein. It discusses the preparation of Zein nanoparticles and the influencing factors in detail, as well as analyzing the advantages and disadvantages of different preparation methods and summarizing modification methods of Zein nanoparticles. This study provides a new idea for the research of Zein-based nano-delivery system and promotes its application.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Minhong Zhang
- Department of Clinical Medicine Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Ganzhou, China
| | - Xuelian Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Mengjiao Wan
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Aiping Cui
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Bang Xiao
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jianqiong Yang
- Department of Clinical Medicine Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Ganzhou, China
| | - Hai Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| |
Collapse
|
10
|
Zhou J, Pan H, Gong W, Yu DG, Sun Y. Electrosprayed Eudragit RL100 nanoparticles with Janus polyvinylpyrrolidone patches for multiphase release of paracetamol. NANOSCALE 2024; 16:8573-8582. [PMID: 38602025 DOI: 10.1039/d4nr00893f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Advanced nanotechniques and the corresponding complex nanostructures they produce represent some of the most powerful tools for developing novel drug delivery systems (DDSs). In this study, a side-by-side electrospraying process was developed for creating double-chamber nanoparticles in which Janus soluble polyvinylpyrrolidone (PVP) patches were added to the sides of Eudragit RL100 (RL100) particles. Both sides were loaded with the poorly water-soluble drug paracetamol (PAR). Scanning electron microscope results demonstrated that the electrosprayed nanoparticles had an integrated Janus nanostructure. Combined with observations of the working processes, the microformation mechanism for creating the Janus PVP patches was proposed. XRD, DSC, and ATR-FTIR experiments verified that the PAR drug was present in the Janus particles in an amorphous state due to its fine compatibility with the polymeric matrices. In vitro dissolution tests verified that the Janus nanoparticles were able to provide a typical biphasic drug release profile, with the PVP patches providing 43.8 ± 5.4% drug release in the first phase in a pulsatile manner. In vivo animal experiments indicated that the Janus particles, on one hand, could provide a faster therapeutic effect than the electrosprayed sustained-release RL100 nanoparticles. On the other hand, they could maintain a therapeutic blood drug concentration for a longer period. The controlled release mechanism of the drug was proposed. The protocols reported here pioneer a new process-structure-performance relationship for developing Janus-structure-based advanced nano-DDSs.
Collapse
Affiliation(s)
- Jianfeng Zhou
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Hao Pan
- School of Pharmacy, Liaoning University, 66 Chongshanzhong Road, Shenyang 110036, China.
| | - Wenjian Gong
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yuhao Sun
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
11
|
Wang Z, Cheng X, Meng F, Guo H, Liu Z, Wang H, Xu J, Jin H, Jiang L. Wheat gliadin hydrolysates based nano-micelles for hydrophobic naringin: Structure characterization, interaction, and in vivo digestion. Food Chem X 2024; 21:101136. [PMID: 38298357 PMCID: PMC10828641 DOI: 10.1016/j.fochx.2024.101136] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
In this study, enzymatic hydrolysis was used to fabricate wheat gliadin hydrolysates (WGHs) for the encapsulation and protection of naringin. The exposure of hydrophilic amino acids decreased the critical micelle concentration (from 0.53 ± 0.02 mg/mL to 0.35 ± 0.03 mg/mL) and improved solubility, which provided amphiphilic conditions for the delivery of naringin. The hydrolysates with a degree of hydrolysis (DH) of 9 % had the strongest binding affinity with naringin, and exhibited the smallest particle size (113.7 ± 1.1 nm) and the highest encapsulation rate (83.2 ± 1.3 %). The storage, heat and photochemical stability of naringin were improved via the encapsulation of micelles. Furthermore, the micelles made up of hydrolysates with a DH of 12 % significantly enhanced the bioavailability of naringin (from 19.4 ± 4.3 % to 46.8 ± 1.4 %). Our experiment provides theoretical support for the utilization of delivery systems based on water-insoluble proteins.
Collapse
Affiliation(s)
- Zhiyong Wang
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoyi Cheng
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fanda Meng
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotong Guo
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhengqin Liu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hua Jin
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
12
|
Oleandro E, Stanzione M, Buonocore GG, Lavorgna M. Zein-Based Nanoparticles as Active Platforms for Sustainable Applications: Recent Advances and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:414. [PMID: 38470745 DOI: 10.3390/nano14050414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Nanomaterials, due to their unique structural and functional features, are widely investigated for potential applications in a wide range of industrial sectors. In this context, protein-based nanoparticles, given proteins' abundance, non-toxicity, and stability, offer a promising and sustainable methodology for encapsulation and protection, and can be used in engineered nanocarriers that are capable of releasing active compounds on demand. Zein is a plant-based protein extracted from corn, and it is biocompatible, biodegradable, and amphiphilic. Several approaches and technologies are currently involved in zein-based nanoparticle preparation, such as antisolvent precipitation, spray drying, supercritical processes, coacervation, and emulsion procedures. Thanks to their peculiar characteristics, zein-based nanoparticles are widely used as nanocarriers of active compounds in targeted application fields such as drug delivery, bioimaging, or soft tissue engineering, as reported by others. The main goal of this review is to investigate the use of zein-based nanocarriers for different advanced applications including food/food packaging, cosmetics, and agriculture, which are attracting researchers' efforts, and to exploit the future potential development of zein NPs in the field of cultural heritage, which is still relatively unexplored. Moreover, the presented overview focuses on several preparation methods (i.e., antisolvent processes, spry drying), correlating the different analyzed methodologies to NPs' structural and functional properties and their capability to act as carriers of bioactive compounds, both to preserve their activity and to tune their release in specific working conditions.
Collapse
Affiliation(s)
- Emilia Oleandro
- Institute of Polymers, Composites and Biomaterials-CNR, Piazzale E. Fermi 1, 80055 Portici, Italy
| | - Mariamelia Stanzione
- Institute of Polymers, Composites and Biomaterials-CNR, Piazzale E. Fermi 1, 80055 Portici, Italy
| | | | - Marino Lavorgna
- Institute of Polymers, Composites and Biomaterials-CNR, Piazzale E. Fermi 1, 80055 Portici, Italy
- Institute of Polymers, Composites and Biomaterials-CNR, Via Previati 1/E, 23900 Lecco, Italy
| |
Collapse
|
13
|
Zhang G, Qin M, Guo M, Li M, Zhang D, Sun Y, Liu B, He Z, Fu Q. Thiol-modified hyaluronic acid improves the physical stability of curcumin-zein nanoparticles by forming disulfide bonds with zein. Food Chem 2023; 429:136858. [PMID: 37478613 DOI: 10.1016/j.foodchem.2023.136858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/24/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Zein-based nanoparticles have been developed in the food industry. However, their poor pH stability and unfavorable ionic strength stability remain a challenge even with the use of polysaccharides (such as hyaluronic acid) as stabilizers. To address this shortcoming, an improved strategy based on the disulfide bonds between thiol-modified hyaluronic acid (HASH) and zein was proposed. In this study, curcumin-zein nanoparticles (ZNs-HASH) were prepared with HASH as a stabilizer. The ZNs-HASH displayed similar particle sizes and spherical structures with ZNs and ZNs-HA (HA as a stabilizer). The Fourier transform infrared spectroscopy demonstrated the formation of disulfide bonds between zein and HASH. Among the three formulations tested, ZNs-HASH exhibited the highest pH and salt ion stability and the strongest antioxidant capacity. This study provided new insights for the improvement of physical stability of zein nanoparticles and the development of oral bioactive substances by chemical modification of natural polysaccharides.
Collapse
Affiliation(s)
- Guangshuai Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mengdi Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mengran Guo
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Di Zhang
- Liaoning Inspection, Examination & Certification Centre, No. 7 Chongshan West Road, Shenyang 110036, China
| | - Yichi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Bingyang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
14
|
Wang Y, Liu L, Zhu Y, Wang L, Yu DG, Liu LY. Tri-Layer Core-Shell Fibers from Coaxial Electrospinning for a Modified Release of Metronidazole. Pharmaceutics 2023; 15:2561. [PMID: 38004540 PMCID: PMC10674365 DOI: 10.3390/pharmaceutics15112561] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Polymers are the backbone of drug delivery. Electrospinning has greatly enriched the strategies that have been explored for developing novel drug delivery systems using polymers during the past two decades. In this study, four different kinds of polymers, i.e., the water-soluble polymer poly (vinyl alcohol) (PVA), the insoluble polymer poly(ε-caprolactone) (PCL), the insoluble polymer Eudragit RL100 (ERL100) and the pH-sensitive polymer Eudragit S100 (ES100) were successfully converted into types of tri-layer tri-polymer core-shell fibers through bi-fluid coaxial electrospinning. During the coaxial process, the model drug metronidazole (MTD) was loaded into the shell working fluid, which was an emulsion. The micro-formation mechanism of the tri-layer core-shell fibers from the coaxial emulsion electrospinning was proposed. Scanning electron microscope and transmission electron microscope evaluations verified the linear morphology of the resultant fibers and their obvious tri-layer multiple-chamber structures. X-ray diffraction and Fourier transform infrared spectroscopy measurements demonstrated that the drug MTD presented in the fibers in an amorphous state and was compatible with the three polymeric matrices. In vitro dissolution tests verified that the three kinds of polymer could act in a synergistic manner for a prolonged sustained-release profile of MTD in the gut. The drug controlled-release mechanisms were suggested in detail. The protocols reported here pioneer a new route for creating a tri-layer core-shell structure from both aqueous and organic solvents, and a new strategy for developing advanced drug delivery systems with sophisticated drug controlled-release profiles.
Collapse
Affiliation(s)
- Ying Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Lin Liu
- Naval Medical Center, Naval Medical University, Shanghai 200433, China; (L.L.); (Y.Z.); (L.W.)
| | - Yuanjie Zhu
- Naval Medical Center, Naval Medical University, Shanghai 200433, China; (L.L.); (Y.Z.); (L.W.)
| | - Liangzhe Wang
- Naval Medical Center, Naval Medical University, Shanghai 200433, China; (L.L.); (Y.Z.); (L.W.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Li-ying Liu
- Naval Medical Center, Naval Medical University, Shanghai 200433, China; (L.L.); (Y.Z.); (L.W.)
| |
Collapse
|
15
|
Yu C, Shan J, Fu Z, Ju H, Chen X, Xu G, Liu Y, Li H, Wu Y. Co-Encapsulation of Curcumin and Diosmetin in Nanoparticles Formed by Plant-Food-Protein Interaction Using a pH-Driven Method. Foods 2023; 12:2861. [PMID: 37569129 PMCID: PMC10418428 DOI: 10.3390/foods12152861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
In this work, a pH-driven method was used to prepare zein-soy protein isolate (SPI) composite nanoparticles (NPs). The mass ratio of SPI to zein influenced the Z-average size (Z-ave). Once the zeta potential stabilized, SPI was completely coated on the periphery of the zein NPs. The optimal mass ratio of zein:SPI was found to be 2:3. After determining the structure using TEM, curcumin (Cur) and/or diosmetin (Dio) were loaded into zein-SPI NPs for co-encapsulation or individual delivery. The co-encapsulation of Cur and Dio altered their protein conformations, and both Cur and Dio transformed from a crystalline structure to an amorphous form. The protein conformation change increased the number of binding sites between Dio and zein NPs. As a result, the encapsulation efficiency (EE%) of Dio improved from 43.07% to 73.41%, and thereby increased the loading efficiency (LE%) of zein-SPI NPs to 16.54%. Compared to Dio-loaded zein-SPI NPs, Cur/Dio-loaded zein-SPI NPs improved the storage stability of Dio from 61.96% to 82.41% within four weeks. The extended release of bioactive substances in the intestine during simulated gastrointestinal digestion improved the bioavailability. When exposed to a concentration of 0-800 µg/mL blank-loaded zein-SPI NPs, the viability of HepG2 and LO-2 cells was more than 90%, as shown in MTT assay tests. The zein-SPI NPs are non-toxic, biocompatible, and have potential applications in the food industry.
Collapse
Affiliation(s)
- Chong Yu
- Harbin Jilida Technology Co., Ltd., Harbin 150001, China;
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Jingyu Shan
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Ze Fu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Hao Ju
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Xiao Chen
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Guangsen Xu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Yang Liu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Huijing Li
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Yanchao Wu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| |
Collapse
|