1
|
Chen Y, Lin H, Yang Y, Cui L, Chisoro P, Yang C, Wu G, Li Q, Li J, Zhang C, Li X. Exploring the role of static magnetic field in supercooling storage from the viewpoint of meat quality and microbial community. Food Res Int 2024; 195:114884. [PMID: 39277269 DOI: 10.1016/j.foodres.2024.114884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/17/2024] [Accepted: 08/07/2024] [Indexed: 09/17/2024]
Abstract
In order to explore the application prospects of static magnetic field (SMF) combined with supercooling in meat preservation, this study proposed a novel method of supercooling assisted by a stationary magnetic field (SMF + supercooling) for the preservation of chilled pork, evaluating its cooling rate and quality changes (e.g., water holding capacity, color, pH, and TVB-N), as well as the evolution trend of the microbiota. The results showed that SMF + supercooling significantly (P < 0.05) improved the cooling rate of pork. Compared to chilling and supercooling, SMF + supercooling significantly delayed the increase of TVB-N and TVC on the 12th day of storage (P < 0.05). SMF + supercooling treatment achieves the maintenance of pork water-holding capacity by inhibiting water migration, reducing drip loss, cooking loss, and centrifugal loss of pork. The 16S rDNA bacteria flora analysis demonstrated that SMF + supercooling treatment reduced the relative abundance of spoilage bacteria such as Acinetobacter, Streptococcus, and Pseudomonas, delaying the deterioration of pork quality caused by microbial growth. The SMF + supercooling treatment can be considered a novel refrigeration preservation method that delays the deterioration of pork quality and extends its shelf life.
Collapse
Affiliation(s)
- Yong Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Hengxun Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yiping Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Liye Cui
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Prince Chisoro
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chuan Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Guangyu Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Qingqing Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jingjun Li
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China; Shandong Ledajia Biotechnology Co., Ltd, Laizhou, Shandong, 261400, China.
| | - Xia Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
2
|
Xu L, Chen H, Liang Z, Chen S, Xia Y, Zhu S, Yu M. Growth Reduction of Vibrionaceae and Microflora Diversity in Ice-Stored Pacific White Shrimp ( Penaeus vannamei) Treated with a Low-Frequency Electric Field. Foods 2024; 13:1143. [PMID: 38672816 PMCID: PMC11049124 DOI: 10.3390/foods13081143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
A novel storage technique that combines the low-frequency electric field (LFEF) and ice temperature was used to extend the shelf life of Pacific white shrimp (Penaeus vannamei). The study investigated the effect of LFEF treatment on the quality and microbial composition of Penaeus vannamei during storage at ice temperature. The results showed that the LFEF treatment significantly extended the shelf life of shrimp during storage at ice temperature. The total volatile base nitrogen (TVB-N) and pH of samples increased over time, while the total viable count (TVC) showed a trend of first decreasing and then increasing. Obviously, shrimp samples treated with LFEF had a lower pH, TVB-N and TVC values than the untreated samples (p < 0.05) at the middle and late stages of storage. LFEF treatment increased the diversity and altered the composition of the microbial communities in Penaeus vannamei. Additionally, the treatment led to a decrease in the relative abundance of dominant spoilage bacteria, including Aliivibrio, Photobacterium and Moritella, in Penaeus vannamei stored at ice temperature for 11 days. Furthermore, correlation analysis indicated that TVB-N and pH had a significant and positive correlation with Pseudoalteromonas, suggesting that Pseudoalteromonas had a greater impact on shrimp quality. This study supports the practical application of accelerated low-frequency electric field-assisted shrimp preservation as an effective means of maintaining shrimp meat quality.
Collapse
Affiliation(s)
- Lijuan Xu
- Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang 529500, China; (L.X.); (H.C.); (Z.L.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Haiqiang Chen
- Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang 529500, China; (L.X.); (H.C.); (Z.L.)
- Guangdong Provincial Engineering and Technology Research Center of Food Low Temperature Processing, Yangjiang 529566, China
| | - Zuanhao Liang
- Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang 529500, China; (L.X.); (H.C.); (Z.L.)
- Guangdong Provincial Engineering and Technology Research Center of Food Low Temperature Processing, Yangjiang 529566, China
| | - Shanshan Chen
- Institute of Food and Health, Yangtze Delta Region Institute of Tsinghua University Zhejiang, Jiaxing 314006, China; (S.C.); (Y.X.)
| | - Yu Xia
- Institute of Food and Health, Yangtze Delta Region Institute of Tsinghua University Zhejiang, Jiaxing 314006, China; (S.C.); (Y.X.)
| | - Siming Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ming Yu
- Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang 529500, China; (L.X.); (H.C.); (Z.L.)
- Guangdong Provincial Engineering and Technology Research Center of Food Low Temperature Processing, Yangjiang 529566, China
- Institute of Food and Health, Yangtze Delta Region Institute of Tsinghua University Zhejiang, Jiaxing 314006, China; (S.C.); (Y.X.)
| |
Collapse
|
3
|
Wu G, Yang C, Lin H, Hu F, Li X, Xia S, Bruce HL, Roy BC, Huang F, Zhang C. To What Extent Do Low-Voltage Electrostatic Fields Play a Role in the Physicochemical Properties of Pork during Freezing and Storage? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1721-1733. [PMID: 38206806 DOI: 10.1021/acs.jafc.3c08470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Low-voltage electrostatic fields (LVEF) are recognized as a new technology that can improve the quality of frozen meat. To determine the extent to which LVEF assistance affects the quality of frozen pork for long-term storage, pork was frozen and stored at -18 and -38 °C for up to 5 months. Water-holding capacity, muscle microstructure, and protein properties were investigated after up to 5 months of frozen storage with and without LVEF assistance. In comparison to traditional -18 and -38 °C frozen storage, LVEF treatment inhibited water migration during frozen storage and thawing. As a result, thawing losses were reduced by 15.97% (-18 °C) and 3.38% (-38 °C) in LVEF-assisted compared to conventional freezing methods. LVEF helped to maintain the muscle fiber microstructure and reduce muscle protein denaturation by miniaturizing ice crystal formation by freezing. As a result of this study, LVEF is more suitable for freezing or short-term frozen storage, while a lower temperature plays a more significant role in long-term frozen storage.
Collapse
Affiliation(s)
- Guangyu Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Chuan Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Hengxun Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Feifei Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Xia Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Shuangmei Xia
- Testing Center for Quality Supervision on Agro-Products and Foods, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Heather L Bruce
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Bimol C Roy
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Feng Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji 831100, P. R. China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji 831100, P. R. China
| |
Collapse
|
4
|
Xie Y, Zhou K, Tan L, Ma Y, Li C, Zhou H, Wang Z, Xu B. Coexisting with Ice Crystals: Cryogenic Preservation of Muscle Food─Mechanisms, Challenges, and Cutting-Edge Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19221-19239. [PMID: 37947813 DOI: 10.1021/acs.jafc.3c06155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Cryopreservation, one of the most effective preservation methods, is essential for maintaining the safety and quality of food. However, there is no denying the fact that the quality of muscle food deteriorates as a result of the unavoidable production of ice. Advancements in cryoregulatory materials and techniques have effectively mitigated the adverse impacts of ice, thereby enhancing the standard of freezing preservation. The first part of this overview explains how ice forms, including the theoretical foundations of nucleation, growth, and recrystallization as well as the key influencing factors that affect each process. Subsequently, the impact of ice formation on the eating quality and nutritional value of muscle food is delineated. A systematic explanation of cutting-edge strategies based on nucleation intervention, growth control, and recrystallization inhibition is offered. These methods include antifreeze proteins, ice-nucleating proteins, antifreeze peptides, natural deep eutectic solvents, polysaccharides, amino acids, and their derivatives. Furthermore, advanced physical techniques such as electrostatic fields, magnetic fields, acoustic fields, liquid nitrogen, and supercooling preservation techniques are expounded upon, which effectively hinder the formation of ice crystals during cryopreservation. The paper outlines the difficulties and potential directions in ice inhibition for effective cryopreservation.
Collapse
Affiliation(s)
- Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Kai Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Lijun Tan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yunhao Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Cong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Hui Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Zhaoming Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
- Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| |
Collapse
|
5
|
Xie Y, Zhou K, Chen B, Ma Y, Tang C, Li P, Wang Z, Xu F, Li C, Zhou H, Xu B. Mechanism of low-voltage electrostatic fields on the water-holding capacity in frozen beef steak: Insights from myofilament lattice arrays. Food Chem 2023; 428:136786. [PMID: 37429235 DOI: 10.1016/j.foodchem.2023.136786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/06/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
This study investigated the impact of low-voltage electrostatic field-assisted freezing on the water-holding capacity of beef steaks. The enhances mechanism of water-holding capacity by electrostatic field was elucidated through the detection of dynamic changes in the myofilament lattice and the construction of an in vitro myosin filaments model. The findings demonstrated that the disorder of the myofilament array, resulted from the aggregation of myosin filaments during freezing, is a crucial factor responsible for the water loss. The intervention of the electrostatic field can effectively reduce the myofibril density by 18.7%, while maintaining a regular lattice array by modulating electrostatic and hydrophobic interactions between myofibrils. Moreover, the electrostatic field significantly inhibited the migration of immobilized water to free water, thus resulting in an increase in the water-holding capacity of myofibrils by 36%. This work provides insights into the underlying mechanisms of water loss in frozen steaks and its regulation.
Collapse
Affiliation(s)
- Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Kai Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Bo Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yunhao Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Cheng Tang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Peijun Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Zhaoming Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Feiran Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Cong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Hui Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|