1
|
Feng RM, Liu Y, Liu ZQ, Wang L, Chen N, Zhao Y, Yi HW. Advances in nucleic acid aptamer-based detection of respiratory virus and bacteria: a mini review. Virol J 2024; 21:237. [PMID: 39350296 PMCID: PMC11443872 DOI: 10.1186/s12985-024-02513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024] Open
Abstract
Respiratory pathogens infecting the human respiratory system are characterized by their diversity, high infectivity, rapid transmission, and acute onset. Traditional detection methods are time-consuming, have low sensitivity, and lack specificity, failing to meet the needs of rapid clinical diagnosis. Nucleic acid aptamers, as an emerging and innovative detection technology, offer novel solutions with high specificity, affinity, and broad target applicability, making them particularly promising for respiratory pathogen detection. This review highlights the progress in the research and application of nucleic acid aptamers for detecting respiratory pathogens, discussing their selection, application, potential in clinical diagnosis, and future development. Notably, these aptamers can significantly enhance the sensitivity and specificity of detection when combined with detection techniques such as fluorescence, colorimetry and electrochemistry. This review offers new insights into how aptamers can address the limitations of traditional diagnostic methods and advance clinical diagnostics. It also highlights key challenges and future research directions for the clinical application of nucleic acid aptamers.
Collapse
Affiliation(s)
- Rui-Min Feng
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China
- Health Science Center, Yangtze University, Jingzhou, Hubei, People's Republic of China
- Laboratory Department, the People's Hospital of Yanhu District, Yuncheng, Shanxi, People's Republic of China
| | - Ye Liu
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China
- Health Science Center, Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Zhi-Qiang Liu
- Central Laboratory, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Li Wang
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Nan Chen
- Health Science Center, Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Yu Zhao
- Oncology Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China.
| | - Hua-Wei Yi
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China.
- Central Laboratory, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Léguillier V, Heddi B, Vidic J. Recent Advances in Aptamer-Based Biosensors for Bacterial Detection. BIOSENSORS 2024; 14:210. [PMID: 38785684 PMCID: PMC11117931 DOI: 10.3390/bios14050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The rapid and sensitive detection of pathogenic bacteria is becoming increasingly important for the timely prevention of contamination and the treatment of infections. Biosensors based on nucleic acid aptamers, integrated with optical, electrochemical, and mass-sensitive analytical techniques, have garnered intense interest because of their versatility, cost-efficiency, and ability to exhibit high affinity and specificity in binding bacterial biomarkers, toxins, and whole cells. This review highlights the development of aptamers, their structural characterization, and the chemical modifications enabling optimized recognition properties and enhanced stability in complex biological matrices. Furthermore, recent examples of aptasensors for the detection of bacterial cells, biomarkers, and toxins are discussed. Finally, we explore the barriers to and discuss perspectives on the application of aptamer-based bacterial detection.
Collapse
Affiliation(s)
- Vincent Léguillier
- INRAE, AgroParisTech, Micalis Institut, Université Paris-Saclay, UMR 1319, 78350 Jouy-en-Josas, France;
- ENS Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, 91190 Gif-sur-Yvette, France
| | - Brahim Heddi
- ENS Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, 91190 Gif-sur-Yvette, France
| | - Jasmina Vidic
- INRAE, AgroParisTech, Micalis Institut, Université Paris-Saclay, UMR 1319, 78350 Jouy-en-Josas, France;
| |
Collapse
|
3
|
Xie M, Zhu Y, Li Z, Yan Y, Liu Y, Wu W, Zhang T, Li Z, Wang H. Key steps for improving bacterial SERS signals in complex samples: Separation, recognition, detection, and analysis. Talanta 2024; 268:125281. [PMID: 37832450 DOI: 10.1016/j.talanta.2023.125281] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Rapid and reliable detection of pathogenic bacteria is absolutely essential for research in environmental science, food quality, and medical diagnostics. Surface-enhanced Raman spectroscopy (SERS), as an emerging spectroscopic technique, has the advantages of high sensitivity, good selectivity, rapid detection speed, and portable operation, which has been broadly used in the detection of pathogenic bacteria in different kinds of complex samples. However, the SERS detection method is also challenging in dealing with the detection difficulties of bacterial samples in complex matrices, such as interference from complex matrices, confusion of similar bacteria, and complexity of data processing. Therefore, researchers have developed some technologies to assist in SERS detection of bacteria, including both the front-end process of obtaining bacterial sample data and the back-end data processing process. The review summarizes the key steps for improving bacterial SERS signals in complex samples: separation, recognition, detection, and analysis, highlighting the principles of each step and the key roles for SERS pathogenic bacteria analysis, and the interconnectivity between each step. In addition, the current challenges in the practical application of SERS technology and the development trends are discussed. The purpose of this review is to deepen researchers' understanding of the various stages of using SERS technology to detect bacteria in complex sample matrices, and help them find new breakthroughs in different stages to facilitate the detection and control of bacteria in complex samples.
Collapse
Affiliation(s)
- Maomei Xie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yiting Zhu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Zhiyao Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yueling Yan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yidan Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Wenbo Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Tong Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of TCM, Tianjin, 301617, China.
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of TCM, Tianjin, 301617, China.
| |
Collapse
|
4
|
Wen P, Yang F, Zhao H, Xu Y, Li S, Chen L. Novel Digital SERS-Microfluidic Chip for Rapid and Accurate Quantification of Microorganisms. Anal Chem 2024; 96:1454-1461. [PMID: 38224075 DOI: 10.1021/acs.analchem.3c03515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
In this work, we present a simple and novel digital surface-enhanced Raman spectroscopy (SERS)-microfluidic chip designed for the rapid and accurate quantitative detection of microorganisms. The chip employs a high-density inverted pyramid microcavity (IPM) array to separate and isolate microbial samples. The presence or absence of target microorganisms is determined by scanning the IPM array using SERS and identifying the characteristic Raman bands. This approach allows for the "digitization" of the SERS response of each IPM, enabling quantification through the application of mathematical statistical techniques. Significantly, precise quantitative detection of yeast was achieved within a concentration range of 106-109 cells/mL, with the maximum relative standard deviation from the concentration calibrated by the cultivation method being 5.6%. This innovative approach efficiently addresses the issue of irregularities in SERS quantitative detection, which arises due to fluctuations in SERS intensity and poor reproducibility. We strongly believe that this digital SERS-microfluidic chip holds immense potential for diverse applications in the rapid detection of various microorganisms, including pathogenic bacteria and viruses.
Collapse
Affiliation(s)
- Ping Wen
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
- School of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou 635000, China
| | - Feng Yang
- School of Artificial Intelligence, Chongqing Key Laboratory of Intelligent Perception and Blockchain, Chongqing Technology and Business University, Chongqing 400067, China
| | - Haixia Zhao
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| | - Yi Xu
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| | - Shunbo Li
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| | - Li Chen
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| |
Collapse
|