1
|
Ouyang M, Liu T, Yuan X, Xie C, Luo K, Zhou L. Nanomaterials-based aptasensors for rapid detection and early warning of key food contaminants: A review. Food Chem 2025; 462:140990. [PMID: 39208725 DOI: 10.1016/j.foodchem.2024.140990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The frequent occurrence of food safety incidents has aroused public concern about food safety and key contaminants. Foodborne pathogen contamination, pesticide residues, heavy metal residues, and other food safety problems will significantly impact human health. Therefore, developing efficient and sensitive detection method to ensure food safety early warning is paramount. The aptamer-based sensor (aptasensor) is a novel analytical tool with strong targeting, high sensitivity, low cost, etc. It has been extensively utilized in the pharmaceutical industry, biomedicine, environmental engineering, food safety detection, and in other diverse fields. This work reviewed the latest research progress of aptasensors for food analysis and detection, mainly introducing their application in detecting various key food contaminants. Subsequently, the sensing mechanism and performance of aptasensors are discussed. Finally, the review will examine the challenges and opportunities related to aptasensors for detecting major contaminants in food, and advance implementation of aptasensors in food safety and detection.
Collapse
Affiliation(s)
- Min Ouyang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ting Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaomin Yuan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
2
|
Ali R, Alattar A, Alshaman R, Ghabban A, Alanazi S, Al-Brahimi H, Alatwi M, Jlawi A, Albalawi A, Moutair Awad Alatawi A, Al Balawi B, Al-Marwani A, El-Wekil MM. Sensing the invisible: Ultrasensitive and selective colorimetric detection of E. coli O157:H7 based on masking the peroxidase-mimetic activity of aptamer-modified Au/Fe 3O 4. Food Chem 2024; 443:138564. [PMID: 38320374 DOI: 10.1016/j.foodchem.2024.138564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Escherichia coli O157:H7 (E. coli O157:H7) emerges as a significantly worrisome pathogen associated with foodborne illnesses, emphasizing the imperative for creating precise detection tools. In this investigation, we developed a sensitive colorimetric biosensor for detecting E. coli O157:H7. It was constructed using a nanozyme comprised of Au@Fe3O4 NPs, which was fabricated and subsequently modified with an aptamer (Apt). The nanozyme harnesses its inherent peroxidase-like activity to facilitate the transformation of reduced TMB into its oxidized form in the presence of H2O2, resulting in a noticeable shift to a blue color. However, the presence of E. coli O157:H7 effectively diminished the absorbance of oxidized TMB. Consequently, the normalized absorbance at 652 nm demonstrates a linear decrease corresponding to concentrations of E. coli O157:H7 within the range of 101 to 108 CFU mL-1 with a low limit of detection (LOD, S/N = 3) of 3 CFU mL-1.
Collapse
Affiliation(s)
- Ramadan Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al Azhar University, Assiut Branch 71526, Egypt.
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abduallh Ghabban
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Sultan Alanazi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hazem Al-Brahimi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammed Alatwi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abdullah Jlawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abdulmohsen Albalawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Budor Al Balawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Afnan Al-Marwani
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|