1
|
da Silva TEB, de Oliveira YP, de Carvalho LBA, Dos Santos JAB, Dos Santos Lima M, Fernandes R, de Assis CF, Passos TS. Nanoparticles based on whey and soy proteins enhance the antioxidant activity of phenolic compound extract from Cantaloupe melon pulp flour (Cucumis melo L.). Food Chem 2025; 464:141738. [PMID: 39476578 DOI: 10.1016/j.foodchem.2024.141738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/04/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024]
Abstract
The phenolic compounds (PC) present in the pulp flour of Cantaloupe melon (Cucumis melo L.) were encapsulated in whey protein isolate (EPWI), whey protein concentrate (EPWC), and soy protein isolate (EPSP) by nanoprecipitation to evaluate the effect on the antioxidant potential in vitro. The crude extract was evaluated for the content and profile of PC, presenting 750 ± 60.73 mg EAG/100 g and ten different types with emphasis on procyanidin B1 (213.9 ± 33.23 mg/kg) and fumaric acid (181.6 ± 30.55 mg/kg). The characterization indicated the incorporation efficiency of PC in the range of 74.10 ± 0.28-90.60 ± 6.52 %, formation of spherical particles with smooth surfaces, average diameters between 74.90 ± 10.78-96.57 ± 10.17 nm, amorphous structure, and chemical interactions between the materials, justifying the potentiation of the antioxidant activity of the crude extract by up to six times (p < 0.05). Therefore, nanoencapsulation using protein materials and the nanoprecipitation technique is a promising strategy to promote the encapsulation of PC from Cantaloupe melon.
Collapse
Affiliation(s)
- Thais Emili Bezerra da Silva
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Yasmim Pessoa de Oliveira
- Undergraduate Course in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | | | - Jéssica Anarellis Barbosa Dos Santos
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; Department of Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina, PE 56316-686, Brazil
| | - Rafael Fernandes
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Cristiane Fernandes de Assis
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; Department of Pharmacy, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59084-100, Brazil
| | - Thaís Souza Passos
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; Department of Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil.
| |
Collapse
|
2
|
Lv W, Zhang L, Zhang M, Liu X, Zhou Y, Wang Y. Digestibility modulating and 3D printing of gliadin/resveratrol nanoparticle-filled starch gels. Food Chem 2025; 474:143136. [PMID: 39908811 DOI: 10.1016/j.foodchem.2025.143136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
This study assessed the impact of resveratrol-loaded gliadin nanoparticles on starch digestibility and explored their potential for 3D printing. The starch hydrolysis was significantly decreased to 57.7 %, 62.8 % and 41.0 % after filling with resveratrol (Res), gliadin (Gli) nanoparticles, and Res-loaded Gli (Gli/Res) nanoparticles, respectively. Correspondingly, the α-amylase activity was reduced to 51.5 %, 68.4 % and 32.9 %. Fluorescence red-shift and molecular docking revealed the formation of a non-covalent complex between α-amylase and Res. The molecular interaction between α-amylase and Res was visualized by confocal microscopy. The complex was stabilized by 7 hydrogen bonds and 49 hydrophobic interactions. Wheat starch containing Gli/Res nanoparticles exhibited suitable rheological properties for high-accuracy 3D printing. Gli/Res nanoparticles reduced the predicted glycemic index of 3D printed starch gels to approximately 45. These findings revealed the synergistic effect of Res controlled release and Gli binding to α-amylase on starch hydrolysis, demonstrating potential for developing low-glycemic index 3D printed foods.
Collapse
Affiliation(s)
- Wen Lv
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Lin Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Mengyuan Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xuanbo Liu
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg, VA 24061, USA
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yongquan Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
3
|
Hu Y, Zhang L, Wen QH, Cheng XP, Zhou LQ, Chen MS, Ke DW, Tu ZC. Prebiotic saccharides polymerization improves the encapsulation efficiency, stability, bioaccessibility and gut microbiota modulation of urolithin A liposomes. Int J Biol Macromol 2024; 273:133045. [PMID: 38942666 DOI: 10.1016/j.ijbiomac.2024.133045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
This work was to investigate the effect of four prebiotic saccharides gum arabic (GA), fructooligosaccharide (FOS), konjac glucomannan (KGM), and inulin (INU) incorporation on the encapsulation efficiency (EE), physicochemical stability, and in vitro digestion of urolithin A-loaded liposomes (UroA-LPs). The regulation of liposomes on gut microbiota was also investigated by in vitro colonic fermentation. Results indicated that liposomes coated with GA showed the best EE, bioaccessibility, storage and thermal stability, the bioaccessibility was 1.67 times of that of UroA-LPs. The UroA-LPs coated with FOS showed the best freeze-thaw stability and transformation. Meanwhile, saccharides addition remarkably improved the relative abundance of Bacteroidota, reduced the abundances of Proteobacteria and Actinobacteria. The UroA-LPs coated with FOS, INU, and GA exhibited the highest beneficial bacteria abundance of Parabacteroides, Monoglobus, and Phascolarctobacterium, respectively. FOS could also decrease the abundance of harmful bacteria Collinsella and Enterococcus, and increase the levels of acetic acid, butyric acid and iso-butyric acid. Consequently, prebiotic saccharides can improve the EE, physicochemical stability, gut microbiota regulation of UroA-LPs, and promote the bioaccessibility of UroA, but the efficiency varied based on saccharides types, which can lay a foundation for the application of UroA in foods industry and for the enhancement of its bio-activities.
Collapse
Affiliation(s)
- Yue Hu
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Lu Zhang
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Qing-Hui Wen
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xin-Peng Cheng
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Li-Qiang Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ming-Shun Chen
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Dai-Wei Ke
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
4
|
Zhang L, Chen L, Li S, Yu Z, Zhou Y, Wang Y. Fabrication and characterization of novel prolamin nanoparticle-filled starch gels incorporating resveratrol. Int J Biol Macromol 2024; 268:131764. [PMID: 38657935 DOI: 10.1016/j.ijbiomac.2024.131764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/22/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
This study aimed to improve the mechanical properties of wheat starch gels (WSG) and the stability and bioaccessibility of resveratrol (Res) in prolamin nanoparticles. Res-loaded gliadin (Gli), zein, deamidated gliadin (DG) and deamidated zein (DZ) nanoparticles were filled in WSG. The hardness, G' and G'' of WSG were notably increased. It can be attributed to the more ordered and stable structure induced by the interaction of prolamin nanoparticles and starch. The Res retention of nanoparticles and nanoparticle-filled starch gels was at least 24.6 % and 36.0 % higher than free Res upon heating. When exposed to ultraviolet, the Res retention was enhanced by over 6.1 % and 37.5 %. The in-vitro digestion demonstrated that the Res releasing percentage for nanoparticle-filled starch gels was 25.8 %-38.7 % lower than nanoparticles in the simulated stomach, and more Res was released in the simulated intestine. This resulted in a higher bioaccessibility of 82.1 %-93.2 %. The bioaccessibility of Res in Gli/Res/WSG and DG/Res/WSG was greater than that of Zein/Res/WSG and DZ/Res/WSG. More hydrophobic interactions occurred between Res and Gli, DG. The interactions between Res and zein, DZ were mainly hydrogen bonding. The microstructure showed that nanoparticles exhibited dense spherical structures and were uniformly embedded in the pores of starch gels.
Collapse
Affiliation(s)
- Lin Zhang
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Luzhen Chen
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shiyi Li
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yibin Zhou
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yongquan Wang
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Pronina Y, Belozertseva O, Nabiyeva Z, Pirozzi A, Carpentieri S, Ferrari G, Bazylkhanova E, Burlyayeva A. Enhancing nutritional value and health benefits of gluten-free confectionery products: innovative pastilles and marshmallows. Front Nutr 2024; 10:1321004. [PMID: 38283910 PMCID: PMC10811032 DOI: 10.3389/fnut.2023.1321004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction The research focuses on enhancing the nutritional value and potential health benefits of gluten-free confectionery products, developing innovative pastilles and marshmallows enriched with medicinal herb extracts, probiotics, and bioactive compounds from natural sources. Methods Physicochemical properties, including water activity, texture, and color, are assessed to evaluate the quality of the final products. Moreover, in vitro digestibility of the confectionery products is also investigated, with a focus on the release of bioactive compounds such as total phenolic compounds (TPC) and total anthocyanin (TAC) during simulated gastrointestinal digestion. Results and discussion Results indicate that the addition of specific ingredients to pastille samples does not lead to variations in water activity (~0.44), preserving the original properties, quality, and stability of the food. In contrast, the incorporation of additives in marshmallow products significantly increases water activity (p ≤ 0.05), attributed to their moisture-retaining effect. In general, our findings reveal that texture properties and color parameters are significantly affected by different formulations (p ≤ 0.05) for both confectionery products. Notably, the use of fruit and berries puree, along with the incorporation of additives, improves the functionality of confectionary products in terms of consumer acceptance (harder pastilles and softer marshmallow) and product quality. Furthermore, the study reveals that bioactive compounds are released and become more bioaccessible during digestion, particularly in the intestinal phase, with a maximum release exceeding 97% of TPC and TAC for both pastille and marshmallow samples. These findings pave the way for the development of a new category of gluten-free confectionery products, enriched with functional ingredients that offer potential health benefits, aligning with consumer preferences for natural, functional, and health-conscious treats. This research contributes to the evolving the landscape of functional confectionery products and underscores their potential as immune-boosting and naturally based food options.
Collapse
Affiliation(s)
- Yuliya Pronina
- Department of Food Technology, Almaty Technological University, Almaty, Kazakhstan
| | - Olga Belozertseva
- Department of Food Technology, Almaty Technological University, Almaty, Kazakhstan
| | - Zhanar Nabiyeva
- Department of Food Technology, Almaty Technological University, Almaty, Kazakhstan
| | - Annachiara Pirozzi
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| | - Serena Carpentieri
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
- ProdAl Scarl, University of Salerno, Fisciano, Italy
| | - Elmira Bazylkhanova
- Department of Food Technology, Almaty Technological University, Almaty, Kazakhstan
| | | |
Collapse
|
6
|
Carpentieri S, Ferrari G, Donsì F. High-Pressure Homogenization for Enhanced Bioactive Recovery from Tomato Processing By-Products and Improved Lycopene Bioaccessibility during In Vitro Digestion. Antioxidants (Basel) 2023; 12:1855. [PMID: 37891934 PMCID: PMC10603967 DOI: 10.3390/antiox12101855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The principles of industrial ecology have emerged as pivotal drivers of eco-innovation, aiming to realize a "zero-waste" society where waste materials are repurposed as valuable resources. In this context, High-Pressure Homogenization (HPH) presents a promising, easily scalable micronization technology, capable of enhancing the extractability and bioaccessibility of bioactive compounds found in tomato processing by-products, which are notably abundant waste streams in the Mediterranean region. This study focuses on optimizing HPH treatment parameters to intensify the recovery of bioactive compounds from tomato pomace. Additionally, it investigates the multifaceted impacts of HPH on various aspects, including color, particle size distribution, microscopic characteristics, surface properties, bioactivity, and lycopene bioaccessibility through in vitro digestion simulations. The results demonstrate that the application of HPH under optimized conditions (80 MPa, 25 °C, 10 passes) induces a remarkable 8-fold reduction in mean particle size, reduced surface tension, improved physical stability, uniform color, increased total phenolic content (+31%), antioxidant activity (+30%), dietary fiber content (+9%), and lycopene bioaccessibility during the intestinal digestion phase compared to untreated samples. These encouraging outcomes support the proposition of integrating HPH technology into an environmentally friendly industrial process for the full valorization of tomato processing residues. By utilizing water as the sole solvent, this approach aims to yield a functional ingredient characterized by greater nutritional and health-promoting values.
Collapse
Affiliation(s)
- Serena Carpentieri
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (S.C.); (G.F.)
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (S.C.); (G.F.)
- ProdAl Scarl, c/o University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (S.C.); (G.F.)
- NBFC (National Biodiversity Future Center), 90133 Palermo, Italy
| |
Collapse
|