1
|
Huang C, Jiang Y, Gong H, Zhou J, Qin L, Li Y. Spatially selective catalysis of OSA starch for preparation of Pickering emulsions with high emulsification properties. Food Chem 2024; 453:139571. [PMID: 38761741 DOI: 10.1016/j.foodchem.2024.139571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
The traditional strategies of chemical catalysis and biocatalysis for producing octenyl succinic anhydride modified starch can only randomly graft hydrophobic groups on the surface of starch, resulting in unsatisfactory emulsification performance. In this work, a lipase-inorganic hybrid catalytic system with multi-scale flower like structure is designed and applied to spatially selective catalytic preparation of ocenyl succinic anhydride modified starch. With the appropriate floral morphology and petal density, lipases distributed in the "flower center" can selectively catalyze the grafting of hydrophobic groups in a spatial manner, the hydrophobic groups are concentrated on one side of starch particles. The obtaining OSA starch exhibits excellent emulsifying property, and the pickering emulsion has good protective effect on the embedded curcumin. This work provides a direction for the development of high-performance starch-based emulsifiers for the food and pharmaceutical industries, which is of great significance for improving the preparation and emulsification theory research of modified starch.
Collapse
Affiliation(s)
- Chen Huang
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China; Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Yuewei Jiang
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China; Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Hui Gong
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China; Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Jinghui Zhou
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Lei Qin
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China.
| | - Yao Li
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China; Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China.
| |
Collapse
|
2
|
Yin Y, Zhuang Y, Sun L, Gu Y, Zhang G, Fan X, Ding Y. How does high hydrostatic pressure treatment improve the esterification of quinoa (Chenopodium quinoa Willd.) starch? Food Chem 2024; 463:141166. [PMID: 39276549 DOI: 10.1016/j.foodchem.2024.141166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/07/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
High hydrostatic pressure (HHP) treatment was combined with octenyl succinic anhydride (OSA) modification of quinoa starch (QS) to improve esterification efficiency. The modified QS was used as a stabilizer to prepare a Pickering emulsion. The results showed that the HHP treatment disrupted the morphology and crystalline structure of QS, exposed numerous hydrophilic hydroxyl groups, and added esterification reaction sites. The degree of substitution (DS) and esterification efficiency (RE) of OSA-HHP-QS were significantly (p < 0.05) increased compared with OSA-QS. In addition, the short-range ordering, relative crystallinity, and thermal stability of OSA-HHP-QS decreased with increasing treatment pressure. Except for OSA-HHP200-QS, the starch granules treated at 200 MPa were annealed, resulting in molecular recrystallization. The Contact angle, emulsion stability index (ESI), and emulsion activity index (EAI) indicated that the emulsions stabilized with OSA-HHP-QS were highly stable. Therefore, HHP can be used as a novel technology to assist OSA modified starches in stabilizing Pickering emulsions.
Collapse
Affiliation(s)
- Yaping Yin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
3
|
Li S, Zhu Y, Hao X, Su H, Chen X, Yao Y. High internal phase Pickering emulsions stabilized by the complexes of ultrasound-treated pea protein isolate/mung bean starch for delivery of β-carotene. Food Chem 2024; 440:138201. [PMID: 38104448 DOI: 10.1016/j.foodchem.2023.138201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/20/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
High internal phase Pickering emulsions (HIPPEs) stabilized by edible colloid particles have gained great interest. In this study, ultrasound-treated pea protein isolate and mung bean starch complexes (UPPI/MS) were prepared and used in stabilization of HIPPEs. The emulsifying properties of UPPI/MS were found to be superior to those of pea protein isolate (PPI), as evidenced by a smaller particle size and higher surface hydrophobicity. HIPPEs stabilized by UPPI/MS displayed a higher viscoelastic and gel-like structure. Low-Field NMR (LF-NMR) revealed that HIPPEs stabilized by UPPI60/MS (UPPI60/MS-HIPPEs) showed better ability to restrict the mobility of water. UPPI60/MS-HIPPEs also revealed the best environmental stability attributed a stronger three-dimensional network structure. Encapsulation of β-carotene within HIPPEs resulted in improving stability, with UPPI60/MS-HIPPEs exhibiting the highest retention rate of 73.58 %. Moreover, β-carotene encapsulated in HIPPEs displayed enhanced bioaccessibility, with UPPI60/MS-HIPPEs achieving the highest value of 25.37 %. This research highlighted the potential of UPPI60/MS complexes as effective stabilizers for HIPPEs and provided new insights on HIPPEs in nutrient delivery systems.
Collapse
Affiliation(s)
- Shiyu Li
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yingying Zhu
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Xiyu Hao
- Heilongjiang Feihe Dairy Co., Ltd., C-16, Beijing 100015, China.
| | - Hang Su
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Yang Yao
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Cauduro VH, Cui J, Flores EMM, Ashokkumar M. Ultrasound-Assisted Encapsulation of Phytochemicals for Food Applications: A Review. Foods 2023; 12:3859. [PMID: 37893751 PMCID: PMC10606579 DOI: 10.3390/foods12203859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The use of phytochemicals as natural food additives is a topic of interest for both academic and food industry communities. However, many of these substances are sensitive to environmental conditions. For this reason, encapsulation is usually performed prior to incorporation into food products. In this sense, ultrasound-assisted encapsulation is an emerging technique that has been gaining attention in this field, bringing important advantages for the production of functional food products. This review article covered applications published in the last five years (from 2019 to 2023) on the use of ultrasound to encapsulate phytochemicals for further incorporation into food. The ultrasound mechanisms for encapsulation, its parameters, such as reactor configuration, frequency, and power, and the use of ultrasound technology, along with conventional encapsulation techniques, were all discussed. Additionally, the main challenges of existing methods and future possibilities were discussed. In general, ultrasound-assisted encapsulation has been considered a great tool for the production of smaller capsules with a lower polydispersity index. Encapsulated materials also present a higher bioavailability. However, there is still room for further developments regarding process scale-up for industrial applications. Future studies should also focus on incorporating produced capsules in model food products to further assess their stability and sensory properties.
Collapse
Affiliation(s)
- Vitoria Hagemann Cauduro
- Department of Chemistry, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (V.H.C.); (E.M.M.F.)
| | - Jiwei Cui
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Erico Marlon Moraes Flores
- Department of Chemistry, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (V.H.C.); (E.M.M.F.)
| | | |
Collapse
|