1
|
Tan J, Fang Z, Tian C, Zhou C, Zhang C, Jiang L, Zheng A, Yang N, Guo Y. Improving flavor of Wuyi rock tea processed from rain-soaked leaves by optimizing withering conditions. Food Chem 2025; 471:142762. [PMID: 39788012 DOI: 10.1016/j.foodchem.2025.142762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Rainy weather restricts the formation of high-quality Wuyi rock tea (WRT). Herein, an optimized withering process for rain-soaked leaves was developed using response surface methodology. Results showed that increasing the withering temperature, relative humidity, and withering time from 25 °C to 40 °C, 80 % to 97 %, and 3 to 6 h, respectively, effectively improved the sensory qualities of the optimized primary WRT (WRTO) prepared from rain-soaked leaves compared with those before optimization. The high content of soluble sugars, L-theanine, catechins, esters, alcohols, terpenoids, ketones, aldehydes and aromatics contributed significantly to the formation of the unique flavor of WRTO, which was significantly increased after optimizing the withering process. The flavor wheel of WRT-O was constructed, and its unique flavor was dominated by thickness and smoothness taste and floral, fruity, and sweet aroma. This study offers a theoretical reference for quality control of WRT produced from rain-soaked leaves.
Collapse
Affiliation(s)
- Jiayao Tan
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhou Fang
- Wuyishan Yongsheng Tea Industry Co., Ltd, Wuyishan City, Nanping 353000, China
| | - Caiyun Tian
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzhe Zhou
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cheng Zhang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lele Jiang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Anru Zheng
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Niannian Yang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Green Cultivation and Processing Collaborative Innovation Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Cao Y, Xu A, Tao M, Wang S, Yu Q, Li S, Tu Z, Liu Z. Flavor evolution of unsweetened green tea beverage during actual storage: Insights from multi-omics analysis. Food Chem 2025; 481:144039. [PMID: 40157108 DOI: 10.1016/j.foodchem.2025.144039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/13/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
The flavor evolution of unsweetened green tea beverage (USGTB) under actual storage is critical for quality control yet remains unclear. Unlike previous studies conducted by accelerated shelf-life testing, this research investigated sensory-chemical changes in naturally stored USGTB (0-7 months) through multi-omics integrating metabolomics and sensomics. Results identified the 5-month as a critical point for flavor preservation. The EC-EGCG dimer emerged as a novel aging marker, contrasting with freshness indicators (ascorbic acid and other antioxidants). Protocatechuic acid and 2-furoic acid served as multi-flavor contributors (yellowish, sweetness and astringency), whereas L-tartaric acid and malic acid enhanced sourness. Concurrently, aroma deterioration was driven by the diminished (E)-β-ionone and accumulated methyl salicylate. Mechanistically, oxidations of ascorbic acid, catechins, and fresh aroma-related volatiles, flavonoid glycosylation, and oligosaccharides hydrolysis collectively drove color darkening, astringency enhancement, sweetness intensification, and cooked-off flavor development. These findings provided targeted quality control points for USGTB during actual shelf-life.
Collapse
Affiliation(s)
- Yanyan Cao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Anan Xu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Meng Tao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Shanshan Wang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Qinyan Yu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sixu Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; The College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China
| | - Zheng Tu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Zhengquan Liu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
3
|
Huang L, Deng G, Fan Y, Wang W, Yu T, Wei Y, Gao J, Ning J, Wang Y. The processing of shaking and standing improves the taste quality of summer black tea. Food Res Int 2025; 201:115545. [PMID: 39849699 DOI: 10.1016/j.foodres.2024.115545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/24/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Shaking and standing (SS) enhances the aroma intensity and quality of black tea (BT). However, its contribution to the taste remains unknown, and the interaction mechanism between the aroma and taste perception of black tea is also undisclosed. Here, the metabolomics and sensory evaluation-assisted flavor analysis were employed to investigate the changes in non-volatiles induced by SS, and the interaction mechanism between aroma and taste perception. SSBT exhibited considerable reduced bitterness and astringency intensities compared to BT. Notably, the concentrations of contributing compounds such as catechins, proanthocyanidins, theaflavins, anthocyanins, and flavonol glycosides were decreased in SSBT. Sensory experiments further revealed that nine floral and sweet odorants in SSBT exhibited odor-enhancing interactions. Molecular docking validated the binding affinity and interaction forces between mono/di-ligands and OR1G1/OR52D1. Furthermore, the presence of the nine odorants exerted inhibitory effects on the bitterness and astringency of SSBT. These findings provide a novel perspective on the formation of flavor in SSBT.
Collapse
Affiliation(s)
- Lunfang Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, China; International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, China
| | - Guojian Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, China; International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, China
| | - Yulin Fan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, China; International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, China
| | - Wenya Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, China; International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, China
| | - Tianzi Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, China; International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, China
| | - Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, China; International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, China
| | - Jing Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, China; International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, China; International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, China; International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, China.
| |
Collapse
|
4
|
Moreira J, Aryal J, Guidry L, Adhikari A, Chen Y, Sriwattana S, Prinyawiwatkul W. Tea Quality: An Overview of the Analytical Methods and Sensory Analyses Used in the Most Recent Studies. Foods 2024; 13:3580. [PMID: 39593996 PMCID: PMC11593154 DOI: 10.3390/foods13223580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Tea, one of the world's most consumed beverages, has a rich variety of sensory qualities such as appearance, aroma, mouthfeel and flavor. This review paper summarizes the chemical and volatile compositions and sensory qualities of different tea infusions including black, green, oolong, dark, yellow, and white teas based on published data over the past 4 years (between 2021 and 2024), largely focusing on the methodologies. This review highlights the relationships among the different processing methods of tea and their resulting chemical and sensory profiles. Environmental and handling factors during processing, such as fermentation, roasting, and drying are known to play pivotal roles in shaping the unique flavors and aromas of different types of tea, each containing a wide variety of compounds enhancing specific sensory characteristics like umami, astringency, sweetness, and fruity or floral notes, which may correlate with certain groups of chemical compositions. The integration of advanced analytical methods, such as high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS), with traditional sensory analysis techniques was found to be essential in the evaluation of the chemical composition and sensory attributes of teas. Additionally, emerging approaches like near-infrared spectroscopy (NIRS) and electronic sensory methods show potential in modern tea evaluation. The complexity of tea sensory characteristics necessitates the development of combined approaches using both analytical methods and human sensory analysis for a comprehensive and better understanding of tea quality.
Collapse
Affiliation(s)
- Juan Moreira
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.M.); (J.A.); (A.A.)
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Jyoti Aryal
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.M.); (J.A.); (A.A.)
| | - Luca Guidry
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (L.G.); (Y.C.)
| | - Achyut Adhikari
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.M.); (J.A.); (A.A.)
| | - Yan Chen
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (L.G.); (Y.C.)
| | - Sujinda Sriwattana
- Product Development Technology Division, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.M.); (J.A.); (A.A.)
| |
Collapse
|
5
|
Sheng C, Lu M, Zhang J, Zhao W, Jiang Y, Li T, Wang Y, Ning J. Metabolomics and electronic-tongue analysis reveal differences in color and taste quality of large-leaf yellow tea under different roasting methods. Food Chem X 2024; 23:101721. [PMID: 39229616 PMCID: PMC11369393 DOI: 10.1016/j.fochx.2024.101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Roasting is a key process in the production of large-leaf yellow tea (LYT). In this study, we synthesized metabolomics and electronic-tongue analysis to compare the quality of charcoal-roasted, electric-roasted and drum-roasted LYT. Charcoal-roasted LYT had the highest yellowness and redness, drum-roasted LYT had a more prominent umami and brightness, and electric roasting reduced astringency. A total of 48 metabolites were identified by metabolomics. Among these, leucocyanidin, kaempferol, luteolin-7-lactate, and apigenin-7-O-neohesperidoside might affect the brightness and yellowness. Theanine, aspartic acid, and glutamic acid contents significantly and positively correlated with umami levels, and the high retention of flavonoid glycosides and catechins in drum-roasted LYT contributed to its astringency. These findings elucidate the contribution of the roasting method to the quality of LYT and provide a theoretical basis for LYT production.
Collapse
Affiliation(s)
- Caiyan Sheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Mingxia Lu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Wei Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yanqun Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| |
Collapse
|
6
|
Wang A, Lei Q, Zhang B, Wu J, Fu Z, He J, Wang Y, Wu X. Revealing novel insights into the enhancement of quality in black tea processing through microbial intervention. Food Chem X 2024; 23:101743. [PMID: 39257489 PMCID: PMC11386051 DOI: 10.1016/j.fochx.2024.101743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024] Open
Abstract
Black tea is highly favored by consumers worldwide, with enzymatic reactions being recognized as a pivotal factor influencing tea quality. The role of microorganisms in shaping the composition of black tea has emerged as a focus of research due to their involvement in enzyme catalysis and metabolic processes. In this study, full-length amplicon sequencing combined with qPCR more accurately reflected microbial profile, and Pantoea, Pseudomonas, Paucibacter, and Cladosporium were identified as the main microbial genera. Moreover, by comprehensively analyzing color, aroma, and taste components over time in black tea samples, correlations were established between the dominant genus and various quality factors. Notably, peroxidase activity levels, total soluble sugar content, and tea pigments concentration exhibited significant associations with the dominant genus. Consequently, this microbiological perspective facilitated the exploration of driving factors for improving black tea quality while establishing a theoretical foundation for quality control in industrial production.
Collapse
Affiliation(s)
- Ailing Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Qingqing Lei
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Beibei Zhang
- Guizhou Guitianxia Shengxing Tea Industry Co., LTD, Zunyi, Guizhou 563000, China
| | - Junhai Wu
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Zheyang Fu
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Jiangfeng He
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Yanbo Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Xinying Wu
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| |
Collapse
|
7
|
Wang W, Feng Z, Min R, Yin J, Jiang H. The Effect of Temperature and Humidity on Yellow Tea Volatile Compounds during Yellowing Process. Foods 2024; 13:3283. [PMID: 39456345 PMCID: PMC11506851 DOI: 10.3390/foods13203283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Yellowing is the key processing technology of yellow tea, and environmental conditions have a significant impact on the yellowing process. In this study, volatile compounds of the yellowing process under different environmental conditions were analyzed by GC-MS. Results showed that a total of 75 volatile compounds were identified. A partial least squares discriminant analysis (PLS-DA) determined that 42 of them were differential compounds, including 12 hydrocarbons, 8 ketones, 8 aldehydes, 6 alcohols, and 8 other compounds, and compared the contents of differential compounds under the conditions of 40 °C with 90% humidity, 50 °C with 50% humidity, and 30 °C with 70% humidity, then analyzed the variation patterns of hydrocarbons under different yellowing environmental conditions. A 40 °C with 90% humidity treatment reduced the content of more hydrocarbons and increased the aldehydes. The content of 3-hexen-1-ol was higher when treated at 50 °C with 50% humidity and was consistent with the results of sensory evaluation. This study could provide a theoretical basis for future research on the aroma of yellow tea.
Collapse
Affiliation(s)
| | | | | | | | - Heyuan Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (W.W.); (Z.F.); (R.M.); (J.Y.)
| |
Collapse
|
8
|
Qi S, Zeng T, Wu P, Sun L, Dong Z, Xu L, Xiao P. Widely targeted metabolomic analysis reveals effects of yellowing process time on the flavor of vine tea ( Ampelopsis grossedentata). Food Chem X 2024; 22:101446. [PMID: 38846795 PMCID: PMC11154209 DOI: 10.1016/j.fochx.2024.101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 06/09/2024] Open
Abstract
The bitter and astringent taste and miscellaneous smell of vine tea prevent its further development. In this study, we used a processing technology that mimics yellow tea to improve the flavor of vine tea and revealed its internal reasons through metabolomics. Sensory evaluation showed the yellowing process for 6-12 h reduced the bitterness and astringency significantly, and enriched the aroma. The improvement of taste was mainly related to the down-regulation of anthocyanins (54.83-97.38%), the hydrolysis of gallated catechins (34.80-47.81%) and flavonol glycosides (18.56-44.96%), and the subsequent accumulation of d-glucose (33.68-78.04%) and gallic acid (220.96-252.09%). For aroma, increase of total volatile metabolite content (23.88-25.44%) and key compounds like geraniol (239.32-275.21%) induced the changes. These results identified the positive effects of yellowing process on improvements in vine tea flavor and the key compounds that contribute to these changes.
Collapse
Affiliation(s)
- Shunyao Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tiexin Zeng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiling Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Le Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Wei Y, Zhang J, Li T, Zhao M, Song Z, Wang Y, Ning J. GC-MS, GC-O, and sensomics analysis reveals the key odorants underlying the improvement of yellow tea aroma after optimized yellowing. Food Chem 2024; 431:137139. [PMID: 37604002 DOI: 10.1016/j.foodchem.2023.137139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
An optimized yellowing process for yellow tea (YT) was recently developed. The study found that the optimized yellowing process caused a significant increase in sweet and floral aromas by 31.3% and 24.0%, respectively. A total of 21 aroma-active compounds were identified using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry (GC-O) combined with sensomics analysis. Quantification of the 15 aroma-active compounds and calculation of odor activity values (OAVs) showed that the OAVs of sweet and floral aroma compounds increased significantly by 986.2% and 46.4%, respectively, after the optimized yellowing process. Sensory-directed aroma reconstitution and omission experiments confirmed that dimethyl sulfide, 3-methylbutanal, β-ionone, β-damascenone, geraniol, phenylacetaldehyde, and linalool were the key odorants in YT after the optimized yellowing process. Odorant addition tests further demonstrated that β-damascenone (OAV 590.4) was the main odorant for YT sweet aroma enhancement, while β-ionone (OAV 884.6) was the main odorant for YT floral aroma enhancement.
Collapse
Affiliation(s)
- Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, China
| | - Mengjie Zhao
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zhenshuo Song
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, China.
| |
Collapse
|