1
|
Duan X, Jin T, Mao B, Shao S, Zhao L. A novel rhodamine B fluorescence probe for rapid identification of different amino acids by high efficiency fluorescence spectrum-mass spectrometry. Front Chem 2024; 12:1409420. [PMID: 39415821 PMCID: PMC11482625 DOI: 10.3389/fchem.2024.1409420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Rapid detection of amino acids plays an important role in the field of medical diagnosis. By combining Rhodamine B with triphenylamine, a novel double-response fluorescence probe (E)-4-((4-(((3',6'-bis(diethylamino)-3-oxospiro[isoindoline-1,9'-xanthen]-2-yl)imino)methyl)phenyl)(phenyl)amino)benzaldehyde (RBTPA) was prepared for rapid identification of different amino acids. Methods Under daylight and 365 nm irradiation, it was found that the color change was most bright at pH = 3, and changed to dim at pH = 4. When pH = 3 and pH = 4, the photophysical properties of the two strong acids are very different. The maximum redshift of UV absorption light is 110 nm, and the maximum fluorescence emission intensity is 4 times different. Results and Discussion In order to further observe their binding structure analysis with different amino acids, qualitative analysis of each response structure was determined by mass spectrometry according to different molecular weights. The fluorescence probe RBTPA has two different isomers for recognition response in aldehyde group and imine group, respectively.
Collapse
Affiliation(s)
- Xiujie Duan
- Department of Clinical Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Tao Jin
- Department of Gastroenterology, Yixing Hospital Affiliated to Jiangsu University, Yixing, China
| | - Boneng Mao
- Department of Gastroenterology, Yixing Hospital Affiliated to Jiangsu University, Yixing, China
| | - Shihe Shao
- Department of Gastroenterology, Yixing Hospital Affiliated to Jiangsu University, Yixing, China
| | - Lei Zhao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
2
|
Yang S, Zhao Q, Wang D, Zhang T, Zhong Z, Kwok LY, Bai M, Sun Z. The interaction between Lactobacillus delbrueckii ssp. bulgaricus M58 and Streptococcus thermophilus S10 can enhanced texture and flavor profile of fermented milk: Insights from metabolomics analysis. J Dairy Sci 2024:S0022-0302(24)01055-5. [PMID: 39098498 DOI: 10.3168/jds.2024-25217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024]
Abstract
Lactobacillus delbrueckii ssp. bulgaricus M58 (M58) and Streptococcus thermophilus S10 (S10) are 2 dairy starter strains known for their favorable fermentation characteristics. Therefore, this research aimed to study the effects of 1-d low-temperature ripening on the physicochemical properties and metabolomics of fermented milk. Initially, the performance of single (M58 or S10) and dual (M58+S10) strain fermentation was assessed, revealing that the M58+S10 combination resulted in a shortened fermentation time, a stable gel structure, and desirable viscosity, suggesting positive strain interactions. Subsequently, non-targeted metabolomics analyses using LC-MS and GC-MS were performed to comparatively analyze M58+S10 fermented milk samples collected at the end of fermentation and after 1-d low-temperature ripening. The results showed a significant increase in almost all small peptides and dodecanedioic acid in the samples after one day of ripening, while there was a substantial decrease in indole and amino acid metabolites. Moreover, notable increases were observed in high-quality flavor compounds, such as geraniol, delta-nonalactone, 1-hexanol,2-ethyl-, methyl jasmonate, and undecanal. This study provides valuable insights into the fermentation characteristics of the dual bacterial starter consisting of M58 and S10 strains and highlights the specific contribution of the low-temperature ripening step to the overall quality of fermented milk.
Collapse
Affiliation(s)
- Shujuan Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Qian Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Dan Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Ting Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Mei Bai
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
3
|
Fan X, Liu M, Shi Z, Zhang T, Du L, Wu Z, Zeng X, Wu X, Pan D. Binary probiotic fermentation promotes signal (cyclic AMP) exchange to increases the number of viable probiotics, anthocyanins and polyphenol content, and the odor scores of wolfberry fermented beverages. Food Chem 2024; 448:139085. [PMID: 38518444 DOI: 10.1016/j.foodchem.2024.139085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/15/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
The effects and underlying molecular mechanisms of binary probiotics (Lactiplantibacillus plantarum subsp. plantarum CGMCC 1.5953 and Lacticaseibacillus casei CGMCC 1.5956) on the quality of wolfberry fermented beverages (WFB) were investigated. The results indicated that binary probiotics increased the number of probiotics, anthocyanin (89.92 ± 1.64 mg/L), polyphenol content (283.04 ± 3.81 µg/mL), and odor score (24.19) in WFB. Metabolomics found that they could enhance signal exchange (cyclic AMP) between binary probiotics and improve the utilization of citrulline, d-proline, d-glucose, and d-galactose through galactose metabolism and amino acid biosynthesis pathway to promote probiotics growth. Furthermore, HS-SPME-GC-MS and GS-IMS revealed that the improvement in flavor was mainly due to an increase in the content of the aromatic flavor substances 3-heptanol, glutaraldehyde, and 2-heptanone, and a decrease in the content of the off-flavor substances methyl isobutyl ketone-D and 2-undecanone. This is strategically important for the development of WFB with high probiotic content and unique flavor.
Collapse
Affiliation(s)
- Xiankang Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Mingzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Zihang Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Tao Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Xiang Wu
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo Key Laboratory of Behavioral Neuroscience, School of Medicine, Ningbo University, Ningbo, China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China.
| |
Collapse
|
4
|
Luo J, Jia M, Yang X, Chai Y, Bao Y. Interaction between lactic acid bacteria and Polygonatum sibiricum saponins and its application to microencapsulated co-delivery. Food Chem 2024; 448:138959. [PMID: 38552464 DOI: 10.1016/j.foodchem.2024.138959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/24/2024]
Abstract
This study aimed to investigate the interaction between L.casei and L.bulgaricus with Polygonatum sibiricum saponins (PSS) and to explore the co-microencapsulation to reduce their loss rate during storage and consumption. 1% PSS was added to the culture broth, and it was found that the growth and metabolism of the strains were accelerated, especially in the compound probiotic group, indicating that PSS has potential for prebiotics. LC-MS observed significant differences in the composition and content of saponins in PSS. The metabolomics results suggest that the addition of PSS resulted in significant changes in the metabolites of probiotics. In addition, it was found that the combination of probiotics and PSS may have stronger hypoglycemic ability (ɑ-glucosidase, HepG2). Finally, a co-microencapsulated delivery system was constructed using zein and isomaltooligosaccharide. This system can achieve more excellent resistance of probiotics and PSS in gastrointestinal fluids, effectively transporting both to the small intestine.
Collapse
Affiliation(s)
- Jiayuan Luo
- College of Life Sciences, Northeast Forestry University, Harbin 150040, PR China
| | - Mingjie Jia
- College of Life Sciences, Northeast Forestry University, Harbin 150040, PR China
| | - Xue Yang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, PR China
| | - Yangyang Chai
- College of Life Sciences, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, PR China.
| | - Yihong Bao
- College of Life Sciences, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, PR China
| |
Collapse
|
5
|
Hashigami A, Tamura R, Takezaki C, Asano T, Yoshinaka T, Hirano K, Takemura A, Yamashita H, Nose A, Kozaki D. Multifunctional-separation-mode ion chromatography method for determining major metabolites during multiple parallel fermentation of rice wine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4045-4053. [PMID: 38804516 DOI: 10.1039/d4ay00591k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Facile and effective analysis methods are desirable for elucidating the behaviours of metabolites during fermentation reactions. Herein, a multifunctional-separation-mode ion chromatography (MFS-IC) method was developed for the simultaneous monitoring of major metabolites during multiple parallel fermentation, including those related to central carbon metabolism (saccharification, glycolysis, alcoholic fermentation, and the tricarboxylic acid (TCA) cycle). The use of two types of sulfo-modified size-exclusion columns and phthalic acid as the eluent allowed the separation of oligosaccharides (disaccharides, trisaccharides, and tetrasaccharides), glucose, pyruvate, and major organic acids during the TCA cycle (cis-aconitate, citrate, iso-citrate, malate, fumarate, and succinate but not α-ketoglutarate) from other non-target analytes. The MFS-IC method was successfully applied to monitoring the major metabolites in the rice wine brewing process. This approach can contribute to an improved understanding of metabolite behaviour during fermentation without requiring the use of expensive advanced instrumentation methods such as liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Atsushi Hashigami
- Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi City, Kochi 780-8520, Japan.
| | - Ryousei Tamura
- Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi City, Kochi 780-8520, Japan.
| | - Chihiro Takezaki
- Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi City, Kochi 780-8520, Japan.
| | - Tohru Asano
- Department of Brewing, Tsukasa Botan Brewing Company, Limited, 1299 Ko, Sakawa-cho, Takaoka-gun, Kochi 789-1201, Japan
| | - Taichi Yoshinaka
- Department of Brewing, Tsukasa Botan Brewing Company, Limited, 1299 Ko, Sakawa-cho, Takaoka-gun, Kochi 789-1201, Japan
| | - Kentarou Hirano
- Department of Brewing, Tsukasa Botan Brewing Company, Limited, 1299 Ko, Sakawa-cho, Takaoka-gun, Kochi 789-1201, Japan
| | - Akihiko Takemura
- Department of Brewing, Tsukasa Botan Brewing Company, Limited, 1299 Ko, Sakawa-cho, Takaoka-gun, Kochi 789-1201, Japan
| | - Hideyuki Yamashita
- Higuchi Matsunosuke Shoten Company, Limited, 1-14-2, Harimacho, Abeno-ku, Osaka-shi, Osaka-fu 545-0022, Japan
| | - Akira Nose
- Department of Nutritional Science, Faculty of Human Ecology, Yasuda Women's University, 6-13-1, Yasuhigashi, Hiroshima Asaminami-ku, Hiroshima 731-0153, Japan
| | - Daisuke Kozaki
- Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi City, Kochi 780-8520, Japan.
| |
Collapse
|
6
|
Wang JT, Hu W, Xue Z, Cai X, Zhang SY, Li FQ, Lin LS, Chen H, Miao Z, Xi Y, Guo T, Zheng JS, Chen YM, Lin HL. Mapping multi-omics characteristics related to short-term PM 2.5 trajectory and their impact on type 2 diabetes in middle-aged and elderly adults in Southern China. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133784. [PMID: 38382338 DOI: 10.1016/j.jhazmat.2024.133784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
The relationship between PM2.5 and metabolic diseases, including type 2 diabetes (T2D), has become increasingly prominent, but the molecular mechanism needs to be further clarified. To help understand the mechanistic association between PM2.5 exposure and human health, we investigated short-term PM2.5 exposure trajectory-related multi-omics characteristics from stool metagenome and metabolome and serum proteome and metabolome in a cohort of 3267 participants (age: 64.4 ± 5.8 years) living in Southern China. And then integrate these features to examine their relationship with T2D. We observed significant differences in overall structure in each omics and 193 individual biomarkers between the high- and low-PM2.5 groups. PM2.5-related features included the disturbance of microbes (carbohydrate metabolism-associated Bacteroides thetaiotaomicron), gut metabolites of amino acids and carbohydrates, serum biomarkers related to lipid metabolism and reducing n-3 fatty acids. The patterns of overall network relationships among the biomarkers differed between T2D and normal participants. The subnetwork membership centered on the hub nodes (fecal rhamnose and glycylproline, serum hippuric acid, and protein TB182) related to high-PM2.5, which well predicted higher T2D prevalence and incidence and a higher level of fasting blood glucose, HbA1C, insulin, and HOMA-IR. Our findings underline crucial PM2.5-related multi-omics biomarkers linking PM2.5 exposure and T2D in humans.
Collapse
Affiliation(s)
- Jia-Ting Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Hu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhangzhi Xue
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, 310030, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, 310030, China
| | - Xue Cai
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, 310030, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, 310030, China
| | - Shi-Yu Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Fan-Qin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Shan Lin
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hanzu Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zelei Miao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, 310030, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, 310030, China
| | - Yue Xi
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, 310030, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, 310030, China
| | - Ju-Sheng Zheng
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, 310030, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, 310030, China.
| | - Yu-Ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hua-Liang Lin
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|