1
|
Han Z, Yang Y, Rushlow J, Huo J, Liu Z, Hsu YC, Yin R, Wang M, Liang R, Wang KY, Zhou HC. Development of the design and synthesis of metal-organic frameworks (MOFs) - from large scale attempts, functional oriented modifications, to artificial intelligence (AI) predictions. Chem Soc Rev 2025; 54:367-395. [PMID: 39582426 DOI: 10.1039/d4cs00432a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Owing to the exceptional porous properties of metal-organic frameworks (MOFs), there has recently been a surge of interest, evidenced by a plethora of research into their design, synthesis, properties, and applications. This expanding research landscape has driven significant advancements in the precise regulation of MOF design and synthesis. Initially dominated by large-scale synthesis approaches, this field has evolved towards more targeted functional modifications. Recently, the integration of computational science, particularly through artificial intelligence predictions, has ushered in a new era of innovation, enabling more precise and efficient MOF design and synthesis methodologies. The objective of this review is to provide readers with an extensive overview of the development process of MOF design and synthesis, and to present visions for future developments.
Collapse
Affiliation(s)
- Zongsu Han
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Yihao Yang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Joshua Rushlow
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Jiatong Huo
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Zhaoyi Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Yu-Chuan Hsu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Rujie Yin
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Mengmeng Wang
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, 1348 Louvain-laNeuve, Belgium
| | - Rongran Liang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Kun-Yu Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| |
Collapse
|
2
|
Zhang Y, Yang Y, Liu YQ, Kou X. Confinement synthesis of few-layer MXene-cobalt@N-doped carbon and its application for electrochemical sensing. Talanta 2025; 281:126887. [PMID: 39277936 DOI: 10.1016/j.talanta.2024.126887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 09/17/2024]
Abstract
Herein, the few-layer Ti3C2Tx nanosheets loaded zeolitic imidazolate framework-67 nanoplates (Ti3C2Tx-ZIF-67) with a unique structure has been synthesized by surfactant control method, and then is employed as the core of precursor. A thin layer of polydopamine as the shell of precursor covered Ti3C2Tx-ZIF-67 forms a micro-nano reactor, leading to the confinement carbonization process. Consequently, a novel sensing material that few-layer Ti3C2Tx nanosheets loaded Co nanoparticles coated N-doped carbon (Ti3C2Tx-Co@NC) is obtained for the non-enzymatic determination of glucose. Owing to the impressive structure, the established glucose sensor based on Ti3C2Tx-Co@NC/glassy carbon electrode exhibits 0.5-100.0 μM of linear detection range and 66.8 nM of detection limit, which tends to detect low concentration of glucose. The synergistic few-layer Ti3C2Tx nanosheets, Co nanoparticles and NC are considered through a series of control experiments. First, few-layer Ti3C2Tx nanosheets provide a good transport channel for electron transfer, resulting in the lower steric hindrance. Second, Co nanoparticles provide active centers for the electrochemical detection. Third, N-doped carbon with conductivity and hydrophilia plays the role of stabilizing material structure to prevent the fragmentation of Ti3C2Tx and the agglomeration of Co nanoparticles. Such work proposes a confined strategy to develop MXene-ZIF-67-derived nanocomposite with high-performance structure.
Collapse
Affiliation(s)
- Yong Zhang
- School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China.
| | - Yaqing Yang
- School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China
| | - Yun-Qing Liu
- School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China.
| | - Xueying Kou
- School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China.
| |
Collapse
|
3
|
Cui X, Zhao K, Qu Z, Chao X, Xie L, Chen H, He B, Zhang B. Selective aptasensor of deoxynivalenol based on dual signal enhancement of thionine electrochemistry using silver nanoparticle-loaded label at gold nanoparticle-loaded electrodes. Bioelectrochemistry 2024; 163:108881. [PMID: 39657431 DOI: 10.1016/j.bioelechem.2024.108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
In this work, an efficient sensing platform deoxynivalenol (DON) detection was constructed through monitoring the current change of a competitive mechanism triggered by DON, leading the signal label detached from the electrode surface by square-wave voltammetry using thionine (Thi) as a redox indicator. The complementary strand of aptamer (cDNA) and Thi were loaded onto Fe/Ni bimetallic metal-organic framework loaded with sliver nanoparticles (AgNPs@FeNi-MOF) to construct AgNPs@FeNi-MOF/cDNA/Thi signal probes. In the presence of DON, the aptamer sequence was more predisposed to form an aptamer-DON complex, resulting in the displacement of the cDNA. The signal probe was subsequently released, leading to a decrease in the signal intensity of Thi. Notably, AgNPs@FeNi-MOF has a larger electroactive specific surface area and is able to load more cDNA and thi, which can amplify the signal. Under the optimal experimental conditions, the developed sensor exhibits a good linear response in the range of 1 × 10-2 to 1 × 104 pg/mL, with a limit of detection (LOD) of 5.68 fg/mL and has good selectivity, reproducibility and stability.
Collapse
Affiliation(s)
- Xiaoying Cui
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Ke Zhao
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Zhengquan Qu
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Xipeng Chao
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Lingling Xie
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Hanyu Chen
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China.
| | - Baozhong Zhang
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China.
| |
Collapse
|
4
|
Park YS, Park BU, Jeon HJ. Advances in machine learning-enhanced nanozymes. Front Chem 2024; 12:1483986. [PMID: 39483853 PMCID: PMC11524833 DOI: 10.3389/fchem.2024.1483986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Nanozymes, synthetic nanomaterials that mimic the catalytic functions of natural enzymes, have emerged as transformative technologies for biosensing, diagnostics, and environmental monitoring. Since their introduction, nanozymes have rapidly evolved with significant advancements in their design and applications, particularly through the integration of machine learning (ML). Machine learning (ML) has optimized nanozyme efficiency by predicting ideal size, shape, and surface chemistry, reducing experimental time and resources. This review explores the rapid advancements in nanozyme technology, highlighting the role of ML in improving performance across various bioapplications, including real-time monitoring and the development of chemiluminescent, electrochemical and colorimetric sensors. We discuss the evolution of different types of nanozymes, their catalytic mechanisms, and the impact of ML on their property optimization. Furthermore, this review addresses challenges related to data quality, scalability, and standardization, while highlighting future directions for ML-driven nanozyme development. By examining recent innovations, this review highlights the potential of combining nanozymes with ML to drive the development of next-generation diagnostic and detection technologies.
Collapse
Affiliation(s)
- Yeong-Seo Park
- Department of Advanced Mechanical Engineering, Kangwon National University, Chuncheon, Republic of Korea
| | - Byeong Uk Park
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Republic of Korea
| | - Hee-Jae Jeon
- Department of Advanced Mechanical Engineering, Kangwon National University, Chuncheon, Republic of Korea
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
5
|
Wu P, Yang J, Tai Y, He X, Zhang L, Fan J, Yao Y, Ying B, Hu WW, Luo F, Sun X, Li Y. Ni@TiO 2 nanoribbon array electrode for high-efficiency non-enzymatic glucose biosensing. J Mater Chem B 2024; 12:8897-8901. [PMID: 39248138 DOI: 10.1039/d4tb01721h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The exploration of noble metal-free nanoarrays as high-activity catalytic electrodes for glucose biosensing holds great significance. Herein, we propose a Ni nanoparticle-decorated TiO2 nanoribbon array on a titanium plate (Ni@TiO2/TP) as an effective non-enzymatic glucose biosensing electrode. The as-prepared Ni@TiO2/TP electrode demonstrates rapid glucose response, a wide linear response range (1 μM to 1 mM), a low detection limit (0.08 μM, S/N = 3), and high sensitivity (10 060 and 3940 μA mM-1 cm-2), with good mechanical flexibility and stability. Moreover, it proves efficient in glucose biosensing in real human blood serum and cell culture fluid. Thus, it is highly promising for practical applications.
Collapse
Affiliation(s)
- Peilin Wu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, Sichuan, China
| | - Jianying Yang
- Department of Outpatient, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, Sichuan, China
| | - Yunze Tai
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, Sichuan, China
| | - Xun He
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Limei Zhang
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, Sichuan, China
| | - Jiwen Fan
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, Sichuan, China
| | - Yongchao Yao
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, Sichuan, China
| | - Binwu Ying
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, Sichuan, China
| | - Wenchuang Walter Hu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, Sichuan, China
| | - Fengming Luo
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuping Sun
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Yi Li
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, Sichuan, China
| |
Collapse
|
6
|
Wu P, Fan J, Tai Y, He X, Zheng D, Yao Y, Sun S, Ying B, Luo Y, Hu W, Sun X, Li Y. Ag@TiO 2 nanoribbon array: a high-performance sensor for electrochemical non-enzymatic glucose detection in beverage sample. Food Chem 2024; 447:139018. [PMID: 38503067 DOI: 10.1016/j.foodchem.2024.139018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Developing an accurate, cost-effective, reliable, and stable glucose detection sensor for the food industry poses a significant yet challenging endeavor. Herein, we present a silver nanoparticle-decorated titanium dioxide nanoribbon array on titanium plate (Ag@TiO2/TP) as an efficient electrode for non-enzymatic glucose detection in alkaline environments. Electrochemical evaluations of the Ag@TiO2/TP electrode reveal a broad linear response range (0.001 mM - 4 mM), high sensitivity (19,106 and 4264 μA mM-1 cm-2), rapid response time (6 s), and a notably low detection limit (0.18 μM, S/N = 3). Moreover, its efficacy in measuring glucose in beverage samples shows its practical applicability. The impressive performance and structural benefits of the Ag@TiO2/TP electrode highlight its potential in advancing electrochemical sensors for small molecule detection.
Collapse
Affiliation(s)
- Peilin Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiwen Fan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yunze Tai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Yongchao Yao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenchuang Hu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
7
|
Lu Z, Ke X, Zhao Z, Huang J, Liu C, Wang J, Xu R, Mei Y, Huang G. Fabrication of NiCo Bimetallic MOF Films on 3D Foam with Assistance of Atomic Layer Deposition for Non-Invasive Lactic Acid Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14218-14228. [PMID: 38466323 DOI: 10.1021/acsami.4c01573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Lactic acid (LA) is an important downstream product of glycolysis in living cells and is abundant in our body fluids, which are strongly associated with diseases. The development of enzyme-free LA sensors with high sensitivity and low consumption remains a challenge. 2D metal-organic frameworks (MOFs) are considered to be promising electrochemical sensing materials and have attracted much attention in recent years. Compared to monometallic MOFs, the construction of bimetallic MOFs (BMOFs) can obtain a larger specific surface area, thereby increasing the exposed active site. 3D petal-like NixCoy MOF films on nickel foams (NixCoy BMOF@Ni foams) are successfully prepared by combining atomic layer deposition-assisted technology and hydrothermal strategy. The established NixCoy BMOF@Ni foams demonstrate noticeable LA sensing activity, and the study is carried out on behalf of the Ni1Co5 BMOF@Ni foam, which has a sensitivity of up to 9030 μA mM-1 cm-2 with a linear range of 0.01-2.2 mM and the detection limit is as low as 0.16 μM. Additionally, the composite has excellent stability and repeatability for the detection of LA under a natural air environment with high accuracy and reliability. Density functional theory calculation is applied to study the reaction process between composites and LA, and the result suggests that the active site in the NiCo BMOF film favors the adsorption of LA relative to the active site of monometallic MOF film, resulting in improved performance. The developed composite has a great potential for the application of noninvasive LA biosensors.
Collapse
Affiliation(s)
- Zihan Lu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, PR China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, PR China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, PR China
- Shanghai Center of Biomedicine Development, Zhangjiang Hi-Tech Park, Shanghai 201203, PR China
| | - Xinyi Ke
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, PR China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, PR China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, PR China
| | - Zhe Zhao
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, PR China
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, PR China
| | - Jiayuan Huang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, PR China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, PR China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, PR China
| | - Chang Liu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, PR China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, PR China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, PR China
| | - Jinlong Wang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, PR China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, PR China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, PR China
| | - Ruoyan Xu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, PR China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, PR China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, PR China
| | - Yongfeng Mei
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, PR China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, PR China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, PR China
| | - Gaoshan Huang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, PR China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, PR China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, PR China
| |
Collapse
|