1
|
Yan Z, Feng X, Li X, Gao Z, Wang Z, Ren G, Long F. Sea Buckthorn Flavonoid Extracted by High Hydrostatic Pressure Inhibited IgE-Stimulated Mast Cell Activation through the Mitogen-Activated Protein Kinase Signaling Pathway. Foods 2024; 13:560. [PMID: 38397537 PMCID: PMC10887968 DOI: 10.3390/foods13040560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Sea buckthorn (Hippophaë rhamnoides L.), as one of the Elaeagnaceae family, has the significant function of anti-tumor, anti-inflammation, anti-oxidation, and other physiological activities. High hydrostatic pressure (HHP) extraction has the advantages of being easy and efficient, while maintaining biological activity. In this study, sea buckthorn flavonoid (SBF) was extracted with HHP and purified sea buckthorn flavonoid (PSBF) was isolated by AB-8 macroporous resin column. HPLC analysis was used to quantified them. In addition, the effect of anti-allergy in RBL-2H3 cells by SBF, PSBF, and their flavonoid compounds was evaluated. The results demonstrate the conditions for obtaining the maximum flavonoid amount of SBF: 415 MPa for 10 min, 72% ethanol concentration, and a liquid to solid ratio of 40 mL/g, which increased the purity from 1.46% to 13.26%. Both SBF and PSBF included rutin, quercitrin, quercetin, isorhamnetin, and kaempferol. In addition, quercitrin, kaempferol, and SBF could regulate Th1/Th2 cytokine balance. Moreover, extracellular Ca2+ influx was reduced by quercitrin and PSBF. Furthermore, rutin, quercetin, iso-rhamnetin, and SBF could also inhibit P-p38 and P-JNK expression, thereby suppressing the phosphorylation of the MAPK signaling pathways. Overall, SBF is effective for relieving food allergy and might be a promising anti-allergic therapeutic agent.
Collapse
Affiliation(s)
- Zhuomin Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.F.); (X.L.); (Z.G.); (Z.W.)
| | - Xiaoping Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.F.); (X.L.); (Z.G.); (Z.W.)
| | - Xinian Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.F.); (X.L.); (Z.G.); (Z.W.)
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.F.); (X.L.); (Z.G.); (Z.W.)
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.F.); (X.L.); (Z.G.); (Z.W.)
| | - Guangxu Ren
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100081, China;
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.F.); (X.L.); (Z.G.); (Z.W.)
| |
Collapse
|
2
|
Pinto D, Lozano-Castellón J, Margarida Silva A, de la Luz Cádiz-Gurrea M, Segura-Carretero A, Lamuela-Raventós R, Vallverdú-Queralt A, Delerue-Matos C, Rodrigues F. Novel insights into enzymes inhibitory responses and metabolomic profile of supercritical fluid extract from chestnut shells upon intestinal permeability. Food Res Int 2024; 175:113807. [PMID: 38129012 DOI: 10.1016/j.foodres.2023.113807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
The health benefits of chestnut (Castanea sativa) shells (CSs) have been ascribed to phytochemicals, mainly phenolic compounds. Nevertheless, an exhaustive assessment of their intestinal absorption is vital considering a possible nutraceutical application. This study evaluated the bioactivity of CSs extract prepared by Supercritical Fluid Extraction and untargeted metabolomic profile upon in-vitro intestinal permeation across a Caco-2/HT29-MTX co-culture model. The results demonstrated the neuroprotective, hypoglycemic, and hypolipidemic properties of CSs extract by inhibition of acetylcholinesterase, α-amylase, and lipase activities. The untargeted metabolic profiling by LC-ESI-LTQ-Orbitrap-MS unveiled almost 60 % of lipids and 30 % of phenolic compounds, with 29 metabolic pathways indicated by enrichment analysis. Among phenolics, mostly phenolic acids, flavonoids, and coumarins permeated the intestinal barrier with most metabolites arising from phase I reactions (reduction, hydrolysis, and hydrogenation) and a minor fraction from phase II reactions (methylation). The permeation rates enhanced in the following order: ellagic acid < o-coumaric acid < p-coumaric acid < ferulaldehyde ≤ hydroxyferulic acid ≤ dihydroferulic acid < ferulic acid < trans-caffeic acid < trans-cinnamic acid < dihydrocaffeic acid, with better outcomes for 1000 µg/mL of extract concentration and after 4 h of permeation. Taken together, these findings sustained a considerable in-vitro intestinal absorption of phenolic compounds from CSs extract, enabling them to reach target sites and exert their biological effects.
Collapse
Affiliation(s)
- Diana Pinto
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Julián Lozano-Castellón
- Nutrition, Food Science and Gastronomy Department, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ana Margarida Silva
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Rosa Lamuela-Raventós
- Nutrition, Food Science and Gastronomy Department, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Anna Vallverdú-Queralt
- Nutrition, Food Science and Gastronomy Department, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal.
| |
Collapse
|