1
|
Wang H, Hao L, Guo Y, Wang C, Wu Q, Wang Z. Construction of magnetic recoverable porous electron-rich organic frameworks for efficiently enrichment of phenylurea herbicides from water and milk samples prior to HPLC detection. Food Chem 2024; 461:140812. [PMID: 39178545 DOI: 10.1016/j.foodchem.2024.140812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/22/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
Porous electron-rich organic frameworks have attracted an increased attention in the adsorption and removal of pollutants due to their abundant electron-rich nitrogen atoms, which can effectively interact with positively charged substance. In this study, a porous electron-rich organic framework (Car-POF) and positively charged amino-functionalized magnetic nanoparticles (Fe3O4-NH2) were used to construct a magnetic electron-rich Fe3O4-NH2@Car-POF for the enrichment of some phenylurea herbicides from water and milk samples prior to high performance liquid chromatographic detection. The adsorption capacity of Fe3O4-NH2@Car-POF for the phenylureas ranged from 14.93 to 28.83 mg g-1. The LODs were observed in the range of 0.05-0.20 ng mL-1 and 0.5-1.5 ng mL-1, and LOQs in the range of 0.17-0.66 ng mL-1 and 1.7-5.0 ng mL-1 for water and milk samples with RSD less than 9.0. The adsorption studies with cationic and anionic dyes revealed that Fe3O4-NH2@Car-POF is favorable for the adsorption of positively charged compounds.
Collapse
Affiliation(s)
- Hua Wang
- Department of Chemistry, College of Science, Agricultural University of Hebei, Baoding 071001, China
| | - Lin Hao
- Department of Chemistry, College of Science, Agricultural University of Hebei, Baoding 071001, China.
| | - Yaxing Guo
- Department of Chemistry, College of Science, Agricultural University of Hebei, Baoding 071001, China
| | - Chun Wang
- Department of Chemistry, College of Science, Agricultural University of Hebei, Baoding 071001, China
| | - Qiuhua Wu
- Department of Chemistry, College of Science, Agricultural University of Hebei, Baoding 071001, China.
| | - Zhi Wang
- Department of Chemistry, College of Science, Agricultural University of Hebei, Baoding 071001, China.
| |
Collapse
|
2
|
Chen S, Jiang Y, Li J, You M, Zhang R, Li J, Fu Z, Xie J, Wang Z. In situ formation of solidified supramolecular solvent based dispersive liquid-liquid microextraction for the enrichment of phenylurea herbicides in water, fruit juice, and milk. Food Chem 2024; 450:139298. [PMID: 38615532 DOI: 10.1016/j.foodchem.2024.139298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/15/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
A convenient, efficient, and green dispersive liquid-liquid microextraction based on the in situ formation of solidified supramolecular solvents combined with high performance liquid chromatography was developed for the determination of four phenylurea herbicides in liquid samples, including monuron, monolinuron, isoproturon, and chlortoluron. Herein, a novel supramolecular solvent was prepared by the in situ reaction of [P4448]Br and NH4PF6, which had the advantages of low melting point, high density, and good dispersibility. In addition, the microscopic morphology and physical properties of supramolecular solvent were characterized, and the extraction conditions were optimized. The results showed that the analytes had good linearity (R2 > 0.9998) within the linear range. The limits of detection and quantification for the four phenylurea herbicides were in the range of 0.13-0.19 μg L-1 and 0.45-0.65 μg L-1, respectively. The prepared supramolecular solvent is suitable for the efficient extraction of phenylurea herbicides in water, fruit juice, and milk.
Collapse
Affiliation(s)
- Shurong Chen
- College of Chemistry and Life Science, Changchun University of Technology, Yan'an Street 2055, Changchun 130012, PR China
| | - Yuhao Jiang
- College of Chemistry and Life Science, Changchun University of Technology, Yan'an Street 2055, Changchun 130012, PR China
| | - Junxian Li
- College of Chemistry and Life Science, Changchun University of Technology, Yan'an Street 2055, Changchun 130012, PR China
| | - Meng You
- College of Chemistry and Life Science, Changchun University of Technology, Yan'an Street 2055, Changchun 130012, PR China
| | - Rongxu Zhang
- College of Chemistry and Life Science, Changchun University of Technology, Yan'an Street 2055, Changchun 130012, PR China
| | - Jilong Li
- College of Chemistry and Life Science, Changchun University of Technology, Yan'an Street 2055, Changchun 130012, PR China
| | - Zhuang Fu
- Sinovac Biotech Ltd, Shangdi West Road 39, Beijing 100085, PR China
| | - Jiahan Xie
- College of Chemistry and Life Science, Changchun University of Technology, Yan'an Street 2055, Changchun 130012, PR China.
| | - Zhibing Wang
- College of Chemistry and Life Science, Changchun University of Technology, Yan'an Street 2055, Changchun 130012, PR China.
| |
Collapse
|
3
|
Zhang X, Liu J, Zhang H, Zhang Q, Shen J, Wei Y, Wang C. Facile construction of a stable core-shell spherically magnetic polyimide covalent organic framework for efficient extraction of phenylurea herbicides. Talanta 2024; 275:126184. [PMID: 38703485 DOI: 10.1016/j.talanta.2024.126184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Efficient enrichment is crucial for the highly sensitive monitoring of phenylurea herbicides (PUHs) in various environmental waters. In this work, a stable core-shell spherically magnetic polyimide covalent organic framework (COF) was synthesized via a simple template-mediated precipitation polymerization method under mild conditions using tri(4-aminophenyl)amine (TAPA) and 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) as the building units (denoted as Fe3O4@TAPA-BPDA). The Fe3O4@TAPA-BPDA exhibits remarkable adsorption performance for PUHs with an optimized adsorption time of only 10 min. The adsorption of PUHs by Fe3O4@TAPA-BPDA followed the pseudo-second-order kinetic model and the Langmuir model. Furthermore, hydrogen bonding, halogen bonding, hydrophobic interaction, electro donor-acceptor interaction and π-π interactions are identified as the dominant mechanisms contributing to excellent adsorption performance. It was demonstrated that halogen bonds play an important role in the adsorption of substances containing chlorine atoms. The Fe3O4@TAPA-BPDA is easy to operate and highly regenerable. A simple magnetic solid-phase extraction (MSPE) method based on the Fe3O4@TAPA-BPDA was then developed for the rapid extraction of five PUHs in real samples, coupled with high-performance liquid chromatography (HPLC) determination. The analytical method developed has a linear range of 0.5-50 ng/mL, and the limit of detection (LOD) ranges from 0.06 to 0.10 ng/mL. The method exhibits good accuracy with recoveries ranged from 74.5 % to 111.4 %. The analytical method was successfully applied to the highly sensitive detection of PUHs in environmental water samples, which highlighting the potential application of the Fe3O4@TAPA-BPDA in the sample pretreatment.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Jinchang Liu
- School of Information Science and Technology, Northwest University, Xi'an, 71027, China
| | - Han Zhang
- School of Information Science and Technology, Northwest University, Xi'an, 71027, China
| | - Qinming Zhang
- Shaanxi Environmental Monitoring Centre, Shaanxi Key Laboratory for Environmental Monitoring and Forewarning of Trace Pollutants, Xi'an, 710054, China
| | - Jiwei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
4
|
Zhang Z, Zheng H, Liu Y, Ma S, Feng Q, Qu J, Zhu X. Highly sensitive detection of multiple antiviral drugs using graphitized hydroxylated multi-walled carbon nanotubes/ionic liquids-based electrochemical sensors. ENVIRONMENTAL RESEARCH 2024; 249:118466. [PMID: 38354882 DOI: 10.1016/j.envres.2024.118466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Global outbreaks and the spread of viral diseases in the recent years have led to a rapid increase in the usage of antiviral drugs (ATVs), the residues and metabolites of which are discharged into the natural environment, posing a serious threat to human health. There is an urgent need to develop sensitive and rapid detection tools for multiple ATVs. In this study, we developed a highly sensitive electrochemical sensor comprising a glassy carbon electrode (GCE) modified with graphitized hydroxylated multi-walled carbon nanotubes (G-MWCNT-OH) and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6, IL) for the detection of six ATVs including famciclovir (FCV), remdesivir (REM), favipiravir (FAV), hydroxychloroquine sulfate (HCQ), cepharanthine (CEP) and molnupiravir (MOL). The morphology and structure of the G-MWCNT-OH/IL nanocomposites were characterized comprehensively, and the electroactive surface area and electron conductivity of G-MWCNT-OH/IL/GCE were determined using cyclic voltammetry and electrochemical impedance spectroscopy. The thermodynamic stability and non-covalent interactions between the G-MWCNT-OH and IL were evaluated through quantum chemical simulation calculations, and the mechanism of ATV detection using the G-MWCNT-OH/IL/GCE was thoroughly examined. The detection conditions were optimized to improve the sensitivity and stability of electrochemical sensors. Under the optimal experimental conditions, the G-MWCNT-OH/IL/GCE exhibited excellent electrocatalytic performance and detected the ATVs over a wide concentration range (0.01-120 μM). The limit of detections (LODs) were 42.3 nM, 55.4 nM, 21.9 nM, 15.6 nM, 10.6 nM, and 3.2 nM for FCV, REM, FAV, HCQ, CEP, and MOL, respectively. G-MWCNT-OH/IL/GCE was also highly stable and selective to the ATVs in the presence of multiple interfering analytes. This sensor exhibited great potential for enabling the quantitative detection of multiple ATVs in actual water environment.
Collapse
Affiliation(s)
- Zhipeng Zhang
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Huizi Zheng
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Ying Liu
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Shuang Ma
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Qi Feng
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Xiaolin Zhu
- School of Environment, Northeast Normal University, Changchun, 130117, PR China.
| |
Collapse
|
5
|
Xu X, Ma M, Gao J, Sun T, Guo Y, Feng D, Zhang L. Multifunctional Ni-NPC Single-Atom Nanozyme for Removal and Smartphone-Assisted Visualization Monitoring of Carbamate Pesticides. Inorg Chem 2024; 63:1225-1235. [PMID: 38163760 DOI: 10.1021/acs.inorgchem.3c03642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A multifunctional single-atom nanozyme, denoted as 3D Ni,N-codoped porous carbon (Ni-NPC), was devised that exhibits remarkable adsorption capabilities and a repertoire of enzyme mimetic functions (oxidase- and peroxidase-like). These attributes stem from the distinctive mesoporous thin-shell structure and well-dispersed Ni sites. The efficient adsorption capacity of Ni-NPC was assessed with respect to three carbamate pesticides (CMPs): metolcarb, carbaryl, and isoprocarb. Moreover, a colorimetric detection method for CMP was established based on its robust peroxidase-like catalytic activity and sequential catalytic interactions with acetylcholinesterase. Furthermore, a portable colorimetric sensor based on a hydrogel sphere integrated with a smartphone platform was devised. This sensor enables rapid, on-site, and quantitative assessment of CMP, boasting an extraordinarily low detection limit of 1.5 ng mL-1. Notably, this sensor was successfully applied to the analysis of CMP levels in lake water and vegetable samples (pakchoi and rape), propelling the progress of real-time detection technologies in food and environment monitoring.
Collapse
Affiliation(s)
- Xu Xu
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Muyao Ma
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Jiaxin Gao
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
- Center for Harbin Natural Resources Comprehensive Survey, China Geological Survey, Harbin, 150039, China
| | - Tongxin Sun
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Yuhan Guo
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Daming Feng
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Lei Zhang
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| |
Collapse
|