1
|
Rezagholizade-shirvan A, Soltani M, Shokri S, Radfar R, Arab M, Shamloo E. Bioactive compound encapsulation: Characteristics, applications in food systems, and implications for human health. Food Chem X 2024; 24:101953. [PMID: 39582652 PMCID: PMC11584689 DOI: 10.1016/j.fochx.2024.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Nanotechnology plays a pivotal role in food science, particularly in the nanoencapsulation of bioactive compounds, to enhance their stability, bioavailability, and therapeutic potential. This review aims to provide a comprehensive analysis of the encapsulation of bioactive compounds, emphasizing the characteristics, food applications, and implications for human health. This work offers a detailed comparison of polymers such as sodium alginate, gum Arabic, chitosan, cellulose, pectin, shellac, and xanthan gum, while also examining both conventional and emerging encapsulation techniques, including freeze-drying, spray-drying, extrusion, coacervation, and supercritical anti-solvent drying. The contribution of this review lies in highlighting the role of encapsulation in improving system stability, controlling release rates, maintaining bioactivity under extreme conditions, and reducing lipid oxidation. Furthermore, it explores recent technological advances aimed at optimizing encapsulation processes for targeted therapies and functional foods. The findings underline the significant potential of encapsulation not only in food supplements and functional foods but also in supportive medical treatments, showcasing its relevance to improving human health in various contexts.
Collapse
Affiliation(s)
| | - Mahya Soltani
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samira Shokri
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Ramin Radfar
- Department of Agriculture and Food Policies, Agricultural Planning, Economic and Rural Development Research Institute (APERDRI), Tehran, Iran
| | - Masoumeh Arab
- Department of Food Science and Technology, School of Public Health, Shahid sadoughi University of Medical Sciences, Yazd, Iran Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehsan Shamloo
- Department of Food Science and Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
2
|
Oliveira JPD, Silva IBD, Costa JDSS, Oliveira JSD, Oliveira EL, Coutinho ML, Almeida MEFD, Landim LB, Silva NMCD, Oliveira CPD. Bibliometric study and potential applications in the development of starch films with nanocellulose: A perspective from 2019 to 2023. Int J Biol Macromol 2024; 277:133828. [PMID: 39084985 DOI: 10.1016/j.ijbiomac.2024.133828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
This study aimed to perform a bibliometric analysis of starch films with nanocellulose, using the Scopus database and VOSviewer and Bibliometrix software. A total of 258 documents were identified between 2019 and 2023, reflecting a growing interest in research, particularly in journals such as the International Journal of Biological Macromolecules, Polymers, and Carbohydrate Polymers. The most common terms were "starch" (349 occurrences), "cellulose" (207), and "tensile strength" (175). China (58 articles), Brazil (38), and India (33) led scientific production, with authors like Ilyas (13 articles) and Sapuan (10) at the forefront. Approximately 41.7 % of the studies used corn starch. The analysis revealed that 66 % of the studies investigated films with cellulose nanofibrils (CNF), 32 % with cellulose nanocrystals (CNC), and 2 % with bacterial nanocellulose (CB). The majority of studies (94.1 %) used the casting method for film production. Additionally, 35.44 % focused on reinforcing films with nanocellulose, while 7 % developed blends with other biopolymers. About 59.44 % examined the performance of starch films for food packaging, 11.25 % explored practical applications in various foods. Furthermore, 7.94 % incorporated active agents to improve antioxidant and antimicrobial properties, 1.30 % investigated active packaging. Moreover, 2.36 % explored the use of films in materials engineering, and 2.36 % explored biomedical potential. Only 0.40 % evaluated the impact of films on wastewater treatment. The analysis highlights the potential of starch films with nanocellulose, demonstrating their diverse applications and the growing interest in the field.
Collapse
Affiliation(s)
- Jocilane Pereira de Oliveira
- Graduate Program in Food Engineering and Science, State University of Bahia, Itapetinga, Bahia 45700-000, Brazil.
| | - Isaac Borges da Silva
- Department of Agribusiness Technology, Federal Institute of Bahia, Guanambi, Bahia 46430-000, Brazil
| | | | - Jéssica Santos de Oliveira
- Graduate Program in Food Engineering and Science, State University of Bahia, Itapetinga, Bahia 45700-000, Brazil
| | - Esaul Lucas Oliveira
- Graduate Program in Food Engineering and Science, State University of Bahia, Itapetinga, Bahia 45700-000, Brazil
| | - Mateus Lima Coutinho
- Department of Chemistry, Federal Institute of Bahia, Guanambi, Bahia 46430-000, Brazil
| | | | - Lucas Brito Landim
- Department of Agribusiness Technology, Federal Institute of Bahia, Guanambi, Bahia 46430-000, Brazil
| | | | | |
Collapse
|
3
|
Zhang J, Li X, Wang K, Zhu Y, Guo L, Cui B, Lu L. Effects of different oil additives on water resistance of corn starch straws. Carbohydr Polym 2024; 334:122027. [PMID: 38553226 DOI: 10.1016/j.carbpol.2024.122027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/11/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
To investigate the effect of oil additives on improving the water resistance of corn starch straws, corn oil (CO), soybean oil (SO), rapeseed oil (RO), peanut oil (PO), lard (LD) and coconut oil (CCO) were chosen and compared the structure and properties of starch straws with different oil additives. Corn starch straws (CS), and starch straws supplemented with CO, SO, RO, PO, LD and CCO were prepared by thermoplastic extrusion. The results showed that the incorporation of oils effectively enhanced the water resistance of starch straws such as water absorption, water solubility and water swelling performance. Meanwhile, the flexural strength of starch straws significantly increased. There was no significant linear relationship among starch chain length, oil unsaturation and straw performance. Among seven starch straws, S-SO had the strongest hydrogen bond interaction (3289 cm-1) and relaxation time (0.96 ms). The S-CO had the highest relative crystallinity (16.82 %) and degree of double helix (1.535), hence resulting in the lowest water absorption and solubility values, the highest flexural strength (23.43 MPa), the highest ΔT value (9.93 °C) and ΔH value (4.79 J/g). S-RO had the highest thermal transition temperatures.
Collapse
Affiliation(s)
- Jinyu Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xueting Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kun Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yu Zhu
- Department of Biological and Food Engineering, Hefei Normal University, Hefei, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Lu Lu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| |
Collapse
|
4
|
Ligarda-Samanez CA, Choque-Quispe D, Moscoso-Moscoso E, Pozo LMF, Ramos-Pacheco BS, Palomino-Rincón H, Gutiérrez RJG, Peralta-Guevara DE. Effect of Inlet Air Temperature and Quinoa Starch/Gum Arabic Ratio on Nanoencapsulation of Bioactive Compounds from Andean Potato Cultivars by Spray-Drying. Molecules 2023; 28:7875. [PMID: 38067603 PMCID: PMC10708246 DOI: 10.3390/molecules28237875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Nanoencapsulation of native potato bioactive compounds by spray-drying improves their stability and bioavailability. The joint effect of the inlet temperature and the ratio of the encapsulant (quinoa starch/gum arabic) on the properties of the nanocapsules is unknown. The purpose of this study was to determine the best conditions for the nanoencapsulation of these compounds. The effects of two inlet temperatures (96 and 116 °C) and two ratios of the encapsulant (15 and 25% w/v) were evaluated using a factorial design during the spray-drying of native potato phenolic extracts. During the study, measurements of phenolic compounds, flavonoids, anthocyanins, antioxidant capacity, and various physical and structural properties were carried out. Higher inlet temperatures increased bioactive compounds and antioxidant capacity. However, a higher concentration of the encapsulant caused the dilution of polyphenols and anthocyanins. Instrumental analyses confirmed the effective encapsulation of the nuclei in the wall materials. Both factors, inlet temperature, and the encapsulant ratio, reduced the nanocapsules' humidity and water activity. Finally, the ideal conditions for the nanoencapsulation of native potato bioactive compounds were determined to be an inlet temperature of 116 °C and an encapsulant ratio of 15% w/v. The nanocapsules obtained show potential for application in the food industry.
Collapse
Affiliation(s)
- Carlos A. Ligarda-Samanez
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - David Choque-Quispe
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Elibet Moscoso-Moscoso
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Lizeth M. Flores Pozo
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Betsy S. Ramos-Pacheco
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Henry Palomino-Rincón
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Rodrigo J. Guzmán Gutiérrez
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Diego E. Peralta-Guevara
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (B.S.R.-P.); (H.P.-R.); (R.J.G.G.); (D.E.P.-G.)
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| |
Collapse
|
5
|
Wu T, Li M, Li T, Zhao Y, Yuan J, Zhao Y, Tian X, Kong R, Zhao Y, Kong H, Zhang Y, Qu H. Natural biomass-derived carbon dots as a potent solubilizer with high biocompatibility and enhanced antioxidant activity. Front Mol Biosci 2023; 10:1284599. [PMID: 38028549 PMCID: PMC10652762 DOI: 10.3389/fmolb.2023.1284599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Numerous natural compounds exhibit low bioavailability due to suboptimal water solubility. The solubilization methods of the modern pharmaceutical industry in contemporary pharmaceutical research are restricted by low efficiency, sophisticated technological requirements, and latent adverse effects. There is a pressing need to elucidate and implement a novel solubilizer to ameliorate these challenges. This study identified natural biomass-derived carbon dots as a promising candidate. We report on natural fluorescent carbon dots derived from Aurantia Fructus Immatures (AFI-CDs), which have exhibited a remarkable solubilization effect, augmenting naringin (NA) solubility by a factor of 216.72. Subsequent analyses suggest that the solubilization mechanism is potentially contingent upon the oration of a nanostructured complex (NA-AFI-CDs) between AFI-CDs and NA, mediated by intermolecular non-covalent bonds. Concomitantly, the synthesized NA-AFI-CDs demonstrated high biocompatibility, exceptional stability, and dispersion. In addition, NA-AFI-CDs manifested superior free radical scavenging capacity. This research contributes foundational insights into the solubilization mechanism of naringin-utilizing AFI-CDs and proffers a novel strategy that circumvents the challenges associated with the low aqueous solubility of water-insoluble drugs in the field of modern pharmaceutical science.
Collapse
Affiliation(s)
- Tong Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Menghan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tingjie Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yafang Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jinye Yuan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yusheng Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xingrong Tian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ruolan Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Huihua Qu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Centre of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|