1
|
Ali I, Abdullah R, Saleem A, Nisar K, Kaleem A, Iqtedar M, Iqbal I, Chen X. Production, Characterization, Kinetics, and Thermodynamics Analysis of Amyloglucosidase from Fungal Consortium. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05067-2. [PMID: 39331330 DOI: 10.1007/s12010-024-05067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
The current study aimed to produce an amyloglucosidase enzyme from the fungal consortium. The best amylolytic fungal consortia were identified as Alternaria alternata and Aspergillus niger through the 18S rDNA technique. Fermentation kinetics and various nutritional and cultural parameters were analyzed. Maximum production was obtained in M4 media, pH 5.5, 30 °C, and 4 mL inoculum at 150 rpm after 72 h of incubation. Along with that, sodium nitrate at 2.5%, maltose, beef extract 1%, zinc sulfate (0.1%), and Tween 80 (0.1%) supported the maximum amyloglucosidase production. Amyloglucosidase was partially purified up to 1.6 purification fold with a specific activity of 1.84 Umg-1 in a stepwise manner by ammonium sulfate purification, dialysis, and ion exchange chromatography. The AMG enzyme also revealed maximum activity at 50 °C with 5.0 pH. Upon the kinetic analysis, the specific yield coefficient Yp/x and volumetric rates Qp and Qx were also found to be significant in the above optimized conditions. The Km value 0.33 mg mL-1 and Vmax 26.31 U mL-1 were obtained at 1% soluble starch substrate. Thermodynamic parameters for soluble starch hydrolysis were as follows: ΔH = 48.78 kJ mol-1, (Ea) = - 46.0 kJ mol-1, and ΔS = - 43.10 J mol-1 K-1. This finding indicates the indigenously isolated fungal consortium can be the best candidate for industrial applications.
Collapse
Affiliation(s)
- Imran Ali
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China.
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan.
- Institute of Biochemistry, University of Balochistan, Quetta, Pakistan.
| | - Roheena Abdullah
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan.
| | - Asifa Saleem
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Kinza Nisar
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Afshan Kaleem
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Mehwish Iqtedar
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Irfana Iqbal
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Xiaoming Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China.
| |
Collapse
|
2
|
Zhou C, He N, Lin X, Liu H, Lu Z, Zhang G. Site-directed display of zearalenone lactonase on spilt-intein functionalized nanocarrier for green and efficient detoxification of zearalenone. Food Chem 2024; 446:138804. [PMID: 38402766 DOI: 10.1016/j.foodchem.2024.138804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
In this study, we prepared a functional organic-inorganic hybrid nanoflower (InHNF) via split intein moiety in a biomineralization process without using organic solvents. InHNF could specifically bind the target enzymes from crude cell lysates within seconds and site-directedly display them on the surface by forming a peptide bond with enzyme's terminal amino acid residue. This unique feature enabled InHNF to increase the specific activity of zearalenone detoxifying enzyme ZHD518 by 40 ∼ 60% at all tested temperatures and prevented enzyme denaturation even under extreme pH conditions (pH 3-11). Furthermore, it exhibited excellent operational stability, with a residual activity of over 70% after eight reaction cycles. Strikingly, InHNF-ZHD518 achieved above 50% ZEN degradation despite the near inactivation of free ZHD518 in beer sample. Overall, InHNF nanocarriers can achieve environmentally friendly, purification-free, and site-directed immobilization of food enzymes and enhance their catalytic properties, making them suitable for a wide range of industrial applications.
Collapse
Affiliation(s)
- Chen Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Nisha He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiaofan Lin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Hailin Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhenghui Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Guimin Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|