1
|
Rega R, Gennari O, Mecozzi L, Pagliarulo V, Mugnano M, Oleandro E, Nazzaro F, Ferraro P, Grilli S. Pyro-Electrification of Freestanding Polymer Sheets: A New Tool for Cation-Free Manipulation of Cell Adhesion in vitro. Front Chem 2019; 7:429. [PMID: 31275921 PMCID: PMC6594357 DOI: 10.3389/fchem.2019.00429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022] Open
Abstract
Localized electric fields have become, in recent years, a source of inspiration to researchers and laboratories thanks to a huge amount of applications derived from it, including positioning of microparticles as building blocks for electrical, optical, and magnetic devices. The possibility of producing polymeric materials with surface charge thus opens new perspectives for applications where process simplicity and cost-effectiveness of flexible electronics are of fundamental importance. In particular, the influence of surface charges is widely studied and is a critical issue especially when new materials and functional technologies are introduced. Here, we report a voltage-free pyro-electrification (PE) process able to induce a permanent dipole orientation into polymer sheets under both mono- and bipolar distribution. The technique makes use of the pyroelectric effect for generating electric potentials on the order of kilovolts by an easy-to-accomplish thermal treatment of ferroelectric lithium niobate (LN) crystals. The PE allows us to avoid the expensive and time-consuming fabrication of high-power electrical circuits, as occurs in traditional generator-based techniques. Since the technique is fully compatible with spin-coating-based procedures, the pyro-electrified polymer sheets are easily peeled off the surface of the LN crystal after PE completion, thus providing highly stable and freestanding charged sheets. We show the reliability of the technique for different polymers and for different applications ranging from live cell patterning to biofilm formation tests for bacteria linked to food-processing environments.
Collapse
Affiliation(s)
- Romina Rega
- Institute of Applied Sciences and Intelligent Systems, National Research Council (CNR-ISASI), Pozzuoli, Italy
| | - Oriella Gennari
- Institute of Applied Sciences and Intelligent Systems, National Research Council (CNR-ISASI), Pozzuoli, Italy
| | - Laura Mecozzi
- Institute of Applied Sciences and Intelligent Systems, National Research Council (CNR-ISASI), Pozzuoli, Italy
| | - Vito Pagliarulo
- Institute of Applied Sciences and Intelligent Systems, National Research Council (CNR-ISASI), Pozzuoli, Italy
| | - Martina Mugnano
- Institute of Applied Sciences and Intelligent Systems, National Research Council (CNR-ISASI), Pozzuoli, Italy
| | - Emilia Oleandro
- Institute of Applied Sciences and Intelligent Systems, National Research Council (CNR-ISASI), Pozzuoli, Italy
- Department of Mathematics and Physics, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Filomena Nazzaro
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - Pietro Ferraro
- Institute of Applied Sciences and Intelligent Systems, National Research Council (CNR-ISASI), Pozzuoli, Italy
| | - Simonetta Grilli
- Institute of Applied Sciences and Intelligent Systems, National Research Council (CNR-ISASI), Pozzuoli, Italy
| |
Collapse
|
2
|
Mogren L, Windstam S, Boqvist S, Vågsholm I, Söderqvist K, Rosberg AK, Lindén J, Mulaosmanovic E, Karlsson M, Uhlig E, Håkansson Å, Alsanius B. The Hurdle Approach-A Holistic Concept for Controlling Food Safety Risks Associated With Pathogenic Bacterial Contamination of Leafy Green Vegetables. A Review. Front Microbiol 2018; 9:1965. [PMID: 30197634 PMCID: PMC6117429 DOI: 10.3389/fmicb.2018.01965] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 08/02/2018] [Indexed: 01/24/2023] Open
Abstract
Consumers appreciate leafy green vegetables such as baby leaves for their convenience and wholesomeness and for adding a variety of tastes and colors to their plate. In Western cuisine, leafy green vegetables are usually eaten fresh and raw, with no step in the long chain from seed to consumption where potentially harmful microorganisms could be completely eliminated, e.g., through heating. A concerning trend in recent years is disease outbreaks caused by various leafy vegetable crops and one of the most important foodborne pathogens in this context is Shiga toxin-producing Escherichia coli (STEC). Other pathogens such as Salmonella, Shigella, Yersinia enterocolitica and Listeria monocytogenes should also be considered in disease risk analysis, as they have been implicated in outbreaks associated with leafy greens. These pathogens may enter the horticultural value network during primary production in field or greenhouse via irrigation, at harvest, during processing and distribution or in the home kitchen/restaurant. The hurdle approach involves combining several mitigating approaches, each of which is insufficient on its own, to control or even eliminate pathogens in food products. Since the food chain system for leafy green vegetables contains no absolute kill step for pathogens, use of hurdles at critical points could enable control of pathogens that pose a human health risk. Hurdles should be combined so as to decrease the risk due to pathogenic microbes and also to improve microbial stability, shelf-life, nutritional properties and sensory quality of leafy vegetables. The hurdle toolbox includes different options, such as physical, physiochemical and microbial hurdles. The goal for leafy green vegetables is multi-target preservation through intelligently applied hurdles. This review describes hurdles that could be used for leafy green vegetables and their biological basis, and identifies prospective hurdles that need attention in future research.
Collapse
Affiliation(s)
- Lars Mogren
- Microbial Horticulture, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sofia Windstam
- Microbial Horticulture, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Department of Biological Sciences, SUNY Oswego, Oswego, NY, United States
| | - Sofia Boqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Ivar Vågsholm
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Karin Söderqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Anna K. Rosberg
- Microbial Horticulture, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Julia Lindén
- Microbial Horticulture, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Emina Mulaosmanovic
- Microbial Horticulture, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Maria Karlsson
- Microbial Horticulture, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Elisabeth Uhlig
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Åsa Håkansson
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Beatrix Alsanius
- Microbial Horticulture, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
3
|
Zhang M, Meng X, Bhandari B, Fang Z, Chen H. Recent Application of Modified Atmosphere Packaging (MAP) in Fresh and Fresh-Cut Foods. FOOD REVIEWS INTERNATIONAL 2014. [DOI: 10.1080/87559129.2014.981826] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Sant'Ana AS, Landgraf M, Destro MT, Franco BDGM. Growth potential of Salmonella and Listeria monocytogenes in ready-to-eat lettuce and collard greens packaged under modified atmosphere and in perforated film. J Food Prot 2013; 76:888-91. [PMID: 23643135 DOI: 10.4315/0362-028x.jfp-12-479] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was aimed at determining the effects of different storage scenarios on the growth potential of Salmonella strains and Listeria monocytogenes in ready-to-eat (RTE) mixes of iceberg and crisp lettuces (Lactuca sativa) and collard greens (Brassica oleracea). Vegetables were submitted to minimal processing, experimentally contaminated to achieve 10(1) and 10(2) CFU/g, packed under modified atmosphere and in perforated film, and submitted to the following storage scenarios: I = 100 % of the shelf life (6 days) at 7°C; II = 70 % of shelf life at 7°C and 30 % at 15°C; III = 30 % at 7°C and 70 % at 15°C; IV = 100 % at 15°C. Higher populations of Salmonella were observed in lettuce mixes than in collard greens; the opposite occurred with L. monocytogenes. Keeping the RTE vegetables at 15°C during the whole shelf life (scenario IV) or part of it (scenarios II and III) markedly influenced the growth of both pathogens in most of the scenarios studied (P < 0.05). Growth potentials of strains of Salmonella and L. monocytogenes were significantly different depending on the scenarios in samples packed with perforated film in comparison to those stored under modified atmosphere (P < 0.05). The findings indicate that even contamination as low as 10(1) CFU/g can lead to high populations if there is temperature abuse during storage (15°C). This study of the behavior of Salmonella and L. monocytogenes in RTE vegetables provides insights that may be useful in the development of strategies to control pathogen growth in these products.
Collapse
Affiliation(s)
- Anderson S Sant'Ana
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508900, Brazil.
| | | | | | | |
Collapse
|
6
|
Murillo-Martínez MM, Tello-Solís SR, García-Sánchez MA, Ponce-Alquicira E. Antimicrobial activity and hydrophobicity of edible whey protein isolate films formulated with nisin and/or glucose oxidase. J Food Sci 2013; 78:M560-6. [PMID: 23488765 DOI: 10.1111/1750-3841.12078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 01/14/2013] [Indexed: 11/29/2022]
Abstract
The use of edible antimicrobial films has been reported as a means to improve food shelf life through gradual releasing of antimicrobial compounds on the food surface. This work reports the study on the incorporation of 2 antimicrobial agents, nisin (N), and/or glucose oxidase (GO), into the matrix of Whey protein isolate (WPI) films at pH 5.5 and 8.5. The antimicrobial activity of the edible films was evaluated against Listeria innocua (ATCC 33090), Brochothrix thermosphacta (NCIB10018), Escherichia coli (JMP101), and Enterococcus faecalis (MXVK22). In addition, the antimicrobial activity was related to the hydrophobicity and water solubility of the WPI films. The greatest antibacterial activity was observed in WPI films containing only GO. The combined addition of N and GO resulted in films with lower antimicrobial activity than films with N or GO alone. In most cases, a pH effect was observed as greater antimicrobial response at pH 5.5 as well as higher film matrix hydrophobicity. WPI films supplemented with GO can be used in coating systems suitable for food preservation.
Collapse
Affiliation(s)
- María M Murillo-Martínez
- Departamento de Biotecnología and Química, Univ. Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco nr 186, Col. Vicentina, Iztapalapa, 09340, México
| | | | | | | |
Collapse
|
8
|
Caponigro V, Ventura M, Chiancone I, Amato L, Parente E, Piro F. Variation of microbial load and visual quality of ready-to-eat salads by vegetable type, season, processor and retailer. Food Microbiol 2010; 27:1071-7. [DOI: 10.1016/j.fm.2010.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/01/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
|