1
|
Lee GM, Shin JK. Nonthermal Sterilization of Animal-based Foods by Intense Pulsed Light Treatment. Food Sci Anim Resour 2024; 44:309-325. [PMID: 38764504 PMCID: PMC11097036 DOI: 10.5851/kosfa.2024.e4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 05/21/2024] Open
Abstract
The consumption of meat has been increasing, leading to a dynamic meat and meat processing industry. To maintain the quality and safety of meat products, various technologies have been explored, including intense pulsed light (IPL) technology. Several factors affect the inactivation of microorganisms by IPL treatment, including light intensity (fluence), treatment duration, pulse frequency, and the distance between the lamp and the samples. Meat products have been studied for IPL treatment, resulting in microbial reductions of approximately 0.4-2.4 Log. There are also impacts on color, sensory attributes, and physico-chemical quality, depending on treatment conditions. Processed meat products like sausages and ham have shown microbial reductions of around 0.1-4 Log with IPL treatment. IPL treatment has minimal impact on color and lipid oxidation in these products. Egg products and dairy items can also benefit from IPL treatment, achieving microbial reductions of around 1-7.8 Log. The effect on product quality varies depending on the treatment conditions. IPL technology has shown promise in enhancing the safety and quality of various food products, including meat, processed meat, egg products, and dairy items. However, the research results on animal-based food are not diverse and fragmentary, this study discusses the future research direction and industrial application through a review of these researches.
Collapse
Affiliation(s)
- Gyeong Mi Lee
- Food Processing Development Major,
Department of Culinary & Food Industry, Jeonju
University, Jeonju 55069, Korea
| | - Jung-Kue Shin
- Department of Korean Cuisine, Jeonju
University, Jeonju 55069, Korea
| |
Collapse
|
2
|
Preetha P, Varadharaju N, Jeevarathinam G, Deepa J, Kumar APM, Balakrishnan M, Rajkumar P, Pandiselvam R. Optimization of continuous flow pulsed light system process parameters for microbial inactivation in tender coconut water, pineapple and orange juice. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- P. Preetha
- Department of Food Process Engineering, Agricultural Engineering College and Research Institute Tamil Nadu Agricultural University Coimbatore India
| | - N. Varadharaju
- Department of Food Process Engineering, Agricultural Engineering College and Research Institute Tamil Nadu Agricultural University Coimbatore India
| | - G. Jeevarathinam
- Department of Food Technology Hindusthan College of Engineering and Technology Coimbatore Tamil Nadu India
| | - J. Deepa
- Department of Food Process Engineering, Agricultural Engineering College and Research Institute Tamil Nadu Agricultural University Coimbatore India
| | - A. P. Mohan Kumar
- Department of Farm Machinery and Power Engineering, Agricultural Engineering College and Research Institute Tamil Nadu Agricultural University Coimbatore India
| | - M. Balakrishnan
- Department of Food Process Engineering, Agricultural Engineering College and Research Institute Tamil Nadu Agricultural University Coimbatore India
| | - P. Rajkumar
- Department of Food Process Engineering, Agricultural Engineering College and Research Institute Tamil Nadu Agricultural University Coimbatore India
| | - R. Pandiselvam
- Physiology, Biochemistry and Post‐Harvest Technology Division ICAR‐Central Plantation Crops Research Institute Kasaragod Kerala India
| |
Collapse
|
3
|
Hierro E, Hospital XF, Fernández-León MF, Caballero N, Cerdán B, Fernández M. Impact of voltage and pulse delivery mode on the efficacy of pulsed light for the inactivation of Listeria. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Wang B, Wei W, Zhang Y, Xu H, Ma H. Decontamination and quality assessment of freshly squeezed grape juice under spiral continuous flow‐through pulsed light (SCFPL) treatment. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bei Wang
- School of Food and Biological Engineering Institute of Food Physical Processing Jiangsu University Zhenjiang P.R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou P. R. China
| | - Wenli Wei
- School of Food and Biological Engineering Institute of Food Physical Processing Jiangsu University Zhenjiang P.R. China
| | - Yanyan Zhang
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou P. R. China
| | - Haoyang Xu
- School of Food and Biological Engineering Institute of Food Physical Processing Jiangsu University Zhenjiang P.R. China
| | - Haile Ma
- School of Food and Biological Engineering Institute of Food Physical Processing Jiangsu University Zhenjiang P.R. China
| |
Collapse
|
5
|
Dhar R, Basak S, Chakraborty S. Pasteurization of fruit juices by pulsed light treatment: A review on the microbial safety, enzymatic stability, and kinetic approach to process design. Compr Rev Food Sci Food Saf 2021; 21:499-540. [PMID: 34766715 DOI: 10.1111/1541-4337.12864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022]
Abstract
Pulsed light (PL) is a polychromatic radiation-based technology, among many other non-thermal processing techniques. The microbiological lethality of the PL technique has been explored in different food matrices along with their associated mechanisms. Pasteurization of fruit juice requires a 5-log cycle reduction in the resistant pathogen in the product. The manufacturers look toward achieving the microbial safety and stability of the juice, while consumers demand high-quality juice. Enzymatic spoilage in fruit juice is also a crucial factor that needs attention. The retailers want the processed juice to be stable, which can be achieved by inactivating the spoilage enzymes and native microflora inside it. The present review argued about the potential of PL technology to produce a microbiologically safe and enzymatically stable fruit juice with a minimal loss in bioactive compounds in the product. Concise information of factors affecting the PL treatment (PLT), primary inactivation mechanism associated with microorganisms, enzymes, the effect of PLT on various quality attributes (microorganisms, spoilage enzymes, bioactive components, sensory properties, color), and shelf life of fruit juices has been put forward. The potential of PL integrated with other non-thermal and mild thermal technologies on the microbial safety and stability of fruit juices has been corroborated. The review also provides suggestions to the readers for designing, modeling, and optimizing the PLT and discusses the use of various primary, secondary kinetic models in detail that have been utilized for different quality parameters in juices. Finally, the challenges and future need associated with PL technology has been summarized.
Collapse
Affiliation(s)
- Rishab Dhar
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Somnath Basak
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Snehasis Chakraborty
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| |
Collapse
|
6
|
Characterization of continuous-flow pulsed UV light reactors for processing of liquid foods in annular tube and coiled tube configurations using actinometry and computational fluid dynamics. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Franco-Vega A, Reyes-Jurado F, González-Albarrán D, Ramírez-Corona N, Palou E, López-Malo A. Developments and Advances of High Intensity Pulsed Light and its Combination with Other Treatments for Microbial Inactivation in Food Products. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09280-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Preetha P, Pandiselvam R, Varadharaju N, Kennedy ZJ, Balakrishnan M, Kothakota A. Effect of pulsed light treatment on inactivation kinetics of Escherichia coli (MTCC 433) in fruit juices. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107547] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Pirozzi A, Pataro G, Donsì F, Ferrari G. Edible Coating and Pulsed Light to Increase the Shelf Life of Food Products. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09245-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractThe application of edible coatings (EC) in combination with pulsed light (PL) treatments represents an emerging approach for extending the shelf life of highly perishable but high value-added products, such as fresh-cut fruits and vegetables. The surface of these products would benefit from the protective effects of ECs and the PL decontamination capability. This review describes in detail the fundamentals of both EC and PL, focusing on the food engineering principles in the formulation and application of EC and the delivery of efficient PL treatments and the technological aspects related to the food characterization following these treatments and discussing the implementation of the two technologies, individually or in combination. The advantages of the combination of EC and PL are extensively discussed emphasizing the potential benefits that may be derived from their combination when preserving perishable foods. The downsides of combining EC and PL are also presented, with specific reference to the potential EC degradation when exposed to PL treatments and the screening effect of PL transmittance through the coating layer. Finally, the potential applications of the combined treatments to food products are highlighted, comparatively presenting the treatment conditions and the product shelf-life improvement.
Collapse
|
10
|
Applications of Pulsed Light Decontamination Technology in Food Processing: An Overview. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103606] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Consumers of the 21st century tend to be more aware and demand safe as well as nutritionally balanced food. Unfortunately, conventional thermal processing makes food safe at the cost of hampering nutritional value. The food industry is trying to develop non-thermal processes for food preservation. Pulsed light (PL) is one such emerging non-thermal food processing method that can decontaminate food products or food contact surfaces using white light. Exposure to intense light pulses (in infrared, visible, and ultraviolet (UV) regions) causes the death of microbial cells, rendering the food safe at room temperature. PL technology is an excellent and rapid method of disinfection of product surfaces and is increasingly being used for food surfaces and packaging decontamination, enabling the minimal processing of food. This paper aims to give an overview of the latest trends in pulsed light research, discuss principles of pulse generation, and review applications of various PL systems for the inactivation of microorganisms in vitro, in various food products, and on food contact surfaces. Effects of PL on food quality, challenges of the process, and its prospects are presented.
Collapse
|
11
|
Xu F, Wang B, Hong C, Telebielaigen S, Nsor-Atindana J, Duan Y, Zhong F. Optimization of spiral continuous flow-through pulse light sterilization for Escherichia coli in red grape juice by response surface methodology. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Decontamination of Listeria innocua from fresh-cut broccoli using UV-C applied in water or peroxyacetic acid, and dry-pulsed light. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Inactivation of Microbial Food Contamination of Plastic Cups Using Nonthermal Plasma and Hydrogen Peroxide. J FOOD QUALITY 2018. [DOI: 10.1155/2018/5616437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The inactivation effect of the combination of nonthermal plasma and hydrogen peroxide aerosol for the microbial decontamination of inner surface of cylindrical container buckets is studied on one bacterial and seven filamentous micromycete species and on airborne-contaminated cups. While the decontamination by single nonthermal plasma or hydrogen peroxide is not observable after 120 s, the strong decontamination by their combination occurs after 30 s of exposure. Moreover, observed total elimination of airborne contamination of plastic cups predetermines this method as a suitable alternative to the currently used method based on the application of hydrogen peroxide.
Collapse
|
15
|
Siddique MAB, Maresca P, Pataro G, Ferrari G. Influence of pulsed light treatment on the aggregation of whey protein isolate. Food Res Int 2017; 99:419-425. [DOI: 10.1016/j.foodres.2017.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/18/2017] [Accepted: 06/02/2017] [Indexed: 12/22/2022]
|
16
|
Kramer B, Wunderlich J, Muranyi P. Recent findings in pulsed light disinfection. J Appl Microbiol 2017; 122:830-856. [PMID: 28032924 DOI: 10.1111/jam.13389] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/24/2016] [Accepted: 12/22/2016] [Indexed: 01/18/2023]
Abstract
Nonthermal disinfection technologies are gaining increasing interest in the field of minimally processed food in order to improve the microbial safety or to extend the shelf life. Especially fresh-cut produce or meat and fish products are vulnerable to microbial spoilage, but, due to their sensitivity, they require gentle preservation measures. The application of intense light pulses of a broad spectral range comprising ultraviolet, visible and near infrared irradiation is currently investigated as a potentially suitable technology to reduce microbial loads on different food surfaces or in beverages. Considerable research has been performed within the last two decades, in which the impact of various process parameters or microbial responses as well as the suitability of pulsed light (PL) for food applications has been examined. This review summarizes the outcome of the latest studies dealing with the treatment of various foods including the impact of PL on food properties as well as recent findings about the microbicidal action and relevant process parameters.
Collapse
Affiliation(s)
- B Kramer
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany.,Technical University of Munich, Chair of Food Packaging Technology, Freising-Weihenstephan, Germany
| | - J Wunderlich
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - P Muranyi
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| |
Collapse
|
17
|
Hilton S, de Moraes J, Moraru C. Effect of sublethal temperatures on pulsed light inactivation of bacteria. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2016.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Relationship between optical properties of beverages and microbial inactivation by intense pulsed light. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|