1
|
Boateng ID, Li F, Yang XM, Guo D. Combinative effect of pulsed-light irradiation and solid-state fermentation on ginkgolic acids, ginkgols, ginkgolides, bilobalide, flavonoids, product quality and sensory assessment of Ginkgo biloba dark tea. Food Chem 2024; 456:139979. [PMID: 38852441 DOI: 10.1016/j.foodchem.2024.139979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Pulsed light (PL) is a prospective non-thermal technology that can improve the degradation of ginkgolic acid (GA) and retain the main bioactive compounds in Ginkgo biloba leaves (GBL). However, only using PL hasn't yet achieved the ideal effect of reducing GA. Fermentation of GBL to make ginkgo dark tea (GDT) could decrease GA. Because different microbial strains are used for fermentation, their metabolites and product quality might differ. However, there is no research on the combinative effect of PL irradiation fixation and microbial strain fermentation on main bioactive compounds and sensory assessment of GDT. In this research, first, Bacillus subtilis and Saccharomyces cerevisiae were selected as fermentation strains that can reduce GA from the five microbial strains. Next, the fresh GBL was irradiated by PL for 200 s (fluences of 0.52 J/cm2), followed by B. subtilis, S. cerevisiae, or natural fermentation to make GDT. The results showed that compared with the control (unirradiated and unfermented GBL) and the only PL irradiated GBL, the GA in GDT using PL + B. subtilis fermentation was the lowest, decreasing by 29.74%; PL + natural fermentation reduced by 24.53%. The total flavonoid content increased by 14.64% in GDT using PL + B. subtilis fermentation, whose phenolic and antioxidant levels also increased significantly. Sensory evaluation showed that the color, aroma, and taste of the tea infusion of PL + B. subtilis fermentation had the highest scores. In conclusion, the combined PL irradiation and solid-state fermentation using B. subtilis can effectively reduce GA and increase the main bioactive compounds, thus providing a new technological approach for GDT with lower GA.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.; Certified Group, 199 W Rhapsody Dr, San Antonio, Texas, TX 78216, United States of America..
| | - Fengnan Li
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China..
| | - Xiao-Ming Yang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China..
| | - Danzhao Guo
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China..
| |
Collapse
|
2
|
Omari NE, Chamkhi I, Bakrim S, Aanniz T, Benali T, Akhazzane M, Ullah R, Alotaibi A, Bari A, Elhrech H, Zengin G, Bouyahya A. Biological Properties of Mentha viridis L. Essential Oil and Its Main Monoterpene Constituents. Chem Biodivers 2024; 21:e202401209. [PMID: 38865194 DOI: 10.1002/cbdv.202401209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
This research aimed to evaluate the antidiabetic, dermatoprotective, and antibacterial activities of Mentha viridis L. essential oil (MVEO) collected in the province of Ouezzane (Northwest Morocco). Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the main constituents of MVEO were carvone (37.26 %), 1,8-cineole (11.82 %), limonene (5.27 %), α-terpineol (4.16 %), and β-caryophyllene (4.04 %). MVEO showed strong inhibitory effects on α-amylase and α-glucosidase activities, exceeding those of acarbose, but weak anti-elastase activity. The main compounds, β-caryophyllene (IC50=79.91±2.24 and 62.08±2.78 μg/mL) and limonene (IC50=90.73±3.47 and 68.98±1, 60 μg/mL), demonstrated the strongest inhibitory effects on both digestive enzymes (α-glucosidase and α-amylase, respectively). In silico investigations, using molecular docking, also showed the inhibitory potential of these bioactive compounds against the enzymes tested. In conclusion, MVEO, due to its main components such as limonene, 1,8-cineole, β-caryophyllene, carvone, and α-terpineol, shows promising prospects for drug discovery and natural therapeutic applications.
Collapse
Affiliation(s)
- Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| | - Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony. Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, 80000, Morocco
| | - Tarik Aanniz
- Medical Biotechnology Laboratory, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, B.P.-6203, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, B.P.-4162, Morocco
| | - Mohamed Akhazzane
- Cité de l'innovation, Université Sidi Mohamed Ben Abdellah, Route Immouzer, P.O. Box 2626, Fez, 30000, Morocco
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy King Saud University Riyadh Saudi Arabia
| | - Amal Alotaibi
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy King Saud University Riyadh Saudi Arabia
| | - Hamza Elhrech
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| |
Collapse
|
3
|
Medeleanu ML, Fărcaș AC, Coman C, Leopold L, Diaconeasa Z, Socaci SA. Citrus essential oils - Based nano-emulsions: Functional properties and potential applications. Food Chem X 2023; 20:100960. [PMID: 38144864 PMCID: PMC10740136 DOI: 10.1016/j.fochx.2023.100960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023] Open
Abstract
Citrus essential oils are natural products with various bioactive properties (e.g., antimicrobial, antioxidant, and antimutagenic activities), that are generally recognized as safe (GRAS) by Food and Drug Administration (FDA) to be used as flavorings and food additives. Nonetheless, due to their high volatility, low solubility in water, low thermal stability, susceptibility to oxidation, and strong flavor, their applications in the food industry are limited. Nanotechnology allows the incorporation of citrus essential oils into nano-emulsion systems, thus protecting them from the deterioration caused by external factors and maintaining or even improving their functional properties. This study aims to summarize the antioxidant, antimicrobial, and antimutagenic effects of the nano-emulsions based on essential oils from citrus peels with emphasis on their mechanisms of action and potential applications in, e.g., foods, pharmaceuticals, and cosmetics.
Collapse
Affiliation(s)
- Mădălina Lorena Medeleanu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Anca Corina Fărcaș
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Cristina Coman
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Loredana Leopold
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Zorița Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Sonia Ancuța Socaci
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Laurintino TN, Tramontin DP, Assreuy J, Cruz AB, Cruz CCB, Marangoni A, Livia MA, Bolzan A. Evaluation of the biological activity and chemical profile of supercritical and subcritical extracts of Bursera graveolens from northern Peru. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Sun Y, Jia X, Tan CP, Zhang B, Fu X, Huang Q. High hydrostatic pressure (HHP) reinforces solid encapsulation of d-limonene into V-type starch and its application in strawberry storage. Int J Biol Macromol 2023; 235:123886. [PMID: 36870635 DOI: 10.1016/j.ijbiomac.2023.123886] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
The formation of inclusion complexes (ICs) between V-type starch and flavors is traditionally conducted in an aqueous system. In this study, limonene was solid encapsulated into V6-starch under ambient pressure (AP) and high hydrostatic pressure (HHP). The maximum loading capacity reached 639.0 mg/g after HHP treatment, and the highest encapsulation efficiency was 79.9 %. X-ray Diffraction (XRD) results showed that the ordered structure of V6-starch was ameliorated with limonene, which avoided the reduction of the space between adjacent helices within V6-starch generated by HHP treatment. Notably, HHP treatment may force molecular permeation of limonene from amorphous regions into inter-crystalline amorphous regions and crystalline regions as the Small-angle X-ray scattering (SAXS) patterns indicated, leading to better controlled-release behavior. Thermogravimetry analysis (TGA) revealed that the solid encapsulation of V-type starch improved the thermal stability of limonene. Further, the release kinetics study showed that a complex prepared with a mass ratio of 2:1 under HHP treatment sustainably released limonene over 96 h and exhibited a preferable antimicrobial effect, which could extend the shelf life of strawberries.
Collapse
Affiliation(s)
- Yanan Sun
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Xiangze Jia
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China.
| |
Collapse
|
6
|
Davaritouchaee M, Mosleh I, Dadmohammadi Y, Abbaspourrad A. One-Step Oxidation of Orange Peel Waste to Carbon Feedstock for Bacterial Production of Polyhydroxybutyrate. Polymers (Basel) 2023; 15:697. [PMID: 36771998 PMCID: PMC9920450 DOI: 10.3390/polym15030697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Orange peels are an abundant food waste stream that can be converted into useful products, such as polyhydroxyalkanoates (PHAs). Limonene, however, is a key barrier to building a successful biopolymer synthesis from orange peels as it inhibits microbial growth. We designed a one-pot oxidation system that releases the sugars from orange peels while eliminating limonene through superoxide (O2• -) generated from potassium superoxide (KO2). The optimum conditions were found to be treatment with 0.05 M KO2 for 1 h, where 55% of the sugars present in orange peels were released and recovered. The orange peel sugars were then used, directly, as a carbon source for polyhydroxybutyrate (PHB) production by engineered Escherichia coli. Cell growth was improved in the presence of the orange peel liquor with 3 w/v% exhibiting 90-100% cell viability. The bacterial production of PHB using orange peel liquor led to 1.7-3.0 g/L cell dry weight and 136-393 mg (8-13 w/w%) ultra-high molecular weight PHB content (Mw of ~1900 kDa) during a 24 to 96 h fermentation period. The comprehensive thermal characterization of the isolated PHBs revealed polymeric properties similar to PHBs resulting from pure glucose or fructose. Our one-pot oxidation process for liberating sugars and eliminating inhibitory compounds is an efficient and easy method to release sugars from orange peels and eliminate limonene, or residual limonene post limonene extraction, and shows great promise for extracting sugars from other complex biomass materials.
Collapse
Affiliation(s)
| | | | | | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York, NY 14853, USA
| |
Collapse
|
7
|
Fei C, Xue Q, Li W, Xu Y, Mou L, Li W, Lu T, Yin W, Li L, Yin F. Variations in volatile flavour compounds in Crataegi fructus roasting revealed by E-nose and HS-GC-MS. Front Nutr 2023; 9:1035623. [PMID: 36761989 PMCID: PMC9905410 DOI: 10.3389/fnut.2022.1035623] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/13/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Crataegi fructus (CF) is an edible and medicinal functional food used worldwide that enhances digestion if consumed in the roasted form. The odour of CF, as a measure of processing degree during roasting, significantly changes. However, the changes remain unclear, but are worth exploring. Methods Herein, the variations in volatile flavour compounds due to CF roasting were investigated using an electronic nose (E-nose) and headspace gas chromatography-mass spectrometry (HS-GC-MS). Results A total of 54 components were identified by GC-MS. Aldehydes, ketones, esters, and furans showed the most significant changes. The Maillard reaction, Strecker degradation, and fatty acid oxidation and degradation are the main reactions that occur during roasting. The results of grey relational analysis (GRA) showed that 25 volatile compounds were closely related to odour (r > 0.9). Finally, 9 volatile components [relative odour activity value, (ROAV) ≥ 1] were confirmed as key substances causing odour changes. Discussion This study not only achieves the objectification of odour evaluation during food processing, but also verifies the applicability and similarity of the E-nose and HS-GC-MS.
Collapse
Affiliation(s)
- Chenghao Fei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qianqian Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjing Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyan Mou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wu Yin
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China,Wu Yin,
| | - Lin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China,Lin Li,
| | - Fangzhou Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China,*Correspondence: Fangzhou Yin,
| |
Collapse
|
8
|
Sadeghian SF, Majdinasab M, Nejadmansouri M, Hosseini SMH. Effects of natural antioxidants and high-energy fabrication methods on physical properties and oxidative stability of flaxseed oil-in-water nanoemulsions. ULTRASONICS SONOCHEMISTRY 2023; 92:106277. [PMID: 36571883 PMCID: PMC9803954 DOI: 10.1016/j.ultsonch.2022.106277] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The effects of high-energy fabrication methods, namely high-pressure homogenization (HPH) and ultrasonication (US), on physicochemical properties of flaxseed oil-in-water nanoemulsions (FNEs) containing clove essential oil (CEO) and/or pomegranate peel extract (PPE) were studied during storage at 4 and 25 °C. Nanoemulsions with relatively similar average droplet size were prepared by HPH and/or US. An increase in droplet size was observed over time. Lower storage temperature and fabrication by US increased Ostwald ripening rate. Higher storage temperature and fabrication by US decreased the centrifugal stability of nanoemulsions. CEO revealed better antioxidant properties than PPE. The oxidative stability was evaluated by determining secondary oxidation products, and fatty acids profile. The absence of antioxidant, fabrication by US, and higher storage temperature decreased the oxidative stability of nanoemulsions. The results of this study might be helpful in controlling the oxidation of FNEs during long-term storage and in designing functional foods and beverages.
Collapse
Affiliation(s)
- Seyede Farnaz Sadeghian
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Marjan Majdinasab
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Maryam Nejadmansouri
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
9
|
Guo L, Mao X, Li Y, Zhou Z. Polymethoxylated flavonoids (PMFs)-loaded citral nanoemulsion controls green mold in citrus by damaging the cell membrane of Penicillium digitatum. Fungal Biol 2023; 127:854-864. [PMID: 36746557 DOI: 10.1016/j.funbio.2022.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Citrus is susceptible to Penicillium digitatum (P. digitatum) infection in post-harvest storage, resulting in enormous economic losses. This study aimed to investigate the antifungal activity and potential mechanism of the combination of Polymethoxylated flavones (PMFs) and citral (two natural antifungal components derived from citrus) against P. digitatum in vitro and citrus fruit. The results show that PMFs can enhance the antifungal activity of citral nanoemulsion, and PMFs-loaded citral nanoemulsion (PCT) has significant antifungal activity in a concentration-dependent manner. PCT can evidently inhibit spore germination and mycelial growth in vitro, and effectively control the growth of green mold on postharvest citrus fruit. Furthermore, PCT treatment resulted in the alteration of mycelia morphology, accumulation of reactive oxygen species, and membrane lipid peroxidation. These changes can disrupt the normal structure and function of the cell membrane, as evidenced by the reduction of total lipid and ergosterol content in the mycelia and the stronger red fluorescence of the cells emitted after PI staining. Based on the above results, we infer that PCT has a strong inhibitory effect on P. digitatum, and its potential mechanism is related to the destruction of the cell membrane. Therefore, PCT can be considered as a botanical fungicide for citrus preservation.
Collapse
Affiliation(s)
- Long Guo
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China; Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, 400715, China
| | - Xiaoxue Mao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China; Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, 400715, China
| | - Yi Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China; Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, 400715, China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China; The Southwest Institute of Fruits Nutrition, Banan District, Chongqing, 400054, China; Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
10
|
Robust stability and antimicrobial activity of d-limonene nanoemulsion by sodium caseinate and high pressure homogenization. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Effect of D-Limonene Nanoemulsion Edible Film on Banana (Musa sapientum Linn.) Post-Harvest Preservation. Molecules 2022; 27:molecules27196157. [PMID: 36234689 PMCID: PMC9572713 DOI: 10.3390/molecules27196157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
D-limonene (4-isopropenyl-1-methylcyclohexene) is an important compound in several citrus essential oils (such as orange, lemon, tangerine, lime, and grapefruit). It has been used as a flavoring agent and as a food preservative agent, with generally recognized as safe (GRAS) status. D-limonene has been well-studied for its anti-inflammatory, antioxidant, anti-cancer, and antibacterial properties. The antibacterial activity of D-limonene against food-borne pathogens was investigated in this study by preparing a D-limonene nanoemulsion. The D-limonene solution and nanoemulsion have been prepared in six concentrations, 0.04%, 0.08%, 0.1%, 0.2%, 0.4%, and 0.8% (v/v), respectively, and the antibacterial activity was tested against four food-borne pathogens (Staphylococcus aureus, Listeria monocytogenes, Salmonella enterica, and Escherichia coli). The results showed that the D-limonene nanoemulsion had good nanoscale and overall particle size uniformity, and its particle size was about 3~5 nm. It has been found that the D-limonene solution and nanoemulsion have a minimal inhibitory concentration of 0.336 mg/mL, and that they could inhibit the growth of microorganisms efficiently. The data indicate that the D-limonene nanoemulsion has more antibacterial ability against microorganisms than the D-limonene essential oil. After bananas are treated with 1.0% and 1.5% D-limonene nanoemulsion coatings, the water loss of the bananas during storage and the percentage of weight loss are reduced, which can inhibit the activity of pectinase. The application of a biocoating provides a good degree of antibacterial activity and air and moisture barrier properties, which help with extending the shelf life of bananas.
Collapse
|
12
|
Pilong P, Chuesiang P, Mishra DK, Siripatrawan U. Characteristics and antimicrobial activity of microfludized clove essential oil nanoemulsion optimized using response surface methodology. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Puncharat Pilong
- Department of Biotechnology, Faculty of Science Chulalongkorn University Bangkok Thailand
| | - Piyanan Chuesiang
- Department of Food technology, Faculty of Science Chulalongkorn University Bangkok Thailand
| | - Dharmendra K. Mishra
- Department of Food Science, College of Agriculture Purdue University West Lafayette IN USA
| | - Ubonrat Siripatrawan
- Department of Food technology, Faculty of Science Chulalongkorn University Bangkok Thailand
| |
Collapse
|
13
|
Jayari A, Donsì F, Ferrari G, Maaroufi A. Nanoencapsulation of Thyme Essential Oils: Formulation, Characterization, Storage Stability, and Biological Activity. Foods 2022; 11:foods11131858. [PMID: 35804672 PMCID: PMC9265609 DOI: 10.3390/foods11131858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to improve the effectiveness of Thymus capitatus and Thymus algeriensis essential oils (EOs), as food preservatives, through their encapsulation in different delivery systems (DSs), namely nanoemulsions and biopolymeric nanoparticles. DSs’ preparation is tailored to enhance not only physical stability but also resulting Eos’ antioxidant and antibacterial activities through different fabrication methods (high-pressure homogenization emulsification or antisolvent precipitation) and using different emulsifiers and stabilizers. DSs are characterized in terms of droplet size distribution, ζ-potential, and stability over time, as well as antioxidant and antibacterial activities of encapsulated EOs. The antioxidant activity was studied by the FRAP assay; the antibacterial activity was evaluated by the well diffusion method. EOs of different compositions were tested, namely two EOs extracted from Thymus capitatus, harvested from Tunisia during different periods of the year (TC1 and TC2), and one EO extracted from Thymus algeriensis (TA). The composition of TC1 was significantly richer in carvacrol than TC2 and TA. The most stable formulation was the zein-based nanoparticles prepared with TC1 and stabilized with maltodextrins, which exhibit droplet size, polydispersity index, ζ-potential, and encapsulation efficiency of 74.7 nm, 0.14, 38.7 mV, and 99.66%, respectively. This formulation led also to an improvement in the resulting antioxidant (60.69 µg/mg vs. 57.67 µg/mg for non-encapsulated TC1) and antibacterial (inhibition diameters varying between 12 and 33 mm vs. a range between 12 and 28 mm for non-encapsulated TC1) activities of EO. This formulation offers a promising option for the effective use of natural antibacterial bioactive molecules in the food industry against pathogenic and spoilage bacteria.
Collapse
Affiliation(s)
- Asma Jayari
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, BP 74, 13 Place Pasteur, Belvédère, Tunis 1002, Tunisia; (A.J.); (A.M.)
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
- Correspondence: ; Tel.: +39-089-964-135
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Abderrazak Maaroufi
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, BP 74, 13 Place Pasteur, Belvédère, Tunis 1002, Tunisia; (A.J.); (A.M.)
| |
Collapse
|
14
|
Anisakicidal Effects of R (+) Limonene: An Alternative to Freezing Treatment in the Industrial Anchovy Marinating Process. Foods 2022; 11:foods11081121. [PMID: 35454708 PMCID: PMC9028723 DOI: 10.3390/foods11081121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Anisakiasis is a fish-borne zoonotic disease caused by the ingestion of raw/undercooked fishes or cephalopods parasitized by members of the genus Anisakis. Freezing ensures the inactivation of viable Anisakis larvae; however, since it affects the organoleptic properties of food, essential oils and their compounds were proposed as an alternative. In this study, fresh anchovy fillets were experimentally parasitized with L3 Anisakis larvae to test the anisakicidal efficacy of R (+) limonene (LMN) in marinated fishery products. The anisakicidal effectiveness and organoleptic influence of several LMN concentrations (0.5%, 1%, and 5%) were tested during the marinating process (MS) and storage in sunflower seed oil (SO) of marinated anchovy fillets. Double treatment (DT) with 1% LMN was also performed both during marination and subsequent storage in oil. MS treatment resulted only in a reduction in larvae viability after 48 h, while a complete inactivation was observed in SO after 8, 10, and 20 days of treatment with 5%, 1%, and 0.5% LMN, respectively. DT was the most effective with complete larval inactivation after 7 days. Only 5% LMN influenced the sensory characteristics of the fillets, resulting, however, in a pleasant lemon-like odor and taste. Considering the results obtained, LMN might be a suitable natural alternative to manage Anisakis risk in the fishery industry.
Collapse
|
15
|
Shi W, Yan R, Huang L. Preparation and insecticidal performance of sustained-release cinnamon essential oil microemulsion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1397-1404. [PMID: 34370306 DOI: 10.1002/jsfa.11472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/13/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND To improve the utilization rate of cinnamon essential oil and compensate for the shortcomings of its easy decomposition and oxidation, the microemulsion of cinnamon essential oil was prepared using Tween 80 and anhydrous ethanol as surfactant and cosurfactant, respectively. The effects of the surfactant type, Km value, preparation temperature and aqueous pH on the quality of the microemulsion were studied via a pseudo-ternary phase diagram. The slow-release performance of cinnamon essential oil microemulsion and the control performance of the insect repellent package on the rice weevil were characterized. RESULTS The results showed that, when Tween 80 was used as a surfactant and anhydrous ethanol was used as a cosurfactant, the Km value was 3:1, preparation temperature was 40 °C, aqueous pH was 5 and prepared cinnamon essential oil microemulsion was of the O/W type. The microemulsion had strong stability and a 81.5-nm concentrated particle size distribution, and possessed excellent embedding and sustained-release effects. The prepared insect repellent active package prolongs the use time and the effect of cinnamon essential oil. The repellent rate of the rice weevil was as high as 100% after 48 h, and the contact mortality and fumigation mortality rates of the rice weevil also reached 96.67% and 86.67%, respectively, after 96 h. CONCLUSION The prepared cinnamon essential oil microemulsion and active packaging had a good sustained-release effect. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiwei Shi
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Ruixiang Yan
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Liqiang Huang
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
16
|
Dias ALB, Fernandes CC, Souza JHD, Martins CHG, Moreira FF, Crotti AEM, Miranda MLD. Antibacterial activity of essential oils from Brazilian plants and their major constituents against foodborne pathogens and spoilage bacteria. JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2032424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | | | | | - Felipe Fernandes Moreira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Antônio Eduardo Miller Crotti
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
17
|
Sepúlveda FA, Rivera F, Loyo C, Canales D, Moreno‐Serna V, Benavente R, Rivas LM, Ulloa MT, Gil‐Castell O, Ribes‐Greus A, Ortiz JA, Zapata PA. Poly (lactic acid)/D‐limonene/
ZnO bio‐nanocomposites
with antimicrobial properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.51542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Francesca Antonella Sepúlveda
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| | - Francisca Rivera
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| | - Carlos Loyo
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| | - Daniel Canales
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| | - Viviana Moreno‐Serna
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| | | | - Lina María Rivas
- Programa de Microbiología y Micología ICBM‐Facultad de Medicina Universidad de Chile Chile
| | - María Teresa Ulloa
- Programa de Microbiología y Micología ICBM‐Facultad de Medicina Universidad de Chile Chile
| | - Oscar Gil‐Castell
- Instituto de Tecnología de Materiales (ITM) Universitat Politècnica de València (UPV) Spain
| | - Amparo Ribes‐Greus
- Instituto de Tecnología de Materiales (ITM) Universitat Politècnica de València (UPV) Spain
| | - J. Andrés Ortiz
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
- Departamento de Ingeniería Química, Biotecnología y Materiales Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile Chile
| | - Paula A. Zapata
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| |
Collapse
|
18
|
Van HT, Thang TD, Luu TN, Doan VD. An overview of the chemical composition and biological activities of essential oils from Alpinia genus (Zingiberaceae). RSC Adv 2021; 11:37767-37783. [PMID: 35498079 PMCID: PMC9044187 DOI: 10.1039/d1ra07370b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/05/2021] [Indexed: 11/21/2022] Open
Abstract
Alpinia Roxb. is the largest genus of the Zingiberaceae family. A large number of Alpinia species has been used as food and traditional medicines. Alpinia essential oils have been studied for their chemical profiles, in which 1,8-cineole, β-pinene, α-pinene, β-myrcene, camphor, γ-terpinene, p-cymene, geraniol, α-fenchyl acetate, ocimene, methyl cinnamate, and β-caryophyllene have been found to be the major compounds. Essential oils isolated from Alpinia plants have been reported to have antimicrobial, cytotoxic, antioxidant, anti-inflammatory, anti-asthmatic, tyrosinase inhibitory, insecticidal, and larvicidal activities and slimming aromatherapy. In this review, the comprehensive information regarding the volatile components of various Alpinia plants, the bioactivities of Alpinia essential oils and their major compounds are provided.
Collapse
Affiliation(s)
- Hong Thien Van
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao Street, Ward 4, Go Vap District Ho Chi Minh City Vietnam
| | - Tran Dinh Thang
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao Street, Ward 4, Go Vap District Ho Chi Minh City Vietnam
| | - Thao Nguyen Luu
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao Street, Ward 4, Go Vap District Ho Chi Minh City Vietnam
| | - Van Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao, Ward 4, Go Vap District Ho Chi Minh City Vietnam
| |
Collapse
|
19
|
Ghiasi F, Eskandari MH, Golmakani MT, Hashemi Gahruie H, Zarei R, Naghibalhossaini F, Hosseini SMH. A novel promising delivery system for cuminaldehyde using gelled lipid nanoparticles: Characterization and anticancer, antioxidant, and antibacterial activities. Int J Pharm 2021; 610:121274. [PMID: 34752917 DOI: 10.1016/j.ijpharm.2021.121274] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
This work aimed to develop a novel nanoencapsulation system for food colloidal formulations using gelled lipid nanoparticles (GLNs) to improve the functionality, stability, and bioactivity of cuminaldehyde as a highly volatile and poor hydrophilic food additive. Cuminaldehyde-loaded GLNs with diameters of 117-138 nm were fabricated through a hot emulsification process with monoglyceride (10 and 15 g/100 g lipid phase) as a lipid gelator at two concentrations of cuminaldehyde (500 and 1000 mg/L). All samples remained stable towards macroscopic phase separation and creaming during 28 days of storage at 4 °C, which could be related to the rigid structure of dispersed particles in the gelled state and retarding droplet movement. Moreover, all samples were stable to creaming after subjecting to the environmental changes including temperature (30, 60, and 90 °C for 30 min), ionic strength (100, 200, and 300 mM NaCl), and pH (3, 5, and 7). Measurement of apparent viscosity showed non-Newtonian shear thinning nature in all samples, which was more pronounced at higher concentrations of the gelator. Interestingly, higher cytotoxic effects of cuminaldehyde against human lung and colorectal cancer cells were observed after encapsulation within GLNs. However, weak toxicity was also found against normal peripheral blood mononuclearcells.On the other hand, the antioxidant activity and lipid oxidation stability were improved by increasing cuminaldehyde concentration, while it was reduced at higher monoglyceride concentration. All samples exhibited stronger antibacterial activity against Bacillus cereus than Eschershia coli. These findings suggest the significant potential benefits of GLNs as novel nanocarriers to enrich various food and beverage formulations with essential oils, flavors, and aromas.
Collapse
Affiliation(s)
- Fatemeh Ghiasi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Mohammad Taghi Golmakani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hadi Hashemi Gahruie
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Reza Zarei
- Department of Biochemistry, Shiraz University of Medical Sciences School of Medicine, Shiraz, Iran
| | - Fakhraddin Naghibalhossaini
- Department of Biochemistry, Shiraz University of Medical Sciences School of Medicine, Shiraz, Iran; Autoimmune Research Center, Shiraz University of Medical Sciences School of Medicine, Shiraz, Iran
| | | |
Collapse
|
20
|
Abstract
Injudicious consumption of antibiotics in the past few decades has arisen the problem of resistance in pathogenic organisms against most antibiotics and antimicrobial agents. Scenarios of treatment failure are becoming more common in hospitals. This situation demands the frequent need for new antimicrobial compounds which may have other mechanisms of action from those which are in current use. Limonene can be utilized as one of the solutions to the problem of antimicrobial resistance. Limonene is a naturally occurring monoterpene with a lemon-like odor, which mainly present in the peels of citrus plants like lemon, orange, grapefruit, etc. The study aimed to enlighten the antimicrobial properties of limonene as per previous literature. Advantageous contributions have been made by various research groups in the study of the antimicrobial properties of limonene. Previous studies have shown that limonene not only inhibits disease-causing pathogenic microbes, however, it also protects various food products from potential contaminants. This review article contains information about the effectiveness of limonene as an antimicrobial agent. Apart from antimicrobial property, some other uses of limonene are also discussed such as its role as fragrance and flavor additive, as in the formation of nonalcoholic beverages, as solvent and cleaner in the petroleum industry, and as a pesticide. Antibacterial, antifungal, antiviral, and anti-biofilm properties of limonene may help it to be used in the future as a potential antimicrobial agent with minimal adverse effects. Some of the recent studies also showed the action of limonene against COVID-19 (Coronavirus). However, additional studies are requisite to scrutinize the possible mechanism of antimicrobial action of limonene.
Collapse
|
21
|
Tomar R, Jain S, Yadav P, Bajaj T, Mohajer F, Ziarani GM. Conversion of Limonene over Heterogeneous Catalysis: An Overview. Curr Org Synth 2021; 19:414-425. [PMID: 34429049 DOI: 10.2174/1570179418666210824101837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/07/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
The natural terpene limonene is widely found in nature. The (R)-limonene (the most abundant enantiomer) is present in the essential oils of lemon, orange, and other citrus fruits, while the (S)-limonene is found in peppermint and the racemate in turpentine oil. Limonene is a low-cost, low toxicity biodegradable terpene present in agricultural wastes derived from citrus peels. The products obtained from the conversion of limonene are valuable compounds widely used as additives for food, cosmetics, or pharmaceuticals. The conversion of limonene to produce different products has been the subject of intense research, mainly with the objective to improve catalytic systems. This review focused on the application of heterogeneous catalysts in the catalytic conversion of limonene.
Collapse
Affiliation(s)
- Ravi Tomar
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana-122505. India
| | - Swati Jain
- Department of Chemistry, University of Delhi, Delhi-110007. India
| | - Purnima Yadav
- Department of Chemistry, University of Delhi, Delhi-110007. India
| | - Tanima Bajaj
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana-122505. India
| | - Fatemeh Mohajer
- Department of Chemistry, University of Delhi, Delhi-110007. India
| | | |
Collapse
|
22
|
Salehi O, Sami M, Rezaei A. Limonene loaded cyclodextrin nanosponge: Preparation, characterization, antibacterial activity and controlled release. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Chuesiang P, Sanguandeekul R, Siripatrawan U. Enhancing effect of nanoemulsion on antimicrobial activity of cinnamon essential oil against foodborne pathogens in refrigerated Asian seabass (Lates calcarifer) fillets. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107782] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
24
|
Samba N, Aitfella-Lahlou R, Nelo M, Silva L, Coca. R, Rocha P, López Rodilla JM. Chemical Composition and Antibacterial Activity of Lippia multiflora Moldenke Essential Oil from Different Regions of Angola. Molecules 2020; 26:molecules26010155. [PMID: 33396345 PMCID: PMC7795161 DOI: 10.3390/molecules26010155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
The purpose of the study was to determine the chemical composition and antibacterial activity of Lippia multiflora Moldenke essential oils (EOs) collected in different regions of Angola. Antibacterial activity was evaluated using the agar wells technique and vapour phase test. Analysis of the oils by GC/MS identified thirty-five components representing 67.5 to 100% of the total oils. Monoterpene hydrocarbons were the most prevalent compounds, followed by oxygenated monoterpenes. The content of the compounds varied according to the samples. The main components were Limonene, Piperitenone, Neral, Citral, Elemol, p-cymene, Transtagetone, and Artemisia ketone. Only one of the eleven samples contained Verbenone as the majority compound. In the vapour phase test, a single oil was the most effective against all the pathogens studied. The principal component analysis (PCA) and hierarchical cluster analysis (HCA) of components of the selected EOs and inhibition zone diameter values of agar wells technique allowed us to identify a variability between the plants from the two provinces, but also intraspecific variability between sub-groups within a population. Each group of essential oils constituted a chemotype responsible for their bacterial inhibition capacity. The results presented here suggest that Angolan Lippia multiflora Moldenke has antibacterial properties and could be a potential source of antimicrobial agents for the pharmaceutical and food industry.
Collapse
Affiliation(s)
- Nsevolo Samba
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
- Department of Clinical Analysis and Public Health, University Kimpa Vita, Uige 77, Angola
- Correspondence: (N.S.); (J.M.L.R.); Tel.: +351-926-687-782 (N.S.); +351-275-319-765 (J.M.L.R.)
| | - Radhia Aitfella-Lahlou
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
- Laboratory of Valorisation and Conservation of Biological Resources, Biology Department, Faculty of Sciences, University M’Hamed Bougara, 35000 Boumerdes, Algeria
| | - Mpazu Nelo
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
| | - Lucia Silva
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Rui Coca.
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
| | - Pedro Rocha
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
| | - Jesus Miguel López Rodilla
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
- Correspondence: (N.S.); (J.M.L.R.); Tel.: +351-926-687-782 (N.S.); +351-275-319-765 (J.M.L.R.)
| |
Collapse
|
25
|
Antimicrobial Air Filter Coating with Plant Extracts Against Airborne Microbes. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10249120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Antimicrobial air filters are required to protect humans from the risk of secondary bioaerosol pollution as well as airborne particles. Three plant extracts (tea-tree oil, rosemary, and garlic) were selected to replace antimicrobial chemicals in air filters. The antimicrobial activity of plant extracts was investigated using Micrococcus luteus and Escherichia coli. Phytochemicals present in the three plant extracts were identified using a gas chromatograph coupled with a mass spectrometer. The extracts were spray-coated on polyethylene terephthalate filter surfaces using silicate polymeric coating and evaluated via X-ray photoelectron spectroscopy and a scanning electron microscope with energy dispersive spectroscopy. After coating, an increase of 9.1% in the pressure drop was observed. The strain Micrococcus luteus was used to evaluate the antimicrobial activity of the air filter. After bioaerosol exposure, the tea-tree oil-coated filters immediately induced M. luteus cell inactivation (40–55%), whereas the rosemary and garlic coated filters did not. However, 48 h after exposure, a significant M. luteus inactivation of 99.99%, 99.0%, and 99.9% was recorded for concentrations of 2.89, 6.73, and 11.51 mg/cm2 for the tea-tree, rosemary, and garlic extracts, respectively. The coated filters exhibited high antimicrobial activity, thereby indicating significant potential for application as self-cleaning air filters.
Collapse
|
26
|
Aghoutane Y, Moufid M, Motia S, Padzys GS, Omouendze LP, Llobet E, Bouchikhi B, El Bari N. Characterization and Analysis of Okoume and Aiele Essential Oils from Gabon by GC-MS, Electronic Nose, and Their Antibacterial Activity Assessment. SENSORS 2020; 20:s20236750. [PMID: 33255909 PMCID: PMC7728305 DOI: 10.3390/s20236750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022]
Abstract
Essential oil resins of Aucoumea klaineana (Okoume) and Canarium schweinfurthii (Aiele) species, of the Burseraceae family, were studied to investigate their bioactive constituents and their antibacterial activities. Aiele resin had a higher yield (6.86%) of essential oil than Okoume (3.62%). Twenty-one compounds for Okoume and eighteen for Aiele essential oil were identified using a gas chromatography-mass spectrometry (Gp-C-MS) technique. The main compounds identified in Okoume essential oil were benzenemethanol, α, α,4-trimethyl (28.85%), (+)-3-carene (3,7,7-trimethyl bicyclo[4.1.0]hept-3-ene) (17.93%), D-Limonene ((4R)-1-methyl-4-prop-1-en-2-ylcyclohexene) (19.36%). With regard to the Aiele essential oil, we identified (1R,4S)-1-methyl-4-propan-2-ylcyclohex-2-en-1-ol (26.64%), and 1-methyl-4-propan-2-ylcyclohex-2-en-1-ol (26.83%). Two strains of bacteria, Escherichia coli and Staphylococcus aureus, were used in antibacterial tests. S. aureus was found to be more sensitive to Okoume and Aiele essential oils, with a high inhibition zone ranging from 20 to 16 mm. In comparison, the inhibition zone ranged from 6 to 12 mm for E. coli. An electronic nose (e-nose) combined with pattern analysis methods such as principal component analysis (PCA), discriminant function analysis (DFA), and hierarchical cluster analysis (HCA) were used to discriminate the essential oil samples. In summary, the e-nose and GC-MS allowed the identification of bioactive compounds in the essential oil samples, which have a strong antimicrobial activity, with satisfactory results.
Collapse
Affiliation(s)
- Youssra Aghoutane
- Biosensors and Nanotechnology Group, Department of Biology, Faculty of Sciences, Moulay Ismaïl University, B.P., Zitoune, Meknes 11201, Morocco; (Y.A.); (M.M.); (S.M.)
- Sensor Electronic & Instrumentation Group, Department of Physics, Faculty of Sciences, Moulay Ismaïl University, B.P., Zitoune, Meknes 11201, Morocco;
| | - Mohammed Moufid
- Biosensors and Nanotechnology Group, Department of Biology, Faculty of Sciences, Moulay Ismaïl University, B.P., Zitoune, Meknes 11201, Morocco; (Y.A.); (M.M.); (S.M.)
- Sensor Electronic & Instrumentation Group, Department of Physics, Faculty of Sciences, Moulay Ismaïl University, B.P., Zitoune, Meknes 11201, Morocco;
| | - Soukaina Motia
- Biosensors and Nanotechnology Group, Department of Biology, Faculty of Sciences, Moulay Ismaïl University, B.P., Zitoune, Meknes 11201, Morocco; (Y.A.); (M.M.); (S.M.)
- Sensor Electronic & Instrumentation Group, Department of Physics, Faculty of Sciences, Moulay Ismaïl University, B.P., Zitoune, Meknes 11201, Morocco;
| | - Guy Stephane Padzys
- Department of Biology, Faculty of Sciences, University of Sciences and Technolgy of Masuku, Franceville 901, Gabon; (G.S.P.); (L.P.O.)
| | - Linda Priscilia Omouendze
- Department of Biology, Faculty of Sciences, University of Sciences and Technolgy of Masuku, Franceville 901, Gabon; (G.S.P.); (L.P.O.)
| | - Eduard Llobet
- Department of Electronic Engineering, Universitat Rovira i Virgili, MINOS-EMaS, Microsystems and Nanotechnologies for Chemical Analysis, Avinguda Països Catalans, 26, 43007 Tarragona, Spain;
| | - Benachir Bouchikhi
- Sensor Electronic & Instrumentation Group, Department of Physics, Faculty of Sciences, Moulay Ismaïl University, B.P., Zitoune, Meknes 11201, Morocco;
| | - Nezha El Bari
- Biosensors and Nanotechnology Group, Department of Biology, Faculty of Sciences, Moulay Ismaïl University, B.P., Zitoune, Meknes 11201, Morocco; (Y.A.); (M.M.); (S.M.)
- Correspondence: ; Tel.: +212-535-53-88-70; Fax: +212-535-53-68-08
| |
Collapse
|
27
|
Dammak I, Sobral PJDA, Aquino A, Neves MAD, Conte‐Junior CA. Nanoemulsions: Using emulsifiers from natural sources replacing synthetic ones—A review. Compr Rev Food Sci Food Saf 2020; 19:2721-2746. [DOI: 10.1111/1541-4337.12606] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Ilyes Dammak
- Food Science ProgramInstitute of Chemistry, Federal University of Rio de Janeiro Rio de Janerio Brazil
| | - Paulo José do Amaral Sobral
- Department of Food EngineeringFZEAUniversity of São Paulo Pirassununga São Paulo Brazil
- Food Research Center (FoRC)University of São Paulo Pirassununga São Pau Brazil
| | - Adriano Aquino
- Food Science ProgramInstitute of Chemistry, Federal University of Rio de Janeiro Rio de Janerio Brazil
- Nanotechnology NetworkCarlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro Rio de Janerio Brazil
| | | | - Carlos Adam Conte‐Junior
- Food Science ProgramInstitute of Chemistry, Federal University of Rio de Janeiro Rio de Janerio Brazil
- Nanotechnology NetworkCarlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro Rio de Janerio Brazil
| |
Collapse
|
28
|
Investigation of antimicrobial properties of sage essential oil and its nanoemulsion as antimicrobial agent. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109669] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Feng J, Wang R, Chen Z, Zhang S, Yuan S, Cao H, Jafari SM, Yang W. Formulation optimization of D-limonene-loaded nanoemulsions as a natural and efficient biopesticide. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124746] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Encapsulated Limonene: A Pleasant Lemon-Like Aroma with Promising Application in the Agri-Food Industry. A Review. Molecules 2020; 25:molecules25112598. [PMID: 32503168 PMCID: PMC7321087 DOI: 10.3390/molecules25112598] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 01/16/2023] Open
Abstract
Limonene, mainly found as a major component in Citrus spp., has been proven to possess a valuable potential as sustainable replacement to synthetic pesticides and food preservatives. This review intends to give a clear overview of the principal emerging applications of limonene in the agri-food industry as antimicrobial, herbicidal and antioxidant agent. To successfully use limonene in a greener agri-food industry, its preservation had become a top concern for manufacturers. In order to elucidate the most efficient and sustainable manner to encapsulate limonene, the different techniques and materials tested up to the present are also reviewed. In general, encapsulation conserves and protects limonene from outside aggressions, but also allows its controlled release as well as enhances its low water solubility, which can be critical for the discussed applications. Other parameters such as scalability, low cost and availability of equipment will need to be taken into account. Further efforts would likely be oriented to the elucidation of encapsulating sustainable systems obtained by cost-efficient elaboration processes, which can deliver effective concentrations of limonene without affecting crops and food products.
Collapse
|
31
|
Chu Y, Gao C, Liu X, Zhang N, Xu T, Feng X, Yang Y, Shen X, Tang X. Improvement of storage quality of strawberries by pullulan coatings incorporated with cinnamon essential oil nanoemulsion. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109054] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Effective Droplet Size Reduction and Excellent Stability of Limonene Nanoemulsion Formed by High-Pressure Homogenizer. COLLOIDS AND INTERFACES 2020. [DOI: 10.3390/colloids4010005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Limonene as an interesting bioactive material that has great benefits due to its antimicrobial and anti-carcinogen properties. However, it has several limitations such as its oxidative and oily nature. In order to overcome these limitations, a high-pressure homogenizer (HPH) was utilized to produce limonene nanoemulsion, which enhances its dispersibility while preventing oxidation with great stability. Limonene was pre-mixed with soybean oil as carrier oil prior to emulsification. The effect of soybean oil to limonene ratio, number of pass, homogenization pressure, emulsifier concentration and homogenization method were observed. A stability test was also conducted for 28 days at room temperature. The result revealed that soybean oil and limonene demonstrated a certain ratio to produce the most stable nanoemulsion. Meanwhile, emulsion size could be reduced from 327.8 nm to 55.5 nm in five passes at 1000 bar. Increasing the emulsifier concentration could reduce the droplet size to 40 nm. A comparison with other emulsification method showed that HPH was the best emulsification technique due to its intense emulsification power resulted from shear, cavitation, and droplet impacts. This study reveals that HPH is a great and simple way to produce stable limonene nanoemulsion for the cosmetic, pharmaceutical, and food industries.
Collapse
|
33
|
Characterization of bioactivity and phytochemical composition with toxicity studies of different Opuntia dillenii extracts from Morocco. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Taheri A, Jafari SM. Gum-based nanocarriers for the protection and delivery of food bioactive compounds. Adv Colloid Interface Sci 2019; 269:277-295. [PMID: 31132673 DOI: 10.1016/j.cis.2019.04.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/09/2019] [Accepted: 04/24/2019] [Indexed: 11/28/2022]
Abstract
Gums, which for the most part are water-soluble polysaccharides, can interact with water to form viscous solutions, emulsions or gels. Their desirable properties, such as flexibility, biocompatibility, biodegradability, availability of reactive sites for molecular interactions and ease of use have led to their extremely large and broad applications in formation of nanostructures (nanoemulsions, nanoparticles, nanocomplexes, and nanofibers) and have already served as important wall materials for a variety of nano encapsulated food ingredients including flavoring agents, vitamins, minerals and essential fatty acids. The most common gums used in nano encapsulation systems include Arabic gum, carrageenan, xanthan, tragacanth plus some new sources of non-traditional gums, such as cress seed gum and Persian/or Angum gum identified as potential building blocks for nanostructured systems. New preparation techniques and sources of non-traditional gums are still being examined for commercialization in the food nanotechnology area as low-cost and reproducible sources. In this study, different nanostructures of gums and their preparation methods have been discussed along with a review of gum nanostructure applications for various food bioactive ingredients.
Collapse
Affiliation(s)
- Afsaneh Taheri
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
35
|
Croitoru A, Oprea O, Nicoara A, Trusca R, Radu M, Neacsu I, Ficai D, Ficai A, Andronescu E. Multifunctional Platforms Based on Graphene Oxide and Natural Products. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E230. [PMID: 31151305 PMCID: PMC6631192 DOI: 10.3390/medicina55060230] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 01/10/2023]
Abstract
Background and objectives: In the last few years, graphene oxide has attracted much attention in biomedical applications due to its unique physico-chemical properties and can be used as a carrier for both hydrophilic and/or hydrophobic biomolecules. The purpose of this paper was to synthesize graphene oxide and to obtain multifunctional platforms based on graphene oxide as a nanocarrier loaded with few biologically active substances with anticancer, antimicrobial or anti-inflammatory properties such as gallic acid, caffeic acid, limonene and nutmeg and cembra pine essential oils. Materials and Methods: Graphene oxide was obtained according to the method developed by Hummers and further loaded with biologically active agents. The obtained platforms were characterized using FTIR, HPLC, TGA, SEM, TEM and Raman spectroscopy. Results: Gallic acid released 80% within 10 days but all the other biologically active agents did not release because their affinity for the graphene oxide support was higher than that of the phosphate buffer solution. SEM characterization showed the formation of nanosheets and a slight increase in the degree of agglomeration of the particles. The ratio I2D/IG for all samples was between 0.18 for GO-cembra pine and 0.27 for GO-limonene, indicating that the GO materials were in the form of multilayers. The individual GO sheets were found to have less than 20 µm, the thickness of GO was estimated to be ~4 nm and an interlayer spacing of about 2.12 Å. Raman spectroscopy indicated that the bioactive substances were adsorbed on the surface and no degradation occurred during loading. Conclusions: These findings encourage this research to further explore, both in vitro and in vivo, the biological activities of bioactive agents for their use in medicine.
Collapse
Affiliation(s)
- Alexa Croitoru
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Ovidiu Oprea
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Adrian Nicoara
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Roxana Trusca
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Mihai Radu
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Ionela Neacsu
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Denisa Ficai
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Anton Ficai
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Ecaterina Andronescu
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| |
Collapse
|
36
|
Hussein BA, Karimi I, Yousofvand N. Computational insight to putative anti-acetylcholinesterase activity of Commiphora myrrha (Nees), Engler, Burseraceae: a lessen of archaeopharmacology from Mesopotamian Medicine I. In Silico Pharmacol 2019; 7:3. [PMID: 31114748 DOI: 10.1007/s40203-019-0052-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/23/2019] [Indexed: 11/29/2022] Open
Abstract
Commiphora spp., Burseraceae family and their resinous matter, myrrh, are used in Mesopotamian medicine as fragrance or antiinsectant. Based on in vitro, leaves, bark, and resin methyl alcohol extract of C. myrrha showed similar inhibitory effects of 17.00, 26.00, and 29.33% for acetylcholinesterase (AChE) as compared to eserine, respectively. The ADMET properties and putative anticholinesterase activity of phytochemicals of myrrh were computationally predicted using in silico tools. Phytochemicals of C. myrrha had acceptable binding affinity (BA) towards principal sites of AChE ranging from - 5.8 (m-cresol) to - 10.5 (abietic acid) kcal/mol. In this regard, all terpenoid compounds (25 out of 28) of myrrh were dual inhibitors since they hydrophobically interacted with both catalytic triad and peripheral anionic site (PAS) of AChE while alpha-terpineol, elemol, and eugenol employed hydrogen bonds with AChE. Cuscohygrine as a pyrrolidine alkaloid has been docked with AChE through hydrogen bonds with PAS and through hydrophobic interactions with catalytic triad thereby we initially proposed it as dual inhibitor of AChE. M-cresol as a methylphenol has been loosely docked with AChE via hydrogen bond and would be a hit molecule for further drug synthesis. This study not only confirmed archaeopharmacological applications of myrrh as antiinsectant or nootropics but also offered an array of terpenoid compounds, cuscohygrine, and m-cresol as a good starting point for hit-to-lead-to-drug optimization phase in synthesis of phyto-nootropics and ecofriendly insecticides.
Collapse
Affiliation(s)
- Baydaa Abed Hussein
- Department of Biology, Faculty of Science, Razi University, 67149-67346 Kermanshah, Iran
| | - Isaac Karimi
- Department of Biology, Faculty of Science, Razi University, 67149-67346 Kermanshah, Iran
| | - Namdar Yousofvand
- Department of Biology, Faculty of Science, Razi University, 67149-67346 Kermanshah, Iran
| |
Collapse
|
37
|
Zhu J, Huang Q. Nanoencapsulation of functional food ingredients. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 88:129-165. [PMID: 31151723 DOI: 10.1016/bs.afnr.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Many functional food ingredients are poorly soluble in water, susceptible to chemical degradation, and incompatible with surrounding food matrix. Other issues are related to limited oral bioavailability, unpleasant sensory properties, and poor release profiles. Nanoencapsulation of functional food ingredients can help increase their water solubility/dispersibility in foods and beverages, improve their bioavailability by exhibiting good dose-dependent functionalities, mask undesired flavors/tastes to reduce the adverse effect on mouth-feel, enhance shelf-life and compatibility during production, storage, transportation and utilization of food products, and control release rate or specific delivery environment for better performance on their functionalities. This chapter provides an overview of different delivery systems for different functional food ingredients, the types of materials suitable for wall materials or building blocks of nanocapsules, the fabrication methods to assemble different delivery systems and release these active ingredients under different physiological conditions.
Collapse
Affiliation(s)
- Jieyu Zhu
- Department of Food Science, Rutgers University, New Brunswick, NJ, United States
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ, United States.
| |
Collapse
|
38
|
Antimicrobial activity of PIT-fabricated cinnamon oil nanoemulsions: Effect of surfactant concentration on morphology of foodborne pathogens. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.11.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.030] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Inhibitory activities of quaternary ammonium surfactants against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes inoculated on spinach leaves. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
41
|
Preparation of camellia oil-based W/O emulsions stabilized by tea polyphenol palmitate: Structuring camellia oil as a potential solid fat replacer. Food Chem 2019; 276:209-217. [DOI: 10.1016/j.foodchem.2018.09.161] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/29/2018] [Accepted: 09/26/2018] [Indexed: 02/03/2023]
|
42
|
Surfactant type affects the washing effect of cinnamon leaf essential oil emulsion on kale leaves. Food Chem 2019; 271:122-128. [DOI: 10.1016/j.foodchem.2018.07.203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/17/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022]
|
43
|
Li ZH, Cai M, Liu YS, Sun PL. Development of finger citron (Citrus medica L. var. sarcodactylis) essential oil loaded nanoemulsion and its antimicrobial activity. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Su J, Guo Q, Mao L, Gao Y, Yuan F. Effect of gum arabic on the storage stability and antibacterial ability of β-lactoglobulin stabilized d-limonene emulsion. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.05.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
45
|
Khoshakhlagh K, Mohebbi M, Koocheki A, Allafchian A. Encapsulation of D-limonene in Alyssum homolocarpum seed gum nanocapsules by emulsion electrospraying: Morphology characterization and stability assessment. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bcdf.2018.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
46
|
Tubtimsri S, Limmatvapirat C, Limsirichaikul S, Akkaramongkolporn P, Inoue Y, Limmatvapirat S. Fabrication and characterization of spearmint oil loaded nanoemulsions as cytotoxic agents against oral cancer cell. Asian J Pharm Sci 2018; 13:425-437. [PMID: 32104417 PMCID: PMC7032207 DOI: 10.1016/j.ajps.2018.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/14/2018] [Accepted: 02/26/2018] [Indexed: 11/26/2022] Open
Abstract
Spearmint oil (SMO), a commonly used essential oil for oral care products, possesses various interesting functions, especially for anticancer property. However, the application of SMO for cancer treatment is limited due to water insoluble. In the present study, nanoemulsions, which have been widely accepted as dosage forms for poorly water-soluble drugs, were selected as candidate carriers for SMO to inhibit oral cancer cell. The nanoemulsions were fabricated using phase inversion temperature method. The factors affecting formation and properties of nanoemulsions including type and amount of surfactants, oil loading and ratio of SMO to virgin coconut oil (VCO) were investigated. Among the surfactants used, the nanoemulsions containing polyoxyethylene castor oil derivatives (Kolliphor®EL; PCO35, Cremophor®RH40; PCO40, Eumulgin®CO60; PCO60) and polyoxyethylene sorbitan fatty acid esters (PSF80) showed 100% creaming after temperature cycling test indicating excellent physical stability while those containing PCO40 demonstrated more transparency and better physical stability. With an increasing amount of PCO40, the droplet size tended to decrease and was in the nano-size range (<1000 nm) after increasing to more than 5% (w/w). SMO-VCO loading also influenced on the droplet size. At 5% (w/w) PCO40, the maximum SMO-VCO loading of 25% (w/w) to attain nanoemulsions was observed. Moreover, the composition of oils had an impact on size of emulsions. The transparent nanoemulsions were only prepared in the range of SMO-VCO from 40:60 to 80:20, suggesting the optimum ratio of SMO to surfactant and the composition of oils were the critical factors for formation of nanoemulsions. NMR study disclosed that the interaction between PCO40 with both VCO and SMO should be a possible stabilization mechanism. Furthermore, the SMO-VCO nanoemulsions exhibited significant cytotoxic effect against oral carcinoma (KON) cell line using MTT assay. The finding, therefore, revealed the good feasibility of SMO-VCO nanoemulsions as novel carriers for treating of oral cancer.
Collapse
Affiliation(s)
- Sukannika Tubtimsri
- Faculty of Pharmaceutical Science, Burapha University, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, 6 Rachamankra Road, Ampur Mueng, Nakhon Pathom 73000, Thailand
| | - Chutima Limmatvapirat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Silpakorn University, Thailand
| | | | - Prasert Akkaramongkolporn
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, 6 Rachamankra Road, Ampur Mueng, Nakhon Pathom 73000, Thailand
| | - Yutaka Inoue
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Science, Josai University, Japan
| | - Sontaya Limmatvapirat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, 6 Rachamankra Road, Ampur Mueng, Nakhon Pathom 73000, Thailand
| |
Collapse
|
47
|
Synthesis, Characterization and Biocompatibility of N-palmitoyl L-alanine-based Organogels as Sustained Implants of Granisetron and Evaluation of thier Antiemetic Effect. Pharm Res 2018; 35:149. [PMID: 29845459 DOI: 10.1007/s11095-018-2433-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/18/2018] [Indexed: 10/16/2022]
Abstract
PURPOSE To assess the gelation power of N-palmitoyl L-alanine derivatives in injectable oils and to use the best chosen organogel as parenteral implant of granisetron for the treatment of emesis. METHODS Twelve N-palmitoyl L-alanine derived organogels were developed and evaluated in terms of morphology, thermal properties and in vivo performance. The ability of the selected formula to form in situ gel upon subcutaneous injection in rats and its biocompatibility were monitored over 2 weeks by histopathological examination of the injection site. RESULTS The acid derivative (N-palmitoyl L-alanine; PA) was superior to ester derivatives. The chosen formula (PA/safflower oil 10% w/v) was successful in forming an in situ gel of granisetron when subcutaneously injected in rats, lasting for 2 weeks and proved to be biocompatible by histopathological examination. Moreover, it exerted an extended antiemetic activity by decreasing the cisplatin-induced pica for a duration of 96 h and reduced preprotachykinin A mRNA expression and Substance P level for up to 4 days (gastric tissue) or 5 days (medulla oblongata) in rats. CONCLUSION Granisetron organogel could be considered as a safe, sustained-release and supportive anticancer treatment in both acute and chronic emesis as well as an accompanying treatment with chemotherapeutics in cancer cases.
Collapse
|
48
|
Sonu KS, Mann B, Sharma R, Kumar R, Singh R. Physico-chemical and antimicrobial properties of d-limonene oil nanoemulsion stabilized by whey protein-maltodextrin conjugates. Journal of Food Science and Technology 2018; 55:2749-2757. [PMID: 30042591 DOI: 10.1007/s13197-018-3198-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/18/2018] [Accepted: 05/09/2018] [Indexed: 11/28/2022]
Abstract
In the present investigation d-limonene oil (4-isopropenyl-1-methylcyclohexene) was encapsulated by ultra-sonication method using whey protein (WP)-maltodextrin (MD) conjugates as coating material and their characterization was done with respect to physico-chemical and antimicrobial properties. Antimicrobial activity of limonene oil (LO) nanoemulsion and bulk LO dissolved in dimethyl sulphoxide (DMSO) were assessed by agar well diffusion method. Stable formulation of d-limonene oil nanoemulsion [5.0% LO + 9.0% WP-MD (1:2 w/w) conjugate] had shown mean particle size, zeta potential and poly dispersity index of 116.60 ± 5.30 nm, - 19.64 ± 0.23 mV and 0.205 ± 0.02 respectively. LO nanoemulsion were stable to different food processing conditions like heat treatments, ionic strength (0.1-1.0 M) and pH (3.0-7.0). LO nanoemulsion was stable for 15 days at 25 °C and it had shown particle size of 332.20 ± 5.40 nm at 15th day. It was observed that minimum inhibitory concentration (MIC) of both LO nanoemulsion and bulk LO dissolved in DMSO were at 12.50 µl/ml against Bacillus cereus (ATCC 14459), Escherichia coli (ATCC 25922), Enterococcus faecalis (NCDC 115) and Salmonella typhi (NCDC 6017). Since d-limonene has been considered to be a safer alternative compared to synthetic antimicrobial food additives, the present investigation will be helpful in developing a more effective antimicrobial system for the production and preservation of foods.
Collapse
Affiliation(s)
- K S Sonu
- Dairy Chemistry Division, NDRI, Karnal, Haryana 132001 India
| | - Bimlesh Mann
- Dairy Chemistry Division, NDRI, Karnal, Haryana 132001 India
| | - Rajan Sharma
- Dairy Chemistry Division, NDRI, Karnal, Haryana 132001 India
| | - Rajesh Kumar
- Dairy Chemistry Division, NDRI, Karnal, Haryana 132001 India
| | - Richa Singh
- Dairy Chemistry Division, NDRI, Karnal, Haryana 132001 India
| |
Collapse
|
49
|
Wang R, Vega P, Xu Y, Chen CY, Irudayaraj J. Exploring the anti-quorum sensing activity of a d-limonene nanoemulsion for Escherichia coli O157:H7. J Biomed Mater Res A 2018; 106:1979-1986. [PMID: 29569833 DOI: 10.1002/jbm.a.36404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/15/2018] [Accepted: 03/15/2018] [Indexed: 01/25/2023]
Abstract
In this study, a d-limonene nanoemulsion was developed by using a spontaneous emulsification method and its potential to inhibit the quorum sensing (QS)-regulated properties of Escherichia coli O157:H7 (E. coli) were revealed. The results in this study showed that d-limonene nanoemulsion inhibited E. coli biofilm formation through the suppression of curli and extracellular polymeric substance (EPS) production without inhibiting cell growth, and decreased swimming and swarming ability. Further analyses showed that d-limonene nanoemulsion interfered with auto-inducer 2 (AI-2) communication and repressed the expression of curli related genes and AI-2 importer genes in E. coli. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1979-1986, 2018.
Collapse
Affiliation(s)
- Renjie Wang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China.,Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana.,Key disciplines laboratory of Novel Micro-nano Devices and System Technology, Chongqing University, Chongqing, China
| | - Pablo Vega
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana
| | - Yi Xu
- Key disciplines laboratory of Novel Micro-nano Devices and System Technology, Chongqing University, Chongqing, China.,Microsystem Research Center, School of Optoelectronic Engineering, Chongqing University, Chongqing, China
| | - Chin-Yi Chen
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania
| | - Joseph Irudayaraj
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana
| |
Collapse
|
50
|
Elaboration and characterization of O/W cinnamon (Cinnamomum zeylanicum) and black pepper (Piper nigrum) emulsions. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.11.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|