1
|
Bakrim S, Machate H, Benali T, Sahib N, Jaouadi I, Omari NE, Aboulaghras S, Bangar SP, Lorenzo JM, Zengin G, Montesano D, Gallo M, Bouyahya A. Natural Sources and Pharmacological Properties of Pinosylvin. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11121541. [PMID: 35736692 PMCID: PMC9228742 DOI: 10.3390/plants11121541] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 05/13/2023]
Abstract
Pinosylvin (3,5-dihydroxy-trans-stilbene), a natural pre-infectious stilbenoid toxin, is a terpenoid polyphenol compound principally found in the Vitaceae family in the heartwood of Pinus spp. (e.g., Pinus sylvestris) and in pine leaf (Pinus densiflora). It provides defense mechanisms against pathogens and insects for many plants. Stilbenoids are mostly found in berries and fruits but can also be found in other types of plants, such as mosses and ferns. This review outlined prior research on pinosylvin, including its sources, the technologies used for its extraction, purification, identification, and characterization, its biological and pharmacological properties, and its toxicity. The collected data on pinosylvin was managed using different scientific research databases such as PubMed, SciFinder, SpringerLink, ScienceDirect, Wiley Online, Google Scholar, Web of Science, and Scopus. In this study, the findings focused on pinosylvin to understand its pharmacological and biological activities as well as its chemical characterization to explore its potential therapeutic approaches for the development of novel drugs. This analysis demonstrated that pinosylvin has beneficial effects for various therapeutic purposes such as antifungal, antibacterial, anticancer, anti-inflammatory, antioxidant, neuroprotective, anti-allergic, and other biological functions. It has shown numerous and diverse actions through its ability to block, interfere, and/or stimulate the major cellular targets responsible for several disorders.
Collapse
Affiliation(s)
- Saad Bakrim
- Molecular Engineering, Valorization and Environment Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir B.P. 32/S, Morocco;
| | - Hamza Machate
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences, University Sidi Mohamed Ben Abdellah (USMBA), Fez B.P. 1796, Morocco;
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco;
| | - Nargis Sahib
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Mohammed Premier University, Oujda 60000, Morocco;
| | - Imane Jaouadi
- Laboratory of Organic Chemistry, Catalysis and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofail University, B.P.:133, Kenitra 14000, Morocco;
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco;
| | - Sara Aboulaghras
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research, Mohammed V University in Rabat, Rabat 10100, Morocco;
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA;
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Facultade de Ciencias, Universidade de Vigo, Área de Tecnoloxía dos Alimentos, 32004 Ourense, Spain
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy;
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini, 5, 80131 Naples, Italy
- Correspondence: (M.G.); (A.B.)
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10100, Morocco
- Correspondence: (M.G.); (A.B.)
| |
Collapse
|
2
|
Eungsuwan N, Chayjarung P, Pankam J, Pilaisangsuree V, Wongshaya P, Kongbangkerd A, Sriphannam C, Limmongkon A. Production and antimicrobial activity of trans-resveratrol, trans-arachidin-1 and trans-arachidin-3 from elicited peanut hairy root cultures in shake flasks compared with bioreactors. J Biotechnol 2020; 326:28-36. [PMID: 33359213 DOI: 10.1016/j.jbiotec.2020.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
Obtaining large-scale hairy root cultures is a major challenge to increasing root biomass and secondary metabolite production. Enhanced production of stilbene compounds such as trans-resveratrol, trans-arachidin-1 and trans-arachidin-3 was achieved using an elicitor treatment procedure. Two different hairy root inoculum densities were investigated and compared between shake flask and bioreactor cultures. The lowest growth index was observed using a 20 g/L inoculum size in the bioreactor, which differed significantly from bioreactor of 5 g/L. Increasing the hairy root inoculum size from 5 g/L to 20 g/L in both the shake flask and bioreactor significantly improve antioxidant activity, phenolic content and stilbene compound levels. The highest ABTS and FRAP antioxidant activity, and levels of total phenolic compounds, trans-arachidin-1 and trans-arachidin-3 in the crude extract were demonstrated in shake flask cultures with a 20 g/L inoculum after elicitation for 72 h. The minimum inhibitory concentrations (MICs) of the crude extract to inhibit growth of foodborne microbes, S. aureus, S. typhimurium and E. coli, were 187.5, 250 and 500 μg/mL, respectively. This was due to the ability of the crude extract to disrupt the cell membrane, as observed by scanning electron microscopy (SEM) showing ruptured pores on the S. aureus and S. typhimurium cell surfaces. Moreover, the E. coli cell division process could be inhibited by the crude extract, which promoted an increase in cell size. A DNA nicking assay indicated that a 50 μg/mL concentration of the crude extract caused plasmid DNA damage that might be due to a genotoxic effect of the pro-oxidant activity of the crude extract.
Collapse
Affiliation(s)
- Nichanan Eungsuwan
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Phadtraphorn Chayjarung
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Jintana Pankam
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Vijakhana Pilaisangsuree
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Pakwuan Wongshaya
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Anupan Kongbangkerd
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chayaphon Sriphannam
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Apinun Limmongkon
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
3
|
Antibiofilm agent pterostilbene is able to enhance antibiotics action against Staphylococcus epidermidis. Microb Pathog 2020; 152:104632. [PMID: 33242645 DOI: 10.1016/j.micpath.2020.104632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/02/2023]
Abstract
Pterostilbene (PTE) is a naturally occurring compound originally isolated from Pterocarpus spp. It has been widely used in traditional Indian medicine and later discovered to have various beneficial pharmacological effects such as antioxidant properties, hypoglycaemic or antitumor, and antimicrobial activity. This work is focused on demonstrating PTE synergistic effect with erythromycin and tetracycline to reduce their needed effective concentration for suppression of Staphylococcus epidermidis planktonic cells growth and biofilm formation. The secondary aim is to find these combinations effect on the production of its virulence factors. PTE was found to be effective in inhibition of its planktonic cells with MIC80 values 25-37.5 mg l-1. Simultaneously, it decreased the metabolic activity of biofilm cells and was especially effective on a clinical isolate (MBIC80 = 35 mg l-1) in contrast to the conventional antibiotics. In combination, PTE helped the antibiotics to overcome the tolerance of S. epidermidis biofilm cells (5 mg l-1 of each antibiotic with 49 mg l-1 PTE caused more than 85% inhibition of metabolic activity). It permeabilized cytoplasmic membrane of S. epidermidis cells and altered their surface hydrophobicity. Therefore, PTE has a great potential to enhance antibiotics action in the treatment of infections caused by this pathogen.
Collapse
|
4
|
Stilbenoids: A Natural Arsenal against Bacterial Pathogens. Antibiotics (Basel) 2020; 9:antibiotics9060336. [PMID: 32570824 PMCID: PMC7345618 DOI: 10.3390/antibiotics9060336] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
The escalating emergence of resistant bacterial strains is one of the most important threats to human health. With the increasing incidence of multi-drugs infections, there is an urgent need to restock our antibiotic arsenal. Natural products are an invaluable source of inspiration in drug design and development. One of the most widely distributed groups of natural products in the plant kingdom is represented by stilbenoids. Stilbenoids are synthesised by plants as means of protection against pathogens, whereby the potential antimicrobial activity of this class of natural compounds has attracted great interest in the last years. The purpose of this review is to provide an overview of recent achievements in the study of stilbenoids as antimicrobial agents, with particular emphasis on the sources, chemical structures, and the mechanism of action of the most promising natural compounds. Attention has been paid to the main structure modifications on the stilbenoid core that have expanded the antimicrobial activity with respect to the parent natural compounds, opening the possibility of their further development. The collected results highlight the therapeutic versatility of natural and synthetic resveratrol derivatives and provide a prospective insight into their potential development as antimicrobial agents.
Collapse
|
5
|
Becerril R, Nerín C, Silva F. Encapsulation Systems for Antimicrobial Food Packaging Components: An Update. Molecules 2020; 25:E1134. [PMID: 32138320 PMCID: PMC7179124 DOI: 10.3390/molecules25051134] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 11/20/2022] Open
Abstract
Antimicrobially active packaging has emerged as an effective technology to reduce microbial growth in food products increasing both their shelf-life and microbial safety for the consumer while maintaining their quality and sensorial properties. In the last years, a great effort has been made to develop more efficient, long-lasting and eco-friendly antimicrobial materials by improving the performance of the incorporated antimicrobial substances. With this purpose, more effective antimicrobial compounds of natural origin such as bacteriocins, bacteriophages and essential oils have been preferred over synthetic ones and new encapsulation strategies such as emulsions, core-shell nanofibres, cyclodextrins and liposomes among others, have been applied in order to protect these antimicrobials from degradation or volatilization while trying to enable a more controlled release and sustained antimicrobial action. On that account, this article provides an overview of the types of antimicrobials agents used and the most recent trends on the strategies used to encapsulate the antimicrobial agents for their stable inclusion in the packaging materials. Moreover, a thorough discussion regarding the benefits of each encapsulation technology as well as their application in food products is presented.
Collapse
Affiliation(s)
- Raquel Becerril
- I3A–Aragón Institute of Engineering Research, University of Zaragoza, Calle María de Luna 3, 50018 Zaragoza, Spain; (R.B.); (C.N.)
| | - Cristina Nerín
- I3A–Aragón Institute of Engineering Research, University of Zaragoza, Calle María de Luna 3, 50018 Zaragoza, Spain; (R.B.); (C.N.)
| | - Filomena Silva
- ARAID–Agencia Aragonesa para la Investigación y el Desarollo, Av. de Ranillas 1-D, planta 2ª, oficina B, 50018 Zaragoza, Spain
- Faculty of Veterinary Medicine, University of Zaragoza, Calle de Miguel Servet 177, 50013 Zaragoza, Spain
| |
Collapse
|
6
|
Silva F, Caldera F, Trotta F, Nerín C, Domingues FC. Encapsulation of coriander essential oil in cyclodextrin nanosponges: A new strategy to promote its use in controlled-release active packaging. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.102177] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Sousa V, Luís Â, Oleastro M, Domingues F, Ferreira S. Polyphenols as resistance modulators in Arcobacter butzleri. Folia Microbiol (Praha) 2019; 64:547-554. [PMID: 30637574 DOI: 10.1007/s12223-019-00678-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022]
Abstract
Arcobacter butzleri is an emerging human and animal pathogen for which an increased prevalence of resistance to antibiotics has been observed, and so alternative compounds to modulate resistance of A. butzleri are required. This work aims to study the potential use of several polyphenols as efflux pump inhibitors (EPIs) and to evaluate their interaction with antibiotics, in order to enhance antibiotic activity against A. butzleri. The minimum inhibitory concentration (MIC) of (-)-epicatechin, (+)-catechin, rutin, gallic acid, caffeic acid, chlorogenic acid, resveratrol, pterostilbene, and pinosylvin was determined, in absence and presence of four known EPIs. Subsequently, ethidium bromide accumulation in presence of subinhibitory concentrations of polyphenols was evaluated, and the synergistic potential of the compounds with antibiotics was assessed by checkerboard dilution test. Only stilbenes presented activity against A. butzleri, with MIC values ranging between 64 and 512 μg/mL. The MIC determination of the polyphenols in the presence of subinhibitory concentrations of known EPIs showed that efflux pumps play a role in the resistance to these compounds. Stilbenes also induced a higher intracellular accumulation of ethidium bromide, indicating that they may inhibit the activity of efflux pumps. Checkerboard assays showed that several combinations of polyphenol/antibiotic had an additive effect against A. butzleri. Overall, the results indicate that some polyphenols reduce A. butzleri resistance to antibiotics, suggesting the potential of stilbenes as EPIs. The potential of resveratrol and pinosylvin as resistance modulators was evidenced, insofar as these compounds can even revert antibiotic resistance. Therefore, the use of polyphenols as resistance modulators could be an alternative to overcome the decreasing susceptibility of A. butzleri to antibiotics.
Collapse
Affiliation(s)
- Vanessa Sousa
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Ângelo Luís
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Mónica Oleastro
- Department of Infectious Diseases, National Reference Laboratory for Gastrointestinal Infections, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, Lisbon, Portugal
| | - Fernanda Domingues
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Susana Ferreira
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
8
|
Zakova T, Rondevaldova J, Bernardos A, Landa P, Kokoska L. The relationship between structure and in vitro antistaphylococcal effect of plant-derived stilbenes. Acta Microbiol Immunol Hung 2018; 65:467-476. [PMID: 30203690 DOI: 10.1556/030.65.2018.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Staphylococcus aureus is a major human pathogen that is responsible for both hospital- and community-acquired infections. Stilbenes are polyphenol compounds of plant origin known to possess a variety of pharmacological properties, such as antibacterial, antiviral, and antifungal effects. This study reports the in vitro growth-inhibitory potential of eight naturally occurring stilbenes against six standard strains and two clinical isolates of S. aureus, using a broth microdilution method, and expressing the results as minimum inhibitory concentrations (MICs). Pterostilbene (MICs = 32-128 μg/ml), piceatannol (MICs = 64-256 μg/ml), and pinostilbene (MICs = 128 μg/ml) are among the active compounds that possess the strongest activity against all microorganisms tested, followed by 3'-hydroxypterostilbene, isorhapontigenin, oxyresveratrol, and rhapontigenin with MICs 128-256 μg/ml. Resveratrol (MIC = 256 μg/ml) exhibited only weak inhibitory effect. Furthermore, structure-activity relationships were studied. Hydroxyl groups at ortho-position (B-3' and -4') played crucial roles for the inhibitory effect of hydroxystilbene piceatannol. Compounds with methoxy groups at ring A (3'-hydroxypterostilbene, pinostilbene, and pterostilbene) produced stronger effect against S. aureus than their analogues (isorhapontigenin and rhapontigenin) with methoxy groups at ring B. These findings provide arguments for further investigation of stilbenes as prospective leading structures for development of novel antistaphylococcal agents for topical treatment of skin infections.
Collapse
Affiliation(s)
- Tereza Zakova
- 1 Faculty of Tropical AgriSciences, Department of Crop Sciences and Agroforestry, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Johana Rondevaldova
- 1 Faculty of Tropical AgriSciences, Department of Crop Sciences and Agroforestry, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Andrea Bernardos
- 2 Faculty of Agrobiology, Food and Natural Resources, Department of Quality of Agricultural Products, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Premysl Landa
- 3 Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, Prague, Czech Republic
| | - Ladislav Kokoska
- 1 Faculty of Tropical AgriSciences, Department of Crop Sciences and Agroforestry, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
9
|
Zanetti M, Carniel TK, Dalcanton F, dos Anjos RS, Gracher Riella H, de Araújo PH, de Oliveira D, Antônio Fiori M. Use of encapsulated natural compounds as antimicrobial additives in food packaging: A brief review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Control microbial growth on fresh chicken meat using pinosylvin inclusion complexes based packaging absorbent pads. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.10.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Duarte A, Alves AC, Ferreira S, Silva F, Domingues FC. Resveratrol inclusion complexes: Antibacterial and anti-biofilm activity against Campylobacter spp. and Arcobacter butzleri. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.05.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|