1
|
Jimenez PS, Bangar SP, Suffern M, Whiteside WS. Understanding retort processing: A review. Food Sci Nutr 2024; 12:1545-1563. [PMID: 38455166 PMCID: PMC10916645 DOI: 10.1002/fsn3.3912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 03/09/2024] Open
Abstract
Retort processing is a food preservation technique to address the challenge posed by Clostridium botulinum for commercial sterility of a food product to get microbiologically safe and stable products by heating. This review aims to explore the journey of retort processing, starting from its early use in single-batch canned foods and progressing to its contemporary applications with different types of containers and heating mediums. Additionally, it will delve into the adaptability of retort equipment, including its ability to operate in stationary and various agitation states, as well as its flexibility in processing speed for both single-batch and continuous operations.
Collapse
Affiliation(s)
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - Mathew Suffern
- Department of Food, Nutrition and Packaging SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - William Scott Whiteside
- Department of Food, Nutrition and Packaging SciencesClemson UniversityClemsonSouth CarolinaUSA
| |
Collapse
|
2
|
Li J, Yang J, Xin W, Wu S, Wang X, Wang C, Zhang Z. Inactivation of Bacillus subtilis spores by a combination of high-pressure thermal treatment and potassium sorbate. Food Microbiol 2023; 115:104345. [PMID: 37567628 DOI: 10.1016/j.fm.2023.104345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
Combining High-pressure Thermal Treatment (HPTT) and Potassium Sorbate (PS) may have a stronger spore inactivation effect. Spores of Bacillus subtilis were subjected to HPTT at 600 MPa-65 °C/75 °C and a combination of HPTT and PS of 0.1% and 0.2% concentrations. After these treatments, different procedures and techniques were employed to investigate the spore's inactivation. The results revealed that 4.92 ± 0.05 log spores were inactivated after treatment at 600 MPa-75 °C, while 5.97 ± 0.09 log spores were inactivated when the HPTT treatment was combined with 0.2% PS. Changes in permeability of the spore's inner membrane were characterized by OD600 value and release rates of nucleic acids, protein, and dipicolinic acid (DPA). Compared with HPTT treatment at 600 MPa-75 °C, the OD600 value of spores decreased further by about 50% after treatment with a combination of HPTT and 0.2% PS. Additionally, the combined treatments resulted in a significant increase in the OD260 and OD280 values, as well as the DPA release. The spore size analysis indicated a significant decrease in the size of spores treated with a combination of HPTT at 600 MPa-75 °C and PS of 0.2% concentration. Furthermore, the flow cytometry analysis and confocal laser scanning microscopy (CLSM) analysis indicated that the inner membrane damage of spores was higher after combined treatments than that after HPTT treatment alone. A significant reduction was also found in the Na+/K+-ATPase activity after the combined treatments. Also, the FTIR analysis revealed that the combined treatments resulted in significant adverse changes in the spores' inner membrane, cell wall, cortex, and nucleic acid. Therefore, the combination of HPTT and PS has a stronger inactivation effect and can be suggested as a promising strategy for the inactivation of Bacillus subtilis spores.
Collapse
Affiliation(s)
- Jiajia Li
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Jie Yang
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Weishan Xin
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Sirui Wu
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Xujuan Wang
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Chuanfa Wang
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Zhong Zhang
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021, PR China.
| |
Collapse
|
3
|
Using Numerical Analysis to Develop a Retort Process to Enhance Antioxidant Activity and Physicochemical Properties of White Radish (Raphanus sativus L.) in Different-Sized Packages. Processes (Basel) 2022. [DOI: 10.3390/pr10122589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Thermal processing of white radish using retort sterilization at different temperatures was investigated according to the dimension of the package. Four different samples with the same weight and volume were placed in packages with different dimensions. The degree of sterilization (i.e., F0-value) at the cold point targeted at 6 min was determined based on experimental data and heat transfer simulation. The sterilization time was considerably increased with a decrease in surface area to unit volume ratio (φ) at each temperature. The sterilization time for the sample with the highest φ (155.56) was approximately five times faster than the sample with the lowest φ (72.22) at all heating temperatures. Numerical simulation conducted with a proper heat transfer coefficient (h) showed mostly good agreement with the experimental data (RMSE < 2 °C). Changes in color and total phenolic content were higher for samples heated at higher temperatures. Hardness values of white radish samples measured for center and edge parts separately were more uniform for samples with a high φ. Results in this study suggest that optimizing heating conditions of root vegetables must consider their package dimensions to satisfy quality attributes after sterilization. Numerical simulation can be utilized as a useful tool to design the sterilization process.
Collapse
|
4
|
Niu D, Zhang M, Mujumdar AS, Cao P. Recent progress on quality improvement and detection technologies of special foods used for activities in space and aviation: a review. Crit Rev Food Sci Nutr 2022; 64:1452-1464. [PMID: 36062820 DOI: 10.1080/10408398.2022.2117129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This paper focuses on the development and evolution, quality improvement and research progress in the rapidly emerging area of new detection technologies of special foods for use in space and to some extent aviation. The quality improvement aspects covered in this review ranged from the special food processing technology, sterilization treatment and product packaging to new detection technologies for quality assurance based on DNA microarray technology, sensor, imaging technology, carbon nanotubes and novel probe technology.
Collapse
Affiliation(s)
- Dongle Niu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Ping Cao
- China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
5
|
Inactivating Food Microbes by High-Pressure Processing and Combined Nonthermal and Thermal Treatment: A Review. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5797843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High-pressure processing (HPP) is a mild technology alternative to thermal pasteurization and sterilization of different food products. HPP has emerged to provide enormous benefits to consumers, i.e., mildly processed food and additive-free food. It effectively retains bioactive compounds and extends the shelf life of food commodities by inactivating bacteria, yeast, mold, and virus. The limitation of HPP in inactivating spores can be overcome by using other thermal and nonthermal processing sequentially or simultaneously with HPP. This review summarizes the applications of HPP in the fruits and vegetables, dairy, meat, fish, and poultry sector. It also emphasizes microbial food safety and the effectiveness of HPP in the load reduction of microorganisms. Comprehensive information about the synergistic effect of HPP with different techniques and their effectiveness in ensuring food safety is reported. The summarized data would be handy to interested researchers and industry personnel.
Collapse
|
6
|
Impact of High-Pressure Processing (HPP) on Selected Quality and Nutritional Parameters of Cauliflower (Brassica oleracea var. Botrytis). APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In recent years, innovative food processing methods, such as high-pressure processing (HPP) treatment, have been shown to improve food quality. The purpose of this work was to determine the effects of high-pressure processing (HPP; 400 and 600 MPa for 2 or 5 min, 20 °C) of cauliflower. Microbial shelf-life (total aerobic count and spores), texture, color, drip loss, dry matter, antioxidative capacity, total phenolic content, and ascorbic acid were analyzed before and after processing, as well as during storage (4 °C) for up to 42 days. Among the different treatments, HPP at 600 MPa exhibited low microbial counts between days 14 and 28 of storage, while at 400 MPa already had high bacterial counts between days 7 and 14. HPP at both 400 and 600 MPa was the best method to maintain the color during storage. The texture of the cauliflower did not differ from the control during storage for HPP. For all samples, the dry matter content remained stable during storage, with few differences between treatments. The nutritional quality of high-pressure-processed cauliflower at 600 MPa for 2 min remained high until day 28. The overall results of this study demonstrate that HPP has the potential to preserve the quality of cauliflower.
Collapse
|
7
|
Liu Y, Zhang Z, Chen LE, Bi KE, Yang J, Zhang B, Xin W. High Pressure Thermal Sterilization and ε-Polylysine Synergistically Inactivate Bacillus subtilis Spores by Damaging the Inner Membrane. J Food Prot 2022; 85:390-397. [PMID: 34788461 DOI: 10.4315/jfp-21-354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/14/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT This study was conducted to determine the sterilization effect of a combination of high pressure thermal sterilization (HPTS) and ε-polylysine (ε-PL) on Bacillus subtilis spores. The spores were treated with HPTS (550 MPa at 25, 65, and 75°C) and ε-PL at 0.1 and 0.3%. HPTS and ε-PL synergistically decreased the number of surviving spores and increased the release of the intracellular components in the spore suspension, with the maximal effects from treatment with 550 MPa at 75°C plus 0.3% ε-PL. Maximum fluidity and permeability of the cell inner membrane were observed with 550 MPa at 75°C plus 0.3% ε-PL. Changes in membrane lipids were detected from 3,000 to 2,800 cm-1 by Fourier transform infrared spectroscopy. The results provide new insights into the mechanism by which HPTS and ε-PL synergistically sterilize B. subtilis spores. HIGHLIGHTS
Collapse
Affiliation(s)
- Yue Liu
- School of Food and Wine Science, Ningxia University, Yinchuan, 750021, People's Republic of China
| | - Zhong Zhang
- School of Food and Wine Science, Ningxia University, Yinchuan, 750021, People's Republic of China
| | - L E Chen
- School of Food and Wine Science, Ningxia University, Yinchuan, 750021, People's Republic of China
| | - K E Bi
- School of Food and Wine Science, Ningxia University, Yinchuan, 750021, People's Republic of China
| | - Jie Yang
- School of Food and Wine Science, Ningxia University, Yinchuan, 750021, People's Republic of China
| | - Bianfei Zhang
- School of Food and Wine Science, Ningxia University, Yinchuan, 750021, People's Republic of China
| | - Weishan Xin
- School of Food and Wine Science, Ningxia University, Yinchuan, 750021, People's Republic of China
| |
Collapse
|
8
|
Optimizing Steam Consumption of Mushroom Canning Process by Selecting Higher Temperatures and Shorter Time of Retorting. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:6097343. [PMID: 32309421 PMCID: PMC7142355 DOI: 10.1155/2020/6097343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/17/2020] [Indexed: 11/17/2022]
Abstract
Increasing energy cost has driven the food canning industries to optimize their energy consumption in order to produce safe and shelf-stable foods efficiently. In the mushroom canning industry, energy efficiency is very critical to improve product (price) competitiveness. This research aimed at demonstrating total steam consumption to achieve the same sterility level (F0-value) of canned mushroom by using different combinations of times and temperatures of retorting. Agaricus bisporus in brine contained in 300 × 407 cans was heat processed in a horizontal static retort. Three different retort temperatures (115, 121, and 130°C) and different operator processing times ranging from 2 to 97 minutes were employed to achieve different levels of F0-values. Our results showed that at the same level of sterility, steam consumption inversely decreased with the increase of retort temperature. At the same F0-value of 10 minutes, energy efficiency for up to 72.9% and 58.1% per batch of retorting was achieved by increasing the temperature from 115 to 130°C and 115 to 121°C, respectively. Since steam consumption is a major element of production costs in the canning industry, the selection of higher temperatures and shorter time of retorting will have a positive commercial impact due to the reduction of production costs.
Collapse
|
9
|
den Besten HM, Wells-Bennik MH, Zwietering MH. Natural Diversity in Heat Resistance of Bacteria and Bacterial Spores: Impact on Food Safety and Quality. Annu Rev Food Sci Technol 2018; 9:383-410. [DOI: 10.1146/annurev-food-030117-012808] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Heidy M.W. den Besten
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Top Institute Food and Nutrition, 6709 PA, Wageningen, The Netherlands
| | - Marjon H.J. Wells-Bennik
- NIZO Food Research B.V., 6718 ZB, Ede, The Netherlands
- Top Institute Food and Nutrition, 6709 PA, Wageningen, The Netherlands
| | - Marcel H. Zwietering
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Top Institute Food and Nutrition, 6709 PA, Wageningen, The Netherlands
| |
Collapse
|
10
|
MacNaughton MS, Whiteside WS, Rieck JR, Thomas RL. The effects of static, oscillating, and oscillating with dwell time retort motions on the rate of heat penetration of a food simulant processed in a pouch. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mollye S. MacNaughton
- Department of Food, Nutrition, and Packaging Sciences; Clemson University; 226 Poole Agricultural Center, Clemson South Carolina
| | - William S. Whiteside
- Department of Food, Nutrition, and Packaging Sciences; Clemson University; 226 Poole Agricultural Center, Clemson South Carolina
| | - James R. Rieck
- Department of Mathematical Sciences; Clemson University; O-221 Martin Hall, Clemson South Carolina
| | - Ronald L. Thomas
- Department of Food, Nutrition, and Packaging Sciences; Clemson University; 226 Poole Agricultural Center, Clemson South Carolina
| |
Collapse
|
11
|
Survival of sublethally injured Listeria in model soup after nonisothermal heat and high-pressure treatments. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2821-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|