1
|
Wang S, Wang X, Liu Y, Dong W, Fan H, Fan S, Ai Z, Yang Y, Suo B. Bactericidal effect of ultrasound on glutinous rice during soaking and its influence on physicochemical properties of starch and quality characteristics of sweet dumplings. ULTRASONICS SONOCHEMISTRY 2024; 110:107034. [PMID: 39173449 PMCID: PMC11388662 DOI: 10.1016/j.ultsonch.2024.107034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
The soaking process of glutinous rice allows the growth and reproduction of microorganisms, which can easily cause food safety problems. In this work, the effects of different ultrasonic powers (150 W, 300 W, 450 W, and 600 W) on the bactericidal effect of glutinous rice, the physicochemical properties of starch and the quality characteristics of sweet dumplings were studied. Compared with soaking for 0 and 2 h, sonication of glutinous rice after soaking for 4 h was more effective at reducing the number of microorganisms in soaked glutinous rice, and the bactericidal effect increased with increasing ultrasound intensity. After 30 min, the total number of bacteria decreased by 2.04 log CFU/g. Moreover, ultrasonic treatment destroys the grain structure of glutinous rice starch, resulting in the formation of dents and cracks on the starch surface, increasing the amylose content, improving its expansion, reducing its short-range order and relative crystallinity, and altering its gelatinization characteristics. In addition, ultrasonic treatment increased the soup transparency of sweet dumplings from 51.8 % to 63.95 %, reducing their hardness, chewiness and adhesiveness. In summary, ultrasonic treatment can not only effectively kill microorganisms in soaked glutinous rice but also improve the quality of glutinous rice dumplings by changing the physicochemical properties of glutinous rice starch. The results of this study provide theoretical support for the application of ultrasonic technology in glutinous rice food production.
Collapse
Affiliation(s)
- Shuli Wang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiaojie Wang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Province Engineering Research Center of Quick-Frozen Flour-Rice and Prepared Food, Henan Agricultural University, Zhengzhou, China
| | - Yu Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Wenjing Dong
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Huiping Fan
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Province Engineering Research Center of Quick-Frozen Flour-Rice and Prepared Food, Henan Agricultural University, Zhengzhou, China
| | - Shijia Fan
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhilu Ai
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Province Engineering Research Center of Quick-Frozen Flour-Rice and Prepared Food, Henan Agricultural University, Zhengzhou, China
| | - Yong Yang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Province Engineering Research Center of Quick-Frozen Flour-Rice and Prepared Food, Henan Agricultural University, Zhengzhou, China
| | - Biao Suo
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Province Engineering Research Center of Quick-Frozen Flour-Rice and Prepared Food, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
2
|
Gao X, Liu X, He J, Huang H, Qi X, Hao J. Bactericidal Effect and Associated Properties of Non-Electrolytic Hypochlorite Water on Foodborne Pathogenic Bacteria. Foods 2022; 11:foods11244071. [PMID: 36553813 PMCID: PMC9778273 DOI: 10.3390/foods11244071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
This study investigated the broad-spectrum bactericidal activity of non-electrolytic hypochlorite water (NEHW) and detected its hydroxyl radical content compared with that of slightly acidic electrolytic water (SAEW). Based on the results of UV scanning and storage stability, higher hypochlorite content and stronger oxidation were found to be responsible for the stronger bactericidal effect of NEHW. NEHW can achieve 99% bacterial disinfection effect by treating with 10 mg/L available chlorine concentration for more than 5 minutes. At the same time, the storage stability of NEHW was higher than that of SAEW. After 20 days of storage under sealed and dark conditions, the pH value only increased by 7.9%, and the effective chlorine concentration remained nearly 80%. The results showed that NEHW had higher germicidal efficacy and storage stability than SAEW.
Collapse
|
3
|
Ultrasound-Assisted Slightly Acidic Electrolyzed Water in Aquatic Product Sterilization: A Review. Foods 2022; 11:foods11233863. [PMID: 36496671 PMCID: PMC9738850 DOI: 10.3390/foods11233863] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/21/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Ultrasound has been confirmed as the propagation process of mechanical vibrations in a medium, with a frequency significantly higher than 20 kHz. Moreover, it has an effect of sterilization on foods. In general, ultrasonic sterilization medium is manifested as a liquid. Ultrasonic treatment technology has certain advantages in aquatic product processing. It is noteworthy that this technology will have better effects of sterilization if used in combination with other treatment methods. Slightly acidic electrolyzed water (SAEW) is characterized by high-efficiency broad-spectrum sterilization operation, low cost, and environmental protection, among other properties, and has a positive effect on aquatic product sterilization and preservation. Selecting acidic electrolyzed water with a low concentration coupled with low-power ultrasonic waves for combined sterilization exerts a more potent sterilization effect, and acidic electrolyzed water combined with ultrasonic sterilization is expected to be a potentially environment-friendly alternative. In this study, the sterilization mechanisms of ultrasonic and SAEW methods used both individually and as a synergistic treatment, the effect on microbial growth, and the research progress of the application of the combined effect in the sterilization and refrigeration of aquatic products are reviewed. Furthermore, this study looks forward to the future development trend, with a view to its application in aquatic products, while providing a reference for research and application in the field of processing and safety.
Collapse
|
4
|
Wang H, Zhang Y, Jiang H, Cao J, Jiang W. A comprehensive review of effects of electrolyzed water and plasma-activated water on growth, chemical compositions, microbiological safety and postharvest quality of sprouts. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Oliveira MEAS, Coimbra PPS, Galdeano MC, Carvalho CWP, Takeiti CY. How does germinated rice impact starch structure, products and nutrional evidences? – A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Tyagi A, Chen X, Shabbir U, Chelliah R, Oh DH. Effect of slightly acidic electrolyzed water on amino acid and phenolic profiling of germinated brown rice sprouts and their antioxidant potential. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Jeong KO, Kim SS, Park SH, Kang DH. Inactivation of Salmonella enterica Serovar Typhimurium and Staphylococcus aureus in Rice by Radio Frequency Heating. J Food Prot 2022; 85:380-383. [PMID: 34614177 DOI: 10.4315/jfp-21-275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/01/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT The objectives of this study were to determine the effect of the milling degree (MD) of rice (Oryza sativa L.) on the heating rate, pathogen inactivation (Salmonella Typhimurium and Staphylococcus aureus), and color change resulting from radio frequency (RF) heating. Rice samples inoculated with pathogens were placed in a polypropylene jar and subjected to RF heating for 0 to 75 s. The heating rate of rice with a 2% MD was the highest during RF heating, followed by those with a 0, 8, and 10% MD; the reduction of pathogens showed the same trend. The reductions of pathogen levels in rice with MDs of 0 and 2% were significantly higher than those observed for rice with MDs of 8 and 10% under the same treatment conditions. For example, log reductions of Salmonella Typhimurium in rice by 55-s RF heating were 3.64, 5.19, 2.18, and 1.80 for MDs of 0, 2, 8, and 10%, respectively. At the same treatment conditions, log reductions of S. aureus were 2.77, 5.08, 1.15, and 0.90 for MDs of 0, 2, 8, and 10%, respectively. The color of rice measured according to L*, a*, and b* was not significantly altered after RF heating, regardless of the MD. Therefore, the MD of rice should be considered before RF heating is applied to inactivate foodborne pathogens. HIGHLIGHTS
Collapse
Affiliation(s)
- Ki-Ok Jeong
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Soon Kim
- Department of Food Engineering, Dankook University, Cheonan, Chungnam 31116, Republic of Korea
| | - Sang-Hyun Park
- Department of Food Science and Technology, Kongju National University, Yesan, Chungnam, 32439, Republic of Korea
| | - Dong-Hyun Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.,Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea
| |
Collapse
|
8
|
Research Trends on the Application of Electrolyzed Water in Food Preservation and Sanitation. Processes (Basel) 2021. [DOI: 10.3390/pr9122240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Electrolyzed water (EW) has been proposed as a novel promising sanitizer and cleaner in recent years. It is an effective antimicrobial and antibiofilm agent that has several advantages of being on the spot, environmentally friendly, cheap, and safe for human beings. Therefore, EW has been applied widely in various fields, including agriculture, food sanitation, livestock management, medical disinfection, clinical, and other fields using antibacterial technology. Currently, EW has potential significance for high-risk settings in hospitals and other clinical facilities. The research focus has been shifted toward the application of slightly acidic EW as more effective with some supplemental chemical and physical treatment methods such as ultraviolet radiations and ultrasound. This review article summarizes the possible mechanism of action and highlights the latest research studies in antimicrobial applications.
Collapse
|
9
|
Saravanakumar K, Sathiyaseelan A, Mariadoss AVA, Chelliah R, Shin S, Park S, Oh DH, Wang MH. Slightly acidic electrolyzed water combination with antioxidants and fumaric acid treatment to maintain the quality of fresh-cut bell peppers. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Munarko H, Sitanggang AB, Kusnandar F, Budijanto S. Effect of different soaking and germination methods on bioactive compounds of germinated brown rice. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hadi Munarko
- Department of Food Science and Technology IPB University Kampus IPB Darmaga 16680 Bogor Indonesia
- Department of Food Technology Faculty of Engineering UPN “Veteran” East Java Surabaya 60294 Indonesia
| | - Azis Boing Sitanggang
- Department of Food Science and Technology IPB University Kampus IPB Darmaga 16680 Bogor Indonesia
| | - Feri Kusnandar
- Department of Food Science and Technology IPB University Kampus IPB Darmaga 16680 Bogor Indonesia
| | - Slamet Budijanto
- Department of Food Science and Technology IPB University Kampus IPB Darmaga 16680 Bogor Indonesia
| |
Collapse
|
11
|
Zhang C, Zhao Z, Yang G, Shi Y, Zhang Y, Shi C, Xia X. Effect of slightly acidic electrolyzed water on natural Enterobacteriaceae reduction and seed germination in the production of alfalfa sprouts. Food Microbiol 2020; 97:103414. [PMID: 33653513 DOI: 10.1016/j.fm.2020.103414] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 11/26/2022]
Abstract
Microbial contamination of sprouts commonly occurs because of the pathogens present on and in the seeds and the optimal conditions for bacteria growth provided during the germination and sprouting processes. This study examined the decontamination effect of slightly acidic electrolyzed water (SAEW), a 'generally recognized as safe' (GRAS) disinfectant, in the production process of alfalfa sprouts. SAEW with various available chlorine concentrations (ACC, 25, 35, 45 mg/L) and different pH levels (5.0, 5.7 and 6.4) was used to soak seeds for different length of time (0.5 and 6 h), after which the variations in natural Enterobacteriaceae, water absorption and seed germination (germination rate, weight and length of sprouts) were determined. The results showed that when the seeds were soaked with SAEW, albeit with different ACC (25, 35 and 45 mg/L) and pH levels (5.0, 5.7 and 6.4), a significant reduction of Enterobacteriaceae and no negative effect on sprout quality was observed. The water absorption and germination rates were also not significantly adversely affected by SAEW soaking. These findings suggest that SAEW could be used to decontaminate natural Enterobacteriaceae in the production of alfalfa sprouts, with no negative side effects on the alfalfa seeds.
Collapse
Affiliation(s)
- Chunling Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhiyi Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gaoji Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiqi Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuyu Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, 1 Qinggongyuan, Ganjingzi District, Dalian, Liaoning, 116034, China.
| |
Collapse
|
12
|
Borba VSD, Paiva Rodrigues MH, Badiale-Furlong E. Impact of Biological Contamination of Rice on Food Safety. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1683745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Verônica Simões De Borba
- Laboratório de Micotoxinas e Ciência de Alimentos, Escola de Química e Alimentos, Universidade Federal do Rio Grande – FURG, Rio Grande, Brazil
| | - Marcy Heli Paiva Rodrigues
- Laboratório de Micotoxinas e Ciência de Alimentos, Escola de Química e Alimentos, Universidade Federal do Rio Grande – FURG, Rio Grande, Brazil
| | - Eliana Badiale-Furlong
- Laboratório de Micotoxinas e Ciência de Alimentos, Escola de Química e Alimentos, Universidade Federal do Rio Grande – FURG, Rio Grande, Brazil
| |
Collapse
|
13
|
Disinfection Efficacy of Slightly Acidic Electrolyzed Water Combined with Chemical Treatments on Fresh Fruits at the Industrial Scale. Foods 2019; 8:foods8100497. [PMID: 31615099 PMCID: PMC6835452 DOI: 10.3390/foods8100497] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to investigate the efficacy of slightly acidic electrolyzed water (SAEW) combined with fumaric acid (FA) and calcium oxide (CaO) treatment on the microbial disinfection of fresh fruits including apple, mandarin, and tomato at the industrial scale. The combined treatments can significantly (p < 0.05) reduce the population of natural microbiota from the fruit surfaces and the treated samples showed good sensory qualities during refrigeration storage. In addition, decontamination of inoculated foodborne pathogens (Escherichia coli O157:H7 and Listeria monocytogenes) was carried out in the laboratory, and the combined treatments resulted in a reduction ranging from 2.85 to 5.35 log CFU/fruit, CaO followed by SAEW+FA treatment that resulted in significantly higher reduction than for SAEW+FA treatment. The technology developed by this study has been used in a fresh fruit industry and has greatly improved the quality of the products. These findings suggest that the synergistic properties of the combination of SAEW, FA, and CaO could be used in the fresh fruit industry as an effective sanitizer.
Collapse
|
14
|
The application of slightly acidic electrolyzed water in pea sprout production to ensure food safety, biological and nutritional quality of the sprout. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Effects of cyclic cellulase conditioning and germination treatment on the γ-aminobutyric acid content and the cooking and taste qualities of germinated brown rice. Food Chem 2019; 289:232-239. [DOI: 10.1016/j.foodchem.2019.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 01/25/2023]
|
16
|
Song X, Zhao H, Fang K, Lou Y, Liu Z, Liu C, Ren Z, Zhou X, Fang H, Zhu Y. Effect of platinum electrode materials and electrolysis processes on the preparation of acidic electrolyzed oxidizing water and slightly acidic electrolyzed water. RSC Adv 2019; 9:3113-3119. [PMID: 35518990 PMCID: PMC9059949 DOI: 10.1039/c8ra08929a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/17/2019] [Indexed: 01/31/2023] Open
Abstract
Electrolyzed oxidizing water (EOW) can be divided into acidic electrolyzed oxidizing water (AEOW) and slightly acidic electrolyzed water (SAEW). AEOW has the characteristics of low pH (pH < 2.7) and high oxidation-reduction potential (ORP > 1100 mV). SAEW is slightly acidic (pH = 5-6) and has an ORP of 700-900 mV. AEOW and SAEW both have a certain amount of active chlorine content (ACC), so they have the characteristics of broad spectrum, rapidity and high efficiency of sterilization. At present, there is little systematic research on AEOW and SAEW preparation. However, it is very important to study the preparation process, including electrode material and electrolytic process. First, the effects of Pt electrodes with different thermal decomposition temperatures on AEOW's pH, ORP and ACC values were investigated in detail. Next, for the SAEW preparation, the process is based on the preparation of AEOW by ion-exchange membrane electrolysis, reasonably mixing the electrolyzed cathode and anode solution. The effects of technological conditions such as electrolysis time, current density and electrolyte concentration have been systematically studied, and it is expected to get SAEW with a pH value slightly less than 7, a higher ORP value and a certain amount of ACC.
Collapse
Affiliation(s)
- Xiang Song
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Hui Zhao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Keneng Fang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Yongshan Lou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Zongkui Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Chifeng Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Zhandong Ren
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Xiaorong Zhou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Hua Fang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Yuchan Zhu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| |
Collapse
|
17
|
Ming R, Zhu Y, Deng L, Zhang A, Wang J, Han Y, Chai B, Ren Z. Effect of electrode material and electrolysis process on the preparation of electrolyzed oxidizing water. NEW J CHEM 2018. [DOI: 10.1039/c8nj01076e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The efficient preparation of EO water can be controlled by different electrode materials and electrolysis processes.
Collapse
Affiliation(s)
- Ruoxi Ming
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Yuchan Zhu
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Li Deng
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Ailian Zhang
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Ju Wang
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Yongqi Han
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Bo Chai
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Zhandong Ren
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| |
Collapse
|