1
|
Yang Y, Li S, Xia Y, Wang G, Ni L, Zhang H, Ai L. Effects of different lactic acid bacteria on the characteristic flavor profiles of Chinese rice wine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:421-430. [PMID: 37607217 DOI: 10.1002/jsfa.12935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND It has been well accepted that lactic acid bacteria (LAB) are the main bacterial genera present during the brewing of Chinese rice wine (CRW). LAB plays a decisive role in the flavor quality of CRW; however, its application in CRW has previously been overlooked. Therefore, effects of different LAB as co-fermenter on the flavor characteristics of CRW were investigated. RESULTS Co-fermentation of LAB increased the utilization rate of reducing sugar, concentration of lactic acid, amino acid nitrogen and total acidity, as well as the content of volatile flavor compounds. Different LAB doses had little effect on the flavor profiles of CRW, but the species of LAB greatly affected the flavor characteristic. The flavor of CRW co-fermented with Lactococcus lactis was characterized by long-chain fatty acid ethyl esters, while co-fermentation with Weissella confusa highlighted the ethyl esters of low molecular weight and short carbon chains in the resultant CRW. Alcohol compounds were dominant in the CRW co-fermented using Pediococcus pentosaceus. CONCLUSION The co-fermentation of LAB increased the number of volatile flavor compounds, especially esters. LAB exhibited great potential in the application of CRW industry to enrich the flavor characteristics and enhance the flavor diversity of the final product. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yijin Yang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Shen Li
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Li Ni
- Institute of Food Science and Technology, Fuzhou University, Fuzhou, People's Republic of China
| | - Hui Zhang
- Shanghai Jinfeng Wine Co. Ltd, Shanghai, People's Republic of China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Mao X, Yue SJ, Xu DQ, Fu RJ, Han JZ, Zhou HM, Tang YP. Research Progress on Flavor and Quality of Chinese Rice Wine in the Brewing Process. ACS OMEGA 2023; 8:32311-32330. [PMID: 37720734 PMCID: PMC10500577 DOI: 10.1021/acsomega.3c04732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023]
Abstract
Chinese rice wine (CRW) is a traditional and unique alcoholic beverage in China, favored by many consumers for its rich aroma, unique taste, and complex ingredients. Its flavor is primarily composed of volatile and nonvolatile compounds. These flavor compounds are partly derived from grains and starters (Qu), while the other part is produced by microbial metabolism and chemical reactions during the brewing process. Additionally, ethyl carbamate (EC) in CRW, a hazardous chemical, necessitates controlling its concentration during brewing. In recent years, numerous new brewing techniques for CRW have emerged. Therefore, this paper aims to collect aroma descriptions and thresholds of flavor compounds in CRW, summarize the relationship between the brewing process of CRW and flavor formation, outline methods for reducing the concentration of EC in the brewing process of CRW, and summarize the four stages (pretreatment of grains, fermentation, sterilization, and aging process) of new techniques. Furthermore, we will compare the advantages and disadvantages of different approaches, with the expectation of providing a valuable reference for improving the quality of CRW.
Collapse
Affiliation(s)
- Xi Mao
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Shi-Jun Yue
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Rui-Jia Fu
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Jian-Zhang Han
- Xi’an
DaKou Wine Company Ltd., Xi’an 710300, Shaanxi Province, China
| | - Hao-Ming Zhou
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| |
Collapse
|
3
|
Pei J, Liu Z, Huang Y, Geng J, Li X, Ramachandra S, Udeshika AA, Brennan C, Tao Y. Potential Use of Emerging Technologies for Preservation of Rice Wine and Their Effects on Quality: Updated Review. Front Nutr 2022; 9:912504. [PMID: 35811939 PMCID: PMC9261873 DOI: 10.3389/fnut.2022.912504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Rice wine, a critical fermented alcoholic beverage, has a considerable role in different cultures. It contains compounds that may have functional and nutritional health benefits. Bacteria, yeasts, and fungi commonly found in rice wines during fermentation can induce microbial spoilage and deterioration of the quality during its distribution and aging processes. It is possible to control the microbial population of rice wines using different preservation techniques that can ultimately improve their commercial shelf life. This paper reviews the potential techniques that can be used to preserve the microbial safety of rice wines while maintaining their quality attributes and further highlights the advantages and disadvantages of each technique.
Collapse
Affiliation(s)
- Jinjin Pei
- Shaanxi Key Laboratory of Bioresources, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
- Northwest Institute of Plateau Biology, Chinese Acadamy of Science, Xining, China
| | - Zhe Liu
- Shaanxi Key Laboratory of Bioresources, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Yigang Huang
- Shaanxi Key Laboratory of Bioresources, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Jingzhang Geng
- Shaanxi Key Laboratory of Bioresources, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Xinsheng Li
- Shaanxi Key Laboratory of Bioresources, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Sisitha Ramachandra
- School of Technology, Faculty of Engineering and Technology, Sri Lanka Technological Campus (SLTC), Padukka, Sri Lanka
| | - Amali Alahakoon Udeshika
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- Amali Alahakoon Udeshika
| | - Charles Brennan
- Royal Melbourne Institute of Technology, Melbourne, VIC, Australia
| | - Yanduo Tao
- Northwest Institute of Plateau Biology, Chinese Acadamy of Science, Xining, China
- *Correspondence: Yanduo Tao
| |
Collapse
|
4
|
Lv R, Liu D, Zhou J. Bacterial spore inactivation by non-thermal technologies: resistance and inactivation mechanisms. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
5
|
Chen L, Wang S, Ren L, Li D, Ma X, Rong Y. Flavour characteristics of rice wine fermented with mixed starter by moulds and yeast strains. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Lihua Chen
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 China
| | - SanXia Wang
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 China
| | - Lixia Ren
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 China
| | - Dongna Li
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 China
| | - Xia Ma
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 China
| | - Yuzhi Rong
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 China
| |
Collapse
|
6
|
Xu W, Jiang J, Xu Q, Zhong M. Drinking tastes of Chinese rice wine under different heating temperatures analyzed by gas chromatography-mass spectrometry and tribology tests. J Texture Stud 2020; 52:124-136. [PMID: 33184839 DOI: 10.1111/jtxs.12571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 02/02/2023]
Abstract
Drinking tastes and lubrication properties of Chinese rice wine (CRW) under different heating temperatures were studied by tribology tests, gas chromatography-mass spectrometry (GC-MS) and sensory evaluations. CRW's drinking tastes were evaluated by taste panelists. Flavor compounds were detected by GC-MS. Lubrication properties of CRW were measured by tribometer. Drinking tastes changed under different heating temperatures and were the best at 60°C assessed by panelists. Four key compounds, furfural, benzaldehyde, butanedioic acid diethyl ester, and phenylethyl alcohol, were determined by GC-MS affecting drinking tastes of CRW. Their variation trends were consistent with the changes of CRW's tastes. The variation of CRW's lubrication properties had a positive correlation with that of CRW's taste, especially astringency. The lowest friction coefficient implied the best lubrication performance and taste at 60°C. Therefore, it was possible to rapidly evaluate drinking tastes of CRW using tribology technology based on the results. Reasons for temperatures influencing CRW's lubrication properties and drinking tastes were also analyzed in this study.
Collapse
Affiliation(s)
- Wenhu Xu
- School of Mechatronics Engineering, Key Laboratory of Tribology, Nanchang University, Nanchang, Jiangxi, China
| | - Jianzhong Jiang
- School of Mechatronics Engineering, Key Laboratory of Tribology, Nanchang University, Nanchang, Jiangxi, China
| | - Qixiang Xu
- School of Mechatronics Engineering, Key Laboratory of Tribology, Nanchang University, Nanchang, Jiangxi, China
| | - Min Zhong
- School of Mechatronics Engineering, Key Laboratory of Tribology, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Yang Y, Hu W, Xia Y, Mu Z, Tao L, Song X, Zhang H, Ni B, Ai L. Flavor Formation in Chinese Rice Wine (Huangjiu): Impacts of the Flavor-Active Microorganisms, Raw Materials, and Fermentation Technology. Front Microbiol 2020; 11:580247. [PMID: 33281774 PMCID: PMC7691429 DOI: 10.3389/fmicb.2020.580247] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Huangjiu (Chinese rice wine) has been consumed for centuries in Asian countries and is known for its unique flavor and subtle taste. The flavor compounds of Huangjiu are derived from a wide range of sources, such as raw materials, microbial metabolic activities during fermentation, and chemical reactions that occur during aging. Of these sources, microorganisms have the greatest effect on the flavor quality of Huangjiu. To enrich the microbial diversity, Huangjiu is generally fermented under an open environment, as this increases the complexity of its microbial community and flavor compounds. Thus, understanding the formation of flavor compounds in Huangjiu will be beneficial for producing a superior flavored product. In this paper, a critical review of aspects that may affect the formation of Huangjiu flavor compounds is presented. The selection of appropriate raw materials and the improvement of fermentation technologies to promote the flavor quality of Huangjiu are discussed. In addition, the effects of microbial community composition, metabolic function of predominant microorganisms, and dynamics of microbial community on the flavor quality of Huangjiu are examined. This review thus provides a theoretical basis for manipulating the fermentation process by using selected microorganisms to improve the overall flavor quality of Huangjiu.
Collapse
Affiliation(s)
- Yijin Yang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.,School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wuyao Hu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiyong Mu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Leren Tao
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Zhang
- Shanghai Jinfeng Wine Co., Ltd., Shanghai, China
| | - Bin Ni
- Shanghai Jinfeng Wine Co., Ltd., Shanghai, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
8
|
Feng T, Hu Z, Chen L, Chen D, Wang X, Yao L, Sun M, Song S, Wang H. Quantitative structure-activity relationships (QSAR) of aroma compounds in different aged Huangjiu. J Food Sci 2020; 85:3273-3281. [PMID: 32918279 DOI: 10.1111/1750-3841.15421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 11/27/2022]
Abstract
Huangjiu is a traditional wine in China with special taste and flavor. However, changes of aroma compounds during storage of Huangjiu remain unclear. In this study, aroma compounds in Jinse Nianhua Huangjiu of three different storage ages were qualitatively and quantitatively analyzed via headspace solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS). Based on odor activity value (OAV), the most important aroma compounds were found to be esters, aldehydes, alcohols, acids, ketones, phenols, and lactones. Even though the types of the aroma compounds were similar in different-aged Huangjiu, the concentrations of some compounds varied. Some aroma compounds' thresholds and OAV in Huangjiu were obtained by AC'Scent Intl. Olfactometer. It showed the key aroma compounds in Huangjiu had a positive correlation with their OAV instead of concentration. Quantitative structure-activity relationship (QSAR) models were developed to predict the flavor thresholds for alcohols, acids, and esters in Huangjiu, with higher accuracy for alcohols (R2 = 0.978) and acids (R2 = 0.987). This study will provide valuable information to unveil the regulation of Huangjiu flavor from molecular basis. PRACTICAL APPLICATION: The built mathematical model enables to predict changes of aroma compounds in Huangjiu during storage, based on the relationship between the quantum structure parameters of those aroma compounds and the odor activity value of flavor chemicals. This research will contribute to simplifying the wine flavor analysis for wine industry and also help to identify the age of the Huangjiu for customers.
Collapse
Affiliation(s)
- Tao Feng
- School of Perfume and Aroma Technology, Shanghai Inst. of Technology, No. 100 Hai Quan Rd., Shanghai, 201418, China
| | - Zhongshan Hu
- School of Perfume and Aroma Technology, Shanghai Inst. of Technology, No. 100 Hai Quan Rd., Shanghai, 201418, China
| | - Ling Chen
- Shanghai Kangshi Food Technology Co., Ltd., No. 1978 Lianhua Rd., Shanghai, 201103, China
| | - Da Chen
- Dept. of Food Science and Technology, The Ohio State Univ., 2015 Fyffe Rd., Columbus, OH, 43210, U.S.A
| | - Xu Wang
- School of Perfume and Aroma Technology, Shanghai Inst. of Technology, No. 100 Hai Quan Rd., Shanghai, 201418, China
| | - Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Inst. of Technology, No. 100 Hai Quan Rd., Shanghai, 201418, China
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Inst. of Technology, No. 100 Hai Quan Rd., Shanghai, 201418, China
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Inst. of Technology, No. 100 Hai Quan Rd., Shanghai, 201418, China
| | - Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Inst. of Technology, No. 100 Hai Quan Rd., Shanghai, 201418, China
| |
Collapse
|
9
|
Bai Y, Idris Muhammad A, Hu Y, Koseki S, Liao X, Chen S, Ye X, Liu D, Ding T. Inactivation kinetics of Bacillus cereus spores by Plasma activated water (PAW). Food Res Int 2020; 131:109041. [PMID: 32247505 DOI: 10.1016/j.foodres.2020.109041] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/27/2019] [Accepted: 01/26/2020] [Indexed: 01/07/2023]
Abstract
In recent years, plasma activated water has attracted more attention as a new disinfectant. The purpose of this study was to explore impact of variation of different treatment conditions on the inactivation kinetics of Bacillus cereus spores by PAW. All survival curves showed that the number of spores has decreased rapidly at first, followed by tailing results from the reduction inactivation rate. A linear and two nonlinear models (Weibull and Log-logistic model) were fitted to these data, and Log-logistic model fitted the inactivation of the B. cereus spores best. B. cereus spores in 106 CFU/mL was reduced by 1.62-2.96 log CFU/mL by PAW at 55 °C due to the reactive species generated in PAW. Elevated temperature, lower initial spore concentration, lower bovine serum albumin content, and smaller activation volume of PAW considerably enhanced PAW inactivation of B. cereus spores. These results provide an approach to evaluate the inactivation efficacy of different treatment conditions for PAW.
Collapse
Affiliation(s)
- Yan Bai
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, China
| | - Aliyu Idris Muhammad
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, China
| | - Yaqin Hu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, China.
| | - Shigenobu Koseki
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Xinyu Liao
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, China
| | - Shiguo Chen
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, China
| | - Xingqian Ye
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, China
| | - Donghong Liu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, China
| | - Tian Ding
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
10
|
Lv R, Mingming Z, Chen W, Wang D, Zhou J, Ding T, Ye X, Liu D. A hurdle approach of acidic electrolyzed water simultaneous with ultrasound to inactivate
Bacillus cereus. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ruiling Lv
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang University Hangzhou China
| | - Zou Mingming
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang University Hangzhou China
| | - Weijun Chen
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang University Hangzhou China
| | - Danli Wang
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang University Hangzhou China
| | - Jianwei Zhou
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang University Hangzhou China
- Fuli Institute of Food Science Zhejiang University Hangzhou China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang University Hangzhou China
- Fuli Institute of Food Science Zhejiang University Hangzhou China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
- Fuli Institute of Food Science Zhejiang University Hangzhou China
| |
Collapse
|
11
|
Zhou L, Yang Y, Tang X, Gao C, Wei S, Li S. Effects of ethanol treatment on rheological and gel properties of chicken myofibrillar protein. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2018.1562497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Lei Zhou
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Yuling Yang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Chengcheng Gao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Sumeng Wei
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Shanshan Li
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
12
|
Chantapakul T, Lv R, Wang W, Chummalee W, Ding T, Liu D. Manothermosonication: Inactivation of Escherichia coli and Staphylococcus aureus. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Yu H, Xie T, Xie J, Ai L, Tian H. Characterization of key aroma compounds in Chinese rice wine using gas chromatography-mass spectrometry and gas chromatography-olfactometry. Food Chem 2019; 293:8-14. [PMID: 31151652 DOI: 10.1016/j.foodchem.2019.03.071] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
To determine the key aroma compounds in Chinese rice wine (CRW), four types of CRW (YH, JF, SN, and XX) were analyzed by gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), and sensory evaluation. The contributions of the key aroma compounds to the flavor characteristics were determined by partial least squares regression. Sixty-one aroma compounds were detected. Twenty-five components were identified as odor-active compounds. On the basis of their odor active values, 18 odor-active compounds were determined as key aroma compounds. Ethyl isovalerate, ethyl butyrate, ethyl acetate, ethyl hexanoate, and phenylethyl alcohol were key aroma compounds in all four types of wine. The unique key aroma compounds of JF wine were isovaleraldehyde and isoamyl acetate; those of XX wine were 1-butanol, benzaldehyde, ethyl benzoate, ethyl phenylacetate, 2-octanone, and furfural; that of YH wine was ethyl 2-methylbutyrate; and those of SN wine were 1-butanol, 1-hexanol, 2-butenoic acid ethyl ester, and 3-methyl-1-butanol.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418,China
| | - Tong Xie
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418,China
| | - Jingru Xie
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418,China
| | - Lianzhong Ai
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Huaixiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418,China.
| |
Collapse
|
14
|
Lv R, Zou M, Chantapakul T, Chen W, Muhammad AI, Zhou J, Ding T, Ye X, Liu D. Effect of ultrasonication and thermal and pressure treatments, individually and combined, on inactivation of Bacillus cereus spores. Appl Microbiol Biotechnol 2019; 103:2329-2338. [PMID: 30627794 DOI: 10.1007/s00253-018-9559-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 01/03/2023]
Abstract
Bacillus cereus spores are a concern to the food industry due to their high resistance to processing and their ability to germinate to vegetative cells under suitable conditions. This research aimed to elucidate the mechanisms of Bacillus cereus spore inactivation under ultrasonication (US) combined with thermal (thermosonication, TS) treatments, with pressure (manosonication, MS) treatments, and with thermal and pressure (manothermosonication, MTS) treatments. Electronic microscopy, dipicolinic acid (DPA) release, and flow cytometric assessments were used to investigate the inactivation effect and understand the inactivation mechanisms. The sporicidal effects of the US and thermal treatment were slight, and the MS and TS also showed little inactivation effect. However, ultrasonication promoted the detachment of the exosporium, thereby reducing the spore's ability to adhere to a surface, while the thermal treatment induced a decrease in the electron density in the nucleoid of bacterium, which retained a relatively intact exosporium and coat. MS caused 92.54% DPA release, which might be due to triggering of the germinant receptors or releasing of ions and Ca2+-DPA. In addition, the morphological changes such as core hydration and cortex degradation were significant after treatment with MS. The release of DPA and the morphological changes were responsible for the reduction in thermal resistance. The MTS showed a remarkable inactivation effect of 3.12 log CFU/mL reductions after 30 min of treatment. It was the most effective treatment and exhibited a large fraction of damage. In addition, the MTS had a significant impact on the intracellular structure of the spores, with the coat destroyed and the cortex damaged. These results indicated that ultrasonication combined with thermal and pressure treatments had a significant sporicidal effect on Bacillus cereus spores and could be a promising green sterilization technology.
Collapse
Affiliation(s)
- Ruiling Lv
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R and D Center for Food Technology and Equipment, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China
| | - Mingming Zou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R and D Center for Food Technology and Equipment, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China
| | - Thunthacha Chantapakul
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R and D Center for Food Technology and Equipment, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China
| | - Weijun Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R and D Center for Food Technology and Equipment, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China
| | - Aliyu Idris Muhammad
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R and D Center for Food Technology and Equipment, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China
| | - Jianwei Zhou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R and D Center for Food Technology and Equipment, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China.,Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R and D Center for Food Technology and Equipment, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R and D Center for Food Technology and Equipment, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R and D Center for Food Technology and Equipment, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China. .,Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Lv R, Wang D, Zou M, Wang W, Ma X, Chen W, Zhou J, Ding T, Ye X, Liu D. Analysis ofBacillus cereuscell viability, sublethal injury, and death induced by mild thermal treatment. J Food Saf 2018. [DOI: 10.1111/jfs.12581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ruiling Lv
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Danli Wang
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Mingming Zou
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Wenjun Wang
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Xiaobin Ma
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Weijun Chen
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Jianwei Zhou
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
| | - Tian Ding
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
- Zhejiang Key Laboratory for Agro‐Food ProcessingZhejiang R&D Center for Food Technology and Equipment Zhejiang Hangzhou China
| | - Xingqian Ye
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
- Zhejiang Key Laboratory for Agro‐Food ProcessingZhejiang R&D Center for Food Technology and Equipment Zhejiang Hangzhou China
| | - Donghong Liu
- College of Biosystems Engineering and Food ScienceZhejiang University Zhejiang Hangzhou China
- Zhejiang Key Laboratory for Agro‐Food ProcessingZhejiang R&D Center for Food Technology and Equipment Zhejiang Hangzhou China
- Fuli Institute of Food ScienceZhejiang University Zhejiang Hangzhou China
| |
Collapse
|