1
|
Debonne E, Thys M, Eeckhout M, Devlieghere F. The potential of UVC decontamination to prolong shelf-life of par-baked bread. FOOD SCI TECHNOL INT 2024; 30:636-645. [PMID: 36908224 DOI: 10.1177/10820132231162170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The effect of UVC (254 nm) treatment on the mould-free shelf-life of par-baked wholemeal, rye and six-grain bread was examined. Currently, these breads are par-baked, wrapped in high-density polyethylene (HDPE)-foil and transported or stored at room temperature for a couple of days before being full-baked and sold/consumed. Generally, after five days, these breads show signs of mould spoilage. A shelf-life increase in one or more days would already offer immense economical and logistic benefits for the baker or retailer. In this study, the parameters fluence rate (irradiation intensity), fluence (UV dose), distance to the UV-lamp (DTL) and number of layers of a common wrapping HDPE-foil (20 µm) were diversified. The breads were subjected to a UVC treatment (0-2502 mJ/cm²), packed and stored at room temperature for a period of 15 days (21.5 ± 0.8 °C). Similar as for the breads, agar plates with mould spores of Aspergillus niger, Aspergillus montevidensis and Penicillium roqueforti were UVC treated (0-1664 mJ/cm²) and checked daily for visible mould growth during 15 days (25 °C). Aspergillus niger showed the strongest resistance towards UVC, a fluence of 800 mJ/cm² was needed to inhibit growth during 15 days of storage, whereas for P. roqueforti and A. montevidensis, respectively, UV levels of 291 and 133 mJ/cm² were found sufficient. Furthermore, the shelf-life of wholemeal, rye and six-grain bread can be prolonged from 5 to 6, 8 and 9 days, respectively, using 2502 mJ/cm². The effect of higher UVC dosage on shelf-life reached a maximal level and was strongly impacted by the wide spread on data of mould-free shelf-life. The main factors influencing the potential of UV decontamination were the rough bread surface, differences in DTL, the possibility of post-contamination and UV permeability of packaging materials.
Collapse
Affiliation(s)
- Els Debonne
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Applied Mycology (MYCOLAB), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Margaux Thys
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Mia Eeckhout
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Frank Devlieghere
- Laboratory of Applied Mycology (MYCOLAB), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Gómez M, Casado A, Caro I. Assessing the Effect of Flour (White or Whole-Grain) and Process (Direct or Par-Baked) on the Mycotoxin Content of Bread in Spain. Foods 2023; 12:4240. [PMID: 38231598 DOI: 10.3390/foods12234240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Bread is the staple food in many parts of the world. Like other foods, bread can contain mycotoxins resulting from microbial development throughout the supply chain (from field to table). In this study, baguette-style bread from small artisanal bakeries (direct) and supermarkets (par-baked loaves made by large companies) in Castile and Leon (Spain) was analyzed. Both white and whole-grain breads were collected from all retail outlets. The mycotoxins analyzed included deoxynivalenol (DON), ochratoxin (OTA), and aflatoxin B1 and B2 (AFB1, AFB2). All of the bread samples studied had mycotoxin levels below the maximum limits established by legislation. The presence of DON was higher than that of OTA, and AFB1 and AFB2 could not be quantified. Industrial breads had higher levels of DON and OTA (only in the whole-grain breads) compared to artisanal breads. However, no significant differences were found between white and industrial breads beyond those mentioned above. These results demonstrate that the established control chains ensure low mycotoxin content in bread of this type.
Collapse
Affiliation(s)
- Manuel Gómez
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, 34071 Palencia, Spain
| | - Andrea Casado
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, 34071 Palencia, Spain
- Food Science and Nutrition, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Irma Caro
- Food Science and Nutrition, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
3
|
Probiotics in the Sourdough Bread Fermentation: Current Status. FERMENTATION 2023. [DOI: 10.3390/fermentation9020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sourdough fermentation is an ancient technique to ferment cereal flour that improves bread quality, bringing nutritional and health benefits. The fermented dough has a complex microbiome composed mainly of lactic acid bacteria and yeasts. During fermentation, the production of metabolites and chemical reactions occur, giving the product unique characteristics and a high sensory quality. Mastery of fermentation allows adjustment of gluten levels, delaying starch digestibility, and increasing the bio-accessibility of vitamins and minerals. This review focuses on the main steps of sourdough fermentation, the microorganisms involved, and advances in bread production with functional properties. The impact of probiotics on human health, the metabolites produced, and the main microbial enzymes used in the bakery industry are also discussed.
Collapse
|
4
|
Identification of postbaking mold contamination through onsite monitoring of baking factory environment: A case study of bakery company in Taiwan. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
An H, Zhai C, Zhang F, Ma Q, Sun J, Tang Y, Wang W. Quantitative analysis of Chinese steamed bread staling using NIR, MIR, and Raman spectral data fusion. Food Chem 2022; 405:134821. [DOI: 10.1016/j.foodchem.2022.134821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
6
|
Pérez-Alvarado O, Zepeda-Hernández A, Garcia-Amezquita LE, Requena T, Vinderola G, García-Cayuela T. Role of lactic acid bacteria and yeasts in sourdough fermentation during breadmaking: Evaluation of postbiotic-like components and health benefits. Front Microbiol 2022; 13:969460. [PMID: 36187981 PMCID: PMC9524358 DOI: 10.3389/fmicb.2022.969460] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/18/2022] [Indexed: 01/21/2023] Open
Abstract
Sourdough (SD) fermentation is a traditional biotechnological process used to improve the properties of baked goods. Nowadays, SD fermentation is studied for its potential health effects due to the presence of postbiotic-like components, which refer to a group of inanimate microorganisms and/or their components that confer health benefits on the host. Some postbiotic-like components reported in SD are non-viable microorganisms, short-chain fatty acids, bacteriocins, biosurfactants, secreted proteins/peptides, amino acids, flavonoids, exopolysaccharides, and other molecules. Temperature, pH, fermentation time, and the composition of lactic acid bacteria and yeasts in SD can impact the nutritional and sensory properties of bread and the postbiotic-like effect. Many in vivo studies in humans have associated the consumption of SD bread with higher satiety, lower glycemic responses, increased postprandial concentrations of short-chain fatty acids, and improvement in the symptoms of metabolic or gastrointestinal-related diseases. This review highlights the role of bacteria and yeasts used for SD, the formation of postbiotic-like components affected by SD fermentation and the baking process, and the implications of functional SD bread intake for human health. There are few studies characterizing the stability and properties of postbiotic-like components after the baking process. Therefore, further research is necessary to develop SD bread with postbiotic-related health benefits.
Collapse
Affiliation(s)
- Omar Pérez-Alvarado
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Food and Biotech Lab, Zapopan, Jalisco, Mexico
| | - Andrea Zepeda-Hernández
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Food and Biotech Lab, Zapopan, Jalisco, Mexico
| | | | - Teresa Requena
- Department of Food Biotechnology and Microbiology, Institute of Food Science Research, CIAL (CSIC), Madrid, Spain
| | - Gabriel Vinderola
- Faculty of Chemical Engineering, Instituto de Lactología Industrial (CONICET-UNL), National University of Litoral, Santa Fe, Argentina
| | - Tomás García-Cayuela
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Food and Biotech Lab, Zapopan, Jalisco, Mexico
- *Correspondence: Tomás García-Cayuela,
| |
Collapse
|
7
|
Cao H, Wang X, Wang X, Guan X, Huang K, Zhang Y. Effect of storage conditions on the textural properties and in vitro digestibility of wheat bread containing whole quinoa flour. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Debonne E, Meuninck V, Vroman A, Eeckhout M. Influence of environmental growth conditions on chalk yeasts causing bread spoilage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Van Bockstaele F, Debonne E, De Leyn I, Wagemans K, Eeckhout M. Impact of temporary frozen storage on the safety and quality of four typical Belgian bakery products. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Dynamics of Volatile Compounds in Triticale Bread with Sourdough: From Flour to Bread. Foods 2020; 9:foods9121837. [PMID: 33321806 PMCID: PMC7763431 DOI: 10.3390/foods9121837] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Triticale has been suggested for human consumption due to its valuable nutritional composition. The aim of this study was to evaluate volatile compound dynamics in the technological processes of triticale bread and triticale bread with sourdough prepared using Lactobacillus sanfranciscensis based cultures. Two types of sourdough ready-to-use sourdough and two-stage sourdough were used for bread making. Triticale bread without sourdough was used as a control. Volatile compounds from a headspace of flour blend, sourdough, as well as mixed dough, fermented dough, bread crumb and crust were extracted using solid-phase microextraction (SPME) in combination with gas chromatography/mass spectrometry. Alcohols, mainly 1-hexanol, were the main volatiles in the triticale flour blend, whereas in the headspace of sourdough samples ethyl-acetate, ethanol and acetic acid dominated. Two-stage sourdough after 30 min fermentation showed the highest sum of peak areas formed by 14 volatile compounds, resulting in substrates for further aroma development in bread. A total of 29 compounds were identified in the bread: in the crumb the dominant volatile compounds were alcohols, ketones, acids, but in the crust—alcohols, aldehydes, furans dominated. The use of two-stage sourdough provided a more diverse spectrum of volatile compounds. Such volatile compounds as ethanol, 3-methyl-1-butanol, 2-methyl-1-propanol, 2-hydroxy-2-butanone, 2-methylpropanoic acid, and acetic acid were identified in all the analysed samples in all stages of bread making.
Collapse
|
11
|
Meral H, Karaoğlu MM. The effect of the stale bread flour addition on flour and bread quality. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2019-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIn this study, the effect of the flour, which was obtained from stale bread, on flour and bread quality was investigated. The bread that was staled at refrigerator for 7 days was prepared as whole and crumb, and was grinded to convert into flour. The staled whole and crumb bread flours were stored at −18 °C and used to replace 0, 15, 30 and 45% of wheat flour. Then microbiological and physicochemical properties of flours; physical, textural and sensory properties of bread obtained from these composite flours were investigated. We concluded that stale bread flour could be used for bread production at the level of 15%. If the total bread production and consumption is considered, this addition level could provide a significant amount of waste bread recycling each year.
Collapse
Affiliation(s)
- Hacer Meral
- Food Engineering Department, Faculty of Agriculture, Atatürk University, 25240, Erzurum, Turkey
| | - M. Murat Karaoğlu
- Food Engineering Department, Faculty of Agriculture, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
12
|
Debonne E, De Leyn I, Vroman A, Spaepen G, Van Hecke M, Ruyssen T, Eeckhout M. Technological and microbiological evaluation of different storage conditions of par-baked bread. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Debonne E, Van Schoors F, Maene P, Van Bockstaele F, Vermeir P, Verwaeren J, Eeckhout M, Devlieghere F. Comparison of the antifungal effect of undissociated lactic and acetic acid in sourdough bread and in chemically acidified wheat bread. Int J Food Microbiol 2020; 321:108551. [DOI: 10.1016/j.ijfoodmicro.2020.108551] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 11/16/2022]
|
14
|
Impact of glucan type exopolysaccharide (EPS) production on technological characteristics of sourdough bread. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106812] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Debonne E, Maene P, Vermeulen A, Van Bockstaele F, Depredomme L, Vermeir P, Eeckhout M, Devlieghere F. Validation of in-vitro antifungal activity of the fermentation quotient on bread spoilage moulds through growth/no-growth modelling and bread baking trials. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Rusinek R, Gancarz M, Nawrocka A. Application of an electronic nose with novel method for generation of smellprints for testing the suitability for consumption of wheat bread during 4-day storage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108665] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Debonne E, Vermeulen A, Bouboutiefski N, Ruyssen T, Van Bockstaele F, Eeckhout M, Devlieghere F. Modelling and validation of the antifungal activity of DL-3-phenyllactic acid and acetic acid on bread spoilage moulds. Food Microbiol 2019; 88:103407. [PMID: 31997763 DOI: 10.1016/j.fm.2019.103407] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/22/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
Most interesting antifungal compounds from sourdough fermentation are acetic acid (AA) and DL-3-phenyllactic acid (PLA). Although the role of pH on the activity of organic acids has been established long time ago, no information is available on the importance of undissociated acid (HA) expressed on the aqueous phase of bread (CHA, mmole/L). Mostly, concentrations (mmole/kg dough or bread, CTOT) and pH are given side by side. The aim of this study was to show the importance of CHA for adequate comparison of in-vitro growth data with bread shelf-life. Growth of Penicillium paneum and Aspergillus niger was recorded using a micro-dilution assay with optical density measurements. Parameters such as aw (0.94-0.98), pH (4.6-6.0), temperature (10-30 °C), time (0-8 days) and CTOT (0-300 mM) were varied. Growth/no-growth models were developed and shelf-life tests of par-baked breads of 45 days at 20 °C were conducted. The modelled inhibitory concentrations of undissociated acid were comparable with the shelf-life test of bread: (PLA) 50 versus 39-84 mmol/L; (AA) 110 versus 110-169 mmol/L. This study showed the applicability of G/NG models for bread shelf-life prediction and highlighted the importance of CHA. Moreover, it was found that naturally present PLA in sourdough bread is insufficient to increase bread shelf-life.
Collapse
Affiliation(s)
- Els Debonne
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; Laboratory of Applied Mycology (MYCOLAB), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium.
| | - An Vermeulen
- Research Unit of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Naomi Bouboutiefski
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Tony Ruyssen
- Laboratory of Applied Mycology (MYCOLAB), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Filip Van Bockstaele
- Laboratory of Food Technology and Engineering, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Mia Eeckhout
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; Laboratory of Applied Mycology (MYCOLAB), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Frank Devlieghere
- Laboratory of Applied Mycology (MYCOLAB), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; Research Unit of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
18
|
Debonne E, Baert H, Eeckhout M, Devlieghere F, Van Bockstaele F. Optimization of composite dough for the enrichment of bread crust with antifungal active compounds. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|