1
|
Poddighe M, Mannu A, Petretto GL, Pintore G, Garroni S, Malfatti L. Raman spectroscopy and multivariate analysis for the waste and edible vegetable oil classification. Nat Prod Res 2024:1-7. [PMID: 39394827 DOI: 10.1080/14786419.2024.2409395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/02/2024] [Accepted: 09/21/2024] [Indexed: 10/14/2024]
Abstract
Twelve samples of waste cooking oil (WCO) were prepared by four different deep-frying procedures. The edible and the waste oil samples were characterised by Raman spectroscopy, revealing few and almost negligible differences between them. Therefore, the possibility of classifying the different groups of samples by extracting valuable data from the Raman spectra through statistical multivariate analysis was explored. Even if the number of samples was not enough to draw definitive conclusions, unsupervised principal component analysis (PCA) and supervised partial least square discriminant analysis (PLS-DA) conducted on the raw Raman signals, allowed to distinguish within edible and waste vegetable oil, and to select the most relevant combination of variables associated with each family. Using sparse partial least square discriminant analysis (S-PLS-DA), we determined a chemical fingerprint characteristic of each sample by creating a Variable In Projection (VIP) plot. The methodology herein presented could find relevant application in the detection of waste adulteration in vegetable oils sold for industrial purposes other than food.
Collapse
Affiliation(s)
- Matteo Poddighe
- Laboratory of Materials Science and Nanotechnology (LMNT), Department of Chemical, Physics, Mathematics and Natural Science, University of Sassari, Sassari, Italy
| | - Alberto Mannu
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Giacomo Luigi Petretto
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, Sassari, Italy
| | - Giorgio Pintore
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, Sassari, Italy
| | - Sebastiano Garroni
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
- Laboratory of Materials Science and Nanotechnology (LMNT), Department of Biomedical Sciences, University of Sassari, CR-INSTM, Viale San Pietro, Sassari, Italy
| | - Luca Malfatti
- Laboratory of Materials Science and Nanotechnology (LMNT), Department of Chemical, Physics, Mathematics and Natural Science, University of Sassari, Sassari, Italy
| |
Collapse
|
2
|
Haider A, Iqbal SZ, Bhatti IA, Alim MB, Waseem M, Iqbal M, Mousavi Khaneghah A. Food authentication, current issues, analytical techniques, and future challenges: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13360. [PMID: 38741454 DOI: 10.1111/1541-4337.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Food authentication and contamination are significant concerns, especially for consumers with unique nutritional, cultural, lifestyle, and religious needs. Food authenticity involves identifying food contamination for many purposes, such as adherence to religious beliefs, safeguarding health, and consuming sanitary and organic food products. This review article examines the issues related to food authentication and food fraud in recent periods. Furthermore, the development and innovations in analytical techniques employed to authenticate various food products are comprehensively focused. Food products derived from animals are susceptible to deceptive practices, which can undermine customer confidence and pose potential health hazards due to the transmission of diseases from animals to humans. Therefore, it is necessary to employ suitable and robust analytical techniques for complex and high-risk animal-derived goods, in which molecular biomarker-based (genomics, proteomics, and metabolomics) techniques are covered. Various analytical methods have been employed to ascertain the geographical provenance of food items that exhibit rapid response times, low cost, nondestructiveness, and condensability.
Collapse
Affiliation(s)
- Ali Haider
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Shahzad Zafar Iqbal
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Waseem
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | | |
Collapse
|
3
|
Machine learning applications for identify the geographical origin, variety and processing of black tea using 1H NMR chemical fingerprinting. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
4
|
Chen H, Ding Z, Dai T, Lin J, Xu D, Xia F, Feng J, Shen G. Quantitative comparison and rapid discrimination of Panax notoginseng powder and Caulis clematidis armandii using NMR combined with pattern recognition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3766-3775. [PMID: 36222712 DOI: 10.1002/jsfa.12264] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/21/2022] [Accepted: 10/12/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND The market demand for Panax notoginseng (P. notoginseng) is growing rapidly because of its useful properties in food and medicine. However, the frequent adulteration of P. notoginseng seriously affects the health of consumers and is a great challenge to food safety. In this study, low- and high-field nuclear magnetic resonance (LF/HF-NMR) were applied to detect the transverse relaxation distribution of P. notoginseng contaminated with different ratios of Caulis clematidis armandii (CCA) and the components in P. notoginseng and CCA, respectively. RESULTS Fifty-seven kinds of major and minor components in P. notoginseng and CCA were identified and quantified from their high-resolution NMR spectra, and there were significant differences in ginsenosides, sucrose, and glucose between P. notoginseng and CCA. Furthermore, the partial least squares regression analysis results indicated that LF-NMR parameters (T21 and S21 ) changed linearly as the ratio of CCA increased, and these changes were attributed to the variations in polysaccharide and sucrose in adulterated P. notoginseng. CONCLUSION In the relaxation time-based pattern recognition models, the authentic P. notoginseng powder could be classified with 100% accuracy from adulterated P. notoginseng when the adulteration ratio was greater than 30%, demonstrating the possibility of LF-NMR, in combination with pattern recognition, for rapid discrimination of food authenticity. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Honghai Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Zenan Ding
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Tao Dai
- Department of Plastic Surgery, Third Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | | | - Dunming Xu
- Technology Center of Xiamen Customs, Xiamen, China
| | - Feng Xia
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Guiping Shen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
A comprehensive overview of emerging techniques and chemometrics for authenticity and traceability of animal-derived food. Food Chem 2023; 402:134216. [DOI: 10.1016/j.foodchem.2022.134216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/21/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
|
6
|
Sobolev AP, Ingallina C, Spano M, Di Matteo G, Mannina L. NMR-Based Approaches in the Study of Foods. Molecules 2022; 27:7906. [PMID: 36432006 PMCID: PMC9697393 DOI: 10.3390/molecules27227906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
In this review, the three different NMR-based approaches usually used to study foodstuffs are described, reporting specific examples. The first approach starts with the food of interest that can be investigated using different complementary NMR methodologies to obtain a comprehensive picture of food composition and structure; another approach starts with the specific problem related to a given food (frauds, safety, traceability, geographical and botanical origin, farming methods, food processing, maturation and ageing, etc.) that can be addressed by choosing the most suitable NMR methodology; finally, it is possible to start from a single NMR methodology, developing a broad range of applications to tackle common food-related challenges and different aspects related to foods.
Collapse
Affiliation(s)
- Anatoly P. Sobolev
- Magnetic Resonance Laboratory “Segre-Capitani”, Institute for Biological Systems, CNR, Via Salaria, Km 29.300, 00015 Monterotondo, Italy
| | - Cinzia Ingallina
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Mattia Spano
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giacomo Di Matteo
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Luisa Mannina
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
7
|
Flügge F, Kerkow T, Kowalski P, Bornhöft J, Seemann E, Creydt M, Schütze B, Günther UL. Qualitative and quantitative food authentication of oregano using NGS and NMR with chemometrics. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Priya RB, Rashmitha R, Preetham GS, Chandrasekar V, Mohan RJ, Sinija VR, Pandiselvam R. Detection of Adulteration in Coconut Oil and Virgin Coconut Oil Using Advanced Analytical Techniques: A Review. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Quality control of spectroscopic data in non-targeted analysis – Development of a multivariate control chart. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Soon JM. Food fraud countermeasures and consumers: A future agenda. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Chemometric strategies for authenticating extra virgin olive oils from two geographically adjacent Catalan protected designations of origin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Metabolomics of baobab oil—Analysis and authentication of cyclopropenoid fatty acids using similarity and differential NMR spectroscopy. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Ramos-de-la-Peña AM, Aguilar O, González-Valdez J. Progress in nanostructure understanding of edible crystalline fats and their application in nano-delivery systems: Cocoa butter as a model. Food Res Int 2021; 147:110561. [PMID: 34399538 DOI: 10.1016/j.foodres.2021.110561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/30/2021] [Accepted: 06/22/2021] [Indexed: 11/30/2022]
Abstract
Nucleation and crystal growth of edible fats at the nanoscale have received little attention due to analytical limitations. A key factor to modify the properties of edible fats is nanostructure understanding. Progress within the last years will be presented, including analytical techniques used to investigate fat crystallization. Cocoa butter has been the subject of several works due to its properties and its high impact on chocolate manufacturing. Moreover, this vegetable fat has been used as the solid lipid component in nano delivery systems. Since nanoplatelet is the smallest unit in crystalline fats, and the nanoscale is influenced by supersaturation, temperature, shear fields, and surfactants, nanostructure engineering is possible. On its part, cocoa butter has been included in innovative delivery systems along the last years. This review will highlight main results and challenges on these topics.
Collapse
Affiliation(s)
- Ana Mayela Ramos-de-la-Peña
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico.
| | - Oscar Aguilar
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico.
| | - José González-Valdez
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico.
| |
Collapse
|
14
|
Sudhakar A, Chakraborty SK, Mahanti NK, Varghese C. Advanced techniques in edible oil authentication: A systematic review and critical analysis. Crit Rev Food Sci Nutr 2021; 63:873-901. [PMID: 34347552 DOI: 10.1080/10408398.2021.1956424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Adulteration of edible substances is a potent contemporary food safety issue. Perhaps the overt concern derives from the fact that adulterants pose serious ill effects on human health. Edible oils are one of the most adulterated food products. Perpetrators are adopting ways and means that effectively masks the presence of the adulterants from human organoleptic limits and traditional oil adulteration detection techniques. This review embodies a detailed account of chemical, biosensors, chromatography, spectroscopy, differential scanning calorimetry, non-thermal plasma, dielectric spectroscopy research carried out in the area of falsification assessment of edible oils for the past three decades and a collection of patented oil adulteration detection techniques. The detection techniques reviewed have some advantages and certain limitations, chemical tests are simple; biosensors and nuclear magnetic resonance are rapid but have a low sensitivity; chromatography and spectroscopy are highly accurate with a deterring price tag; dielectric spectroscopy is rapid can be portable and has on-line compatibility; however, the results are susceptible to variation of electric current frequency and intrinsic factors (moisture, temperature, structural composition). This review paper can be useful for scientists or for knowledge seekers eager to be abreast with edible oil adulteration detection techniques.
Collapse
Affiliation(s)
- Anjali Sudhakar
- Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| | - Subir Kumar Chakraborty
- Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| | - Naveen Kumar Mahanti
- Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| | - Cinu Varghese
- Rural Development Centre, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
15
|
|
16
|
Stepwise strategy based on 1H-NMR fingerprinting in combination with chemometrics to determine the content of vegetable oils in olive oil mixtures. Food Chem 2021; 366:130588. [PMID: 34314930 DOI: 10.1016/j.foodchem.2021.130588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/23/2022]
Abstract
1H NMR fingerprinting of edible oils and a set of multivariate classification and regression models organised in a decision tree is proposed as a stepwise strategy to assure the authenticity and traceability of olive oils and their declared blends with other vegetable oils (VOs). Oils of the 'virgin olive oil' and 'olive oil' categories and their mixtures with the most common VOs, i.e. sunflower, high oleic sunflower, hazelnut, avocado, soybean, corn, refined palm olein and desterolized high oleic sunflower oils, were studied. Partial least squares (PLS) discriminant analysis provided stable and robust binary classification models to identify the olive oil type and the VO in the blend. PLS regression afforded models with excellent precisions and acceptable accuracies to determine the percentage of VO in the mixture. The satisfactory performance of this approach, tested with blind samples, confirm its potential to support regulations and control bodies.
Collapse
|
17
|
Dimitrakopoulou ME, Vantarakis A. Does Traceability Lead to Food Authentication? A Systematic Review from A European Perspective. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1923028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Apostolos Vantarakis
- Department of Public Health, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
18
|
Hanganu A, Chira NA. When detection of dairy food fraud fails: An alternative approach through proton nuclear magnetic resonance spectroscopy. J Dairy Sci 2021; 104:8454-8466. [PMID: 33934861 DOI: 10.3168/jds.2020-19883] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/27/2021] [Indexed: 11/19/2022]
Abstract
This paper investigated the limits of the current approach for the determination of the fatty acids profile of milk fats from proton nuclear magnetic resonance data based on the hypothesis that the signal at 0.96 ppm, currently assigned in the literature as a marker for the "short chain fatty acids," is generated only by the butyric moiety (not by all of the short-chain fatty acids, which also include C6:0-caproic acid). The hypothesis was tested and experimentally confirmed. Moreover, the triplet at 0.96 ppm can also be due to n-3 fatty acids such as linolenic acid (C18:3); therefore, a previously reported methodology for the fatty acids profiling of dairy products-considered as general in the literature-cannot be used in fraud-detection approaches because it allows linolenic acid to be mistaken for butyric acid, consequently leading to misclassification of adulterated samples as nonadulterated. To support our opinion, we have applied the current literature approach for the determination of the fatty acids composition of 3 synthetic nondairy fat blends and have obtained fatty acid compositions similar to milk fats, allowing for their misclassification as genuine milk fats. However, in reality, the blends had very different compositions, as confirmed by gas chromatography. Consequently, we have highlighted the weaknesses of the existing methodology for the detection of dairy food adulteration. In return, new proton nuclear magnetic resonance descriptors based on various integral ratios of signals associated with CH2 moiety versus signals associated with butyric and n-3 fatty acids were proposed to detect adulterations.
Collapse
Affiliation(s)
- Anamaria Hanganu
- Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, University of Bucharest, 90-92 Panduri Street, RO-050663 Bucharest, Romania; Institute of Organic Chemistry "C.D. Nenitescu" of the Romanian Academy, 202B Spl. Independentei, 060023 Bucharest, Romania
| | - Nicoleta-Aurelia Chira
- Faculty of Applied Chemistry and Materials Science, "C. Nenitescu" Organic Chemistry Department, University "Politehnica" of Bucharest, 1-7 Polizu Str., 011061 Bucharest, Romania.
| |
Collapse
|
19
|
Rapid Detection of Adulteration in Extra Virgin Olive Oil by Low-Field Nuclear Magnetic Resonance Combined with Pattern Recognition. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01973-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Turrini F, Zunin P, Boggia R. Potentialities of Rapid Analytical Strategies for the Identification of the Botanical Species of Several " Specialty" or " Gourmet" Oils. Foods 2021; 10:foods10010183. [PMID: 33477589 PMCID: PMC7831336 DOI: 10.3390/foods10010183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
A comprehensive data collection of authentic "specialty" or "gourmet" oils, namely cold-pressed industrial virgin oils, was performed. Eight different botanical species, i.e., Almond, Apricot, Avocado, Hazelnut, Mosqueta rose, Rosehip, Sunflower, and Walnut oils were studied plus Olive oil as the gold standard of cold-pressed virgin oils. Two different analytical approaches are proposed to rapidly verify the botanical species of the oil-based raw material. The first approach is based on a multivariate statistical analysis of conventional analytical data, namely their fatty acid composition. These data have been re-elaborated in a multivariate way by Principal Component Analysis (PCA) and classification methods. The second approach proposes a fast and non-destructive spectrophotometric analysis to determine the color of these oils to discriminate among different species. In this regard, the raw diffuse reflectance spectra (380-780 nm) obtained by a UV-Vis spectrophotometer with an integrating sphere was considered and elaborated by chemometrics. This information was compared with the results obtained by the most common approach based on the CIELab parameters. A data fusion of chromatographic and spectral data was also investigated. Either fatty acid composition or color of these oils demonstrated to be two promising markers of their botanical authenticity.
Collapse
|
21
|
Putri AR, Aliaño-González MJ, Ferreiro M, Setyaningsih W, Rohman A, Riyanto S, Palma M. Development of a methodology based on headspace-gas chromatography-ion mobility spectrometry for the rapid detection and determination of patin fish oil adulterated with palm oil. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
22
|
Ruisánchez I, Jiménez-Carvelo AM, Callao MP. ROC curves for the optimization of one-class model parameters. A case study: Authenticating extra virgin olive oil from a Catalan protected designation of origin. Talanta 2020; 222:121564. [PMID: 33167260 DOI: 10.1016/j.talanta.2020.121564] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 01/03/2023]
Abstract
This paper proposes a ROC curve-based methodology to find optimal classification model parameters. ROC curves are implemented to set the optimal number of PCs to build a one-class SIMCA model and to set the threshold class value that optimizes both the sensitivity and specificity of the model. The authentication of the geographical origin of extra-virgin olive oils of Arbequina botanical variety is presented. The model was developed for samples from Les Garrigues, target class, Samples from Siurana were used as the non-target class. Samples were measured by FT-Raman with no pretreatment. PCA was used as exploratory technique. Spectra underwent pre-treatment and variables were selected based on their VIP score values. ROC curve and others already known criteria were applied to set the threshold class value. The results were better when the ROC curve was used, obtaining performance values higher than 82%, 75% and 77% for sensitivity, specificity and efficiency, respectively.
Collapse
Affiliation(s)
- Itziar Ruisánchez
- Chemometrics, Qualimetric and Nanosensors Grup, Department of Analytical and Organic Chemistry, Rovira I Virgili University, Marcel·lí Domingo S/n, 43007, Tarragona, Spain
| | - Ana M Jiménez-Carvelo
- Department of Analytical Chemistry, University of Granada, C/Fuentenueva, S.n., E-18071, Granada, Spain
| | - M Pilar Callao
- Chemometrics, Qualimetric and Nanosensors Grup, Department of Analytical and Organic Chemistry, Rovira I Virgili University, Marcel·lí Domingo S/n, 43007, Tarragona, Spain.
| |
Collapse
|
23
|
Hassoun A, Måge I, Schmidt WF, Temiz HT, Li L, Kim HY, Nilsen H, Biancolillo A, Aït-Kaddour A, Sikorski M, Sikorska E, Grassi S, Cozzolino D. Fraud in Animal Origin Food Products: Advances in Emerging Spectroscopic Detection Methods over the Past Five Years. Foods 2020; 9:E1069. [PMID: 32781687 PMCID: PMC7466239 DOI: 10.3390/foods9081069] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022] Open
Abstract
Animal origin food products, including fish and seafood, meat and poultry, milk and dairy foods, and other related products play significant roles in human nutrition. However, fraud in this food sector frequently occurs, leading to negative economic impacts on consumers and potential risks to public health and the environment. Therefore, the development of analytical techniques that can rapidly detect fraud and verify the authenticity of such products is of paramount importance. Traditionally, a wide variety of targeted approaches, such as chemical, chromatographic, molecular, and protein-based techniques, among others, have been frequently used to identify animal species, production methods, provenance, and processing of food products. Although these conventional methods are accurate and reliable, they are destructive, time-consuming, and can only be employed at the laboratory scale. On the contrary, alternative methods based mainly on spectroscopy have emerged in recent years as invaluable tools to overcome most of the limitations associated with traditional measurements. The number of scientific studies reporting on various authenticity issues investigated by vibrational spectroscopy, nuclear magnetic resonance, and fluorescence spectroscopy has increased substantially over the past few years, indicating the tremendous potential of these techniques in the fight against food fraud. It is the aim of the present manuscript to review the state-of-the-art research advances since 2015 regarding the use of analytical methods applied to detect fraud in food products of animal origin, with particular attention paid to spectroscopic measurements coupled with chemometric analysis. The opportunities and challenges surrounding the use of spectroscopic techniques and possible future directions will also be discussed.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Ingrid Måge
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Walter F. Schmidt
- United States Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705-2325, USA;
| | - Havva Tümay Temiz
- Department of Food Engineering, Bingol University, 12000 Bingol, Turkey;
| | - Li Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China;
| | - Hae-Yeong Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea;
| | - Heidi Nilsen
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, University of L’Aquila, 67100 Via Vetoio, Coppito, L’Aquila, Italy;
| | | | - Marek Sikorski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland;
| | - Ewa Sikorska
- Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland;
| | - Silvia Grassi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Celoria, 2, 20133 Milano, Italy;
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 39 Kessels Rd, Coopers Plains, QLD 4108, Australia;
| |
Collapse
|
24
|
Hajjar G, Merchak N, Daniel C, Rizk T, Akoka S, Bejjani J. Improved lipid mixtures profiling by 1H NMR using reference lineshape adjustment and deconvolution techniques. Talanta 2020; 208:120475. [DOI: 10.1016/j.talanta.2019.120475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/19/2019] [Accepted: 10/13/2019] [Indexed: 10/25/2022]
|
25
|
|
26
|
Chemometric tools for the authentication of cod liver oil based on nuclear magnetic resonance and infrared spectroscopy data. Anal Bioanal Chem 2019; 411:6931-6942. [PMID: 31401671 PMCID: PMC6834736 DOI: 10.1007/s00216-019-02063-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 11/03/2022]
Abstract
Cod liver oil is a popular dietary supplement marketed as a rich source of omega-3 fatty acids as well as vitamins A and D. Due to its high market price, cod liver oil is vulnerable to adulteration with lower priced vegetable oils. In this study, 1H and 13C nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and gas chromatography (coupled to a flame ionization detector) were used in combination with multivariate statistics to determine cod liver oil adulteration with common vegetable oils (sunflower and canola oils). Artificial neural networks (ANN) were able to differentiate adulteration levels based on infrared spectra with a detection limit of 0.22% and a root mean square error of prediction (RMSEP) of 0.86%. ANN models using 1H NMR and 13C NMR data yielded detection limits of 3.0% and 1.8% and RMSEPs of 2.7% and 1.1%, respectively. In comparison, the ANN model based on fatty acid profiles determined by gas chromatography achieved a detection limit of 0.81% and an RMSEP of 1.1%. The approach of using spectroscopic techniques in combination with multivariate statistics can be regarded as a promising tool for the authentication of cod liver oil and may pave the way for a holistic quality assessment of fish oils. Graphical abstract.
Collapse
|
27
|
¹H-NMR Profiling and Carbon Isotope Discrimination as Tools for the Comparative Assessment of Walnut ( Juglans regia L.) Cultivars with Various Geographical and Genetic Origins-A Preliminary Study. Molecules 2019; 24:molecules24071378. [PMID: 30965673 PMCID: PMC6479532 DOI: 10.3390/molecules24071378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 11/24/2022] Open
Abstract
The aim of the study was to investigate the differences between walnut genotypes of various geographical and genetic origins grown under the same or different environmental conditions. The biological material analyzed consisted in walnut kernels of 34 cultivars, nine advanced selections, and six hybrids harvested in 2015 and 2016, summing up to a total of 64 samples. The walnuts, walnut oil, and residue were characterized in respect to their chemical (proximate composition—fat, protein, nutritional value, fatty acids profile by 1H-NMR) and carbon-13 isotopic composition. The data was used to statistically discriminate the cultivars according to composition, geographical area of origin, and year of harvest, comparing the Romanian cultivars, selections, and hybrids with the internationally available ones.
Collapse
|