1
|
Xiao S, Cui J, Cao Y, Zhang Y, Yang J, Zheng L, Zhao F, Liu X, Zhou Z, Liu D, Wang P. Adolescent exposure to organophosphate insecticide malathion induces spermatogenesis dysfunction in mice by activating the HIF-1/MAPK/PI3K pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125209. [PMID: 39476999 DOI: 10.1016/j.envpol.2024.125209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/19/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024]
Abstract
Chemical-caused reproductive dysfunction has emerged as a global public health concern. This study investigated the adverse effects of the organophosphorus pesticide malathion on reproductive function in adolescent male mice at environmentally relevant concentrations. The results indicated that eight-week malathion exposure reduced testis weight, caused sex and thyroid hormone disorders, and induced testicular spermatogenic epithelium damage and oxidative stress. Testicular RNA sequencing indicated that malathion significantly affected testicular energy metabolism, hypoxia-inducible factor 1 (HIF-1) signaling, and steroid hormone biosynthesis pathways. Malathion significantly increased the gene and protein expression of HIF-1α by upregulating key genes in the mitogen-activated protein kinase (MAPK) pathway (Map2k2, Mapk3, and Eif4e2) and the phosphatidylinositol 3-kinase (PI3K) pathway (Pik3r2 and Akt1). Furthermore, malathion downregulated HIF-1α degradation-regulating genes while upregulating anaerobic metabolism and inflammation-related genes, thereby inhibiting normoxia and promoting hypoxia processes. Testicular hypoxia subsequently induced steroid hormone biosynthesis disorders and spermatogenesis dysfunction. Molecular docking verified that malathion interfered with HIF-1α and steroid hormone synthases (CYP11A1, CYP17A1 and CYP19A1) by forming hydrogen bonds and hydrophobic interactions with these proteins. This study presents the first evidence that malathion triggers spermatogenesis dysfunction in mice through activating the HIF-1/MAPK/PI3K pathway, providing a comprehensive understanding of the reproductive toxicity risks associated with organophosphorus pesticides.
Collapse
Affiliation(s)
- Shouchun Xiao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Jingna Cui
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Yue Cao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Yaru Zhang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Jiaxing Yang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Li Zheng
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Fanrong Zhao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Xueke Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China.
| |
Collapse
|
2
|
Pang X, Chen Y, Gao R, Sun Y, Qiao X, Xu Z. Single-atom Zr-doped CoOOH with enhanced electrical conductivity as a signal amplifier and detection probe for the indirect non-enzymatic electrochemical determination of malathion in foods. Food Chem 2024; 460:140563. [PMID: 39053269 DOI: 10.1016/j.foodchem.2024.140563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Herein, a novel electrochemical sensor based on zirconium-doped cobalt oxyhydroxide (ZrCoOOH) was proposed for highly sensitive non-enzymatic determination of malathion (MAL). The doping of Zr can improve the electrical conductivity of CoOOH, of which the transfer resistance was reduced from 241.1 Ω to 140.2 Ω. Furthermore, the X-ray photoelectron spectroscopy confirmed that part of Co2+ was converted to Co3+ due to the introduction of Zr. The Co3+ in ZrCoOOH could react with MAL to form Co2+, which enhanced the electrooxidation current of Co2+. Therefore, the peak current of Co2+ was served as detection probe for MAL. Under optimal conditions, the developed sensor established the linear relationship for MAL in the concentration range of 0.001-10.0 μM with a low limit of detection (0.64 nM). The constructed sensor was employed to detect MAL in food samples (peach, kiwi fruit, spinach and tomato), verifying the accuracy and practicability of the sensor.
Collapse
Affiliation(s)
- Xiaomin Pang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Yongfeng Chen
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Rui Gao
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Yufeng Sun
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Xuguang Qiao
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Zhixiang Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China.
| |
Collapse
|
3
|
Sarangi PK, Srivastava RK, Vivekanand V, Goksen G, Sahoo UK, Thakur TK, Debeaufort F, Uysal-Unalan I, Pugazhendhi A. Recovery of green phenolic compounds from lignin-based source: Role of ferulic acid esterase towards waste valorization and bioeconomic perspectives. ENVIRONMENTAL RESEARCH 2024; 256:119218. [PMID: 38782335 DOI: 10.1016/j.envres.2024.119218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
The production of chemicals/products so far relies on fossil-based resources with the creation of several environmental problems at the global level. In this situation, a sustainable and circular economy model is necessitated to mitigate global environmental issues. Production of biowaste from various processing industries also creates environmental issues which would be valorized for the production of industrially important reactive and bioactive compounds. Lignin acts as a vital part in biowaste composition which can be converted into a wide range of phenolic compounds. The phenolic compounds have attracted much attention, owing to their influence on diverse not only organoleptic parameters, such as taste or color, but also active agents for active packaging systems. Crop residues of varied groups, which are an affluent source of lignocellulosic biomass could serve as a renewable resource for the biosynthesis of ferulic acid (FA). FA is obtained by the FA esterase enzyme action, and it can be further converted into various tail end phenolic flavor green compounds like vanillin, vanillic acid and hydroxycinnamic acid. Lignin being renewable in nature, processing and management of biowastes towards sustainability is the need as far as the global industrial point is concerned. This review explores all the approaches for conversion of lignin into value-added phenolic compounds that could be included to packaging applications. These valorized products can exhibit the antioxidant, antimicrobial, cardioprotective, anti-inflammatory and anticancer properties, and due to these features can emerge to incorporate them into production of functional foods and be utilization of them at active food packaging application. These approaches would be an important step for utilization of the recovered bioactive compounds at the nutraceutical and food industrial sectors.
Collapse
Affiliation(s)
| | - Rajesh Kumar Srivastava
- Department of Biotechnology, GST, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam, 530045, A.P., India
| | - Vivekanand Vivekanand
- Center for Energy and Environment, Malaviya National Institute of Technology Jaipur, 302 017, Rajasthan, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences, Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100, Mersin, Turkey
| | | | | | - Frederic Debeaufort
- Department of BioEngineering, Institute of Technology Dijon Auxerre, University of Burgundy, 7 Blvd Docteur Petitjean, 20178 Dijon Cedex, France
| | - Ilke Uysal-Unalan
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark; CiFOOD - Center for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| |
Collapse
|
4
|
Si W, Huo K, Wu N, Yang H, Liu H, Jin X, Chen L, Huang Z, Wang S, Bai B. HRMS analysis of pesticides in vegetables from Shanghai and risk assessment. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:35-45. [PMID: 38087650 DOI: 10.1080/19393210.2023.2280967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/05/2023] [Indexed: 02/15/2024]
Abstract
A rapid analytical method for the simultaneous determination of 550 pesticide residues in vegetable samples was developed based on ultra-high performance liquid chromatography-tandem Q/Orbitrap high-resolution mass spectrometry (UPLC-Q/Orbitrap-HRMS). To investigate the risk of exposure to pesticide residues through vegetable consumption, 704 leafy vegetable samples from Shanghai were analysed for multiple residues using this method. A total of 54 pesticide residues were identified in these vegetable samples and 302 samples contained one or more pesticide residue. The levels of the detected pesticides did not pose a health risk in the long term and were acceptable according to the results of the chronic dietary risk assessment. Risk rankings displayed that most of the pesticides were low to medium risk. The findings of this study provide a reference for future pesticide monitoring programmes.
Collapse
Affiliation(s)
- Wenshuai Si
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-Elite Agri-food Testing Technical Service Co. Ltd, Shanghai, China
| | - Kaixuan Huo
- Shanghai Co-Elite Agri-food Testing Technical Service Co. Ltd, Shanghai, China
| | - Nan Wu
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Haifeng Yang
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Co-Elite Agri-food Testing Technical Service Co. Ltd, Shanghai, China
| | - Haiyan Liu
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Co-Elite Agri-food Testing Technical Service Co. Ltd, Shanghai, China
| | - Xiaofen Jin
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Co-Elite Agri-food Testing Technical Service Co. Ltd, Shanghai, China
| | - Lei Chen
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Co-Elite Agri-food Testing Technical Service Co. Ltd, Shanghai, China
| | - Zhiying Huang
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Co-Elite Agri-food Testing Technical Service Co. Ltd, Shanghai, China
| | - Shouying Wang
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Co-Elite Agri-food Testing Technical Service Co. Ltd, Shanghai, China
| | - Bing Bai
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
5
|
Ouakhssase A, Jalal M, Addi EA. Pesticide contamination pattern from Morocco, insights into the surveillance situation and health risk assessment: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:313. [PMID: 38416294 DOI: 10.1007/s10661-024-12507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
The widespread application of pesticides in Morocco's agriculture renders their monitoring in food and environmental samples very necessary. Recent years have witnessed a growing interest in reporting studies related to the monitoring of pesticide residues in food, water, groundwater, and soil as well as their quantitative health risk assessment. Most published studies have been done by university researchers. However, the lack of research reproducibility remains a problem that considerably limits the possibility of exploiting data from the literature. Our study involves an extensive literature review utilizing search engines with keywords like "pesticide residues," "monitoring," "vegetables and fruits," "water and soil," "risk assessment," and "Morocco" from 2009 to 2023. Analysis of pesticide residues in foodstuffs and environmental samples highlights concerns over compliance with EU regulations, the health risks associated with pesticide exposure, and the necessity for comprehensive monitoring and risk assessment strategies. This paper could help influence policies to develop a strategy and action plan for the sound management of pesticides, including measures to reduce their use, raise awareness, and monitor compliance. Also, this paper could be useful for scientists interested in understanding the current situation and challenges regarding pesticide residues in Morocco, as well as countries with which commercial links exist.
Collapse
Affiliation(s)
- Abdallah Ouakhssase
- Laboratoire des Sciences de la Vie et de la Santé, Faculté de Médecine et de Pharmacie de Tanger, Université Abdelmalek Essaâdi, Tétouan, Morocco.
| | - Mariam Jalal
- Laboratoire de Biologie Cellulaire et Génétique Moléculaire (LBCGM), Faculté des sciences, Université Ibn Zohr, Agadir, Morocco
| | - Elhabib Ait Addi
- Equipe de recherche Génie des procédés et Ingénierie Chimique (GPIC), Ecole Supérieure de Technologie d'Agadir, B.P: 33/S, Université Ibn Zohr, Agadir, Morocco
| |
Collapse
|
6
|
Ma J, Ren W, Dai S, Wang H, Chen S, Song J, Jia J, Chen H, Tan C, Sui Y, Teng Y, Luo Y. Spatial distribution and ecological-health risks associated with herbicides in soils and crop kernels of the black soil region in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168439. [PMID: 37949128 DOI: 10.1016/j.scitotenv.2023.168439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Herbicides are vital inputs for food production; however, their associated risks and hazards are pressing concerns. In black soil, the cumulative toxic effects of compound herbicides and potential risks to humans are not yet fully understood. Thus, this study conducted a comprehensive investigation to assess herbicide residue characteristics and the associated ecological health risks in representative black soil regions where major food crops (maize, soybean, and rice) are cultivated. Findings revealed that the soil harbored a collective presence of 29 herbicides, exhibiting total concentrations ranging from 111.92 to 996.14 μg/kg dry weight (dw). This can be attributed to the extensive use of herbicides over the years and their long half-lives, which results in the accumulation of multiple herbicide residues in the soil. Similarly, the total herbicide levels in maize, soybean, and rice kernels were 1173-61,564, 1721-9342, and 3775-8094 ng/kg dw, respectively. Multiple herbicide residues at all monitored sites were attributed to continuous crop barriers in soybean fields and the adoption of soybean and maize crop rotations. Notably, herbicides pose ecological risks in the black soil region, exhibiting high-risk levels of 79 %, 24 %, and 14 % at the sites monitored for oxyfluorfen, clomazone, and butachlor, respectively. Carcinogenic atrazine exhibited low- and medium-risk levels in 34 % and 63 % of soil samples, respectively. These results can serve as a scientific basis for establishing herbicide residue thresholds in agricultural soils within black soil areas and for implementing effective control measures to prevent herbicide contamination in agricultural ecosystems.
Collapse
Affiliation(s)
- Jun Ma
- School of Geographic Sciences, Hunan Normal University, Changsha 410081, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Materials and Chemistry, Tongren University, Tongren 554300, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shixiang Dai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hongzhe Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Sensen Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiayin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Junfeng Jia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hong Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changyin Tan
- School of Geographic Sciences, Hunan Normal University, Changsha 410081, China
| | - Yueyu Sui
- Hailun Agro-ecosystem Experimental Station, Chinese Academy of Sciences, Hailun 152300, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Technology Innovation Center for Ecological Monitoring & Restoration Project on Land(Arable), Ministry of Natural Resources, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
7
|
Yu Z, Li C, Sun J, Sun X, Hu G. Electrochemiluminescence Sensor Based on CTS-MoS 2 and AB@CTS with Functionalized Luminol for Detection of Malathion Pesticide Residues. Foods 2023; 12:4363. [PMID: 38231882 DOI: 10.3390/foods12234363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024] Open
Abstract
The accumulation of pesticide residues poses a significant threat to the health of people and the surrounding ecological systems. However, traditional methods are not only costly but require expertise in analysis. An electrochemiluminescence (ECL) aptasensor was developed using chitosan and molybdenum disulfide (CTS-MoS2), along with acetylene black (AB@CTS) for the rapid detection of malathion residues. Due to the weak interaction force, simple composite may lead to uneven dispersion; MoS2 and AB were dissolved in CTS solution, respectively, and utilized the biocompatibility of CTS to interact with each other on the electrode. The MoS2 nanosheets provided a large specific surface area, enhancing the utilization rate of catalytic materials, while AB exhibited excellent conductivity. Additionally, the dendritic polylysine (PLL) contained numerous amino groups to load abundant luminol to catalyze hydrogen peroxide (H2O2) and generate reactive oxygen species (ROS). The proposed ECL aptasensor obtained a low detection limit of 2.75 × 10-3 ng/mL (S/N = 3) with a good detection range from 1.0 × 10-2 ng/mL to 1.0 × 103 ng/mL, demonstrating excellent specificity, repeatability, and stability. Moreover, the ECL aptasensor was successfully applied for detecting malathion pesticide residues in authentic samples with recovery rates ranging from 94.21% to 99.63% (RSD < 2.52%). This work offers valuable insights for advancing ECL sensor technology in future applications.
Collapse
Affiliation(s)
- Zhiping Yu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China
| | - Chengqiang Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, China
| | - Jiashuai Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, China
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
8
|
Yu J, Hou J, Xu Z, Yu R, Zhang C, Chen L, Zhao X. Dissipation behavior and dietary risk assessment of cyclaniliprole and its metabolite in cabbage under field conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125907-125914. [PMID: 38008836 DOI: 10.1007/s11356-023-31146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
Cyclaniliprole, a novel diamide insecticide, can successfully control Spodoptera litura (Fabricius, 1775) in cabbage. Understanding the residual level of cyclaniliprole in crops and the risk related to its dietary intake is imperative for safe application. Here, we established a simplified, sensitive method for simultaneous analysis of cyclaniliprole and its metabolite NK-1375 (3-bromo-2-((2-bromo-4H-pyrazolo[1,5-d]pyrido[3,2-b]-[1,4]oxazin-4-ylidene)amino)-5-chloro-N-(1-cyclopropylethyl)benzamide) in cabbage by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to investigate their dissipation behavior and residual characteristics. Cyclaniliprole showed rapid dissipation in cabbage and had a half-life of 1.8-2.7 days. The highest residue of total cyclaniliprole (sum of cyclaniliprole and NK-1375) in cabbage from different pre-harvest intervals (3 and 5 days) was 0.25 mg/kg. Our results confirmed the generally low dietary risk quotient of cyclaniliprole (0.243-1.036%) among different age and gender groups in China. Therefore, cyclaniliprole did not pose an unacceptable risk to consumers. This study contributes to setting cyclaniliprole maximum residue limit in cabbage by assessing its dissipation fate and food safety risks.
Collapse
Affiliation(s)
- Jianzhong Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Jiayin Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhenlan Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ruixian Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Changpeng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
9
|
Ouakhssase A, Ait Addi E. Monitoring 432 potential pesticides in tomatoes produced and commercialized in Souss Massa region-Morocco, using LC-MS/MS and GC-MS/MS. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122611. [PMID: 37769705 DOI: 10.1016/j.envpol.2023.122611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
In this work, we monitored 432 pesticide residues in 39 tomato samples (cherry tomato) obtained from local markets in Souss Massa region-Morocco. We used a QuEChERS combined with LC-MS/MS and GC-MS/MS, and the method was validated based on SANTE 11312/2021 guideline. The limits of quantification (LOQ) obtained for most of the pesticides analyzed are at the limit with default EU MRLs or well below other EU MRLs. Recoveries (between 70 and 120%) and RSDs (≤20%) are satisfactory for more than 95% of the analytes at spiking level of 0.01 mg/kg and more than 97% at 0.1 mg/kg. The results indicated that 22 out of 39 tomato samples are positives and the most of our samples had levels lower than the maximum residue levels (MRLs) with average concentrations between 0.011 and 0.156 mg/kg. The most found pesticides were azoxystrobin and difenoconazole in tomato (7 samples). Only buprofezin (0.095 mg/kg) was found above the EU MRLs (0.01 mg/kg). Also, banned pesticides namely benalaxyl, spirodiclofen and imidacloprid have been detected. The results of our study confirm the previous findings and gives insights on the occurrence of different pesticides in tomato samples from Souss Massa region-Morocco.
Collapse
Affiliation(s)
- Abdallah Ouakhssase
- Equipe de recherche Génie des procédés et Ingénierie Chimique (GPIC), Ecole Supérieure de Technologie d'Agadir, B.P: 33/S, Université Ibn Zohr, Agadir, Morocco.
| | - Elhabib Ait Addi
- Equipe de recherche Génie des procédés et Ingénierie Chimique (GPIC), Ecole Supérieure de Technologie d'Agadir, B.P: 33/S, Université Ibn Zohr, Agadir, Morocco
| |
Collapse
|
10
|
Hesami Arani M, Kermani M, Rezaei Kalantary R, Jaafarzadeh N, Bagheri Arani S. Pesticides residues determination and probabilistic health risk assessment in the soil and cantaloupe by Monte Carlo simulation: A case study in Kashan and Aran-Bidgol, Iran. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115229. [PMID: 37441953 DOI: 10.1016/j.ecoenv.2023.115229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/11/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
Cantaloupe is a popular agricultural product in the hot season of Iran. On the other hand, the frequent use of pesticides in cantaloupe fields is the most important threat to the health of farmers and consumers. Therefore, the present study aims to measure the concentration of diazinon (DZN), chlorpyrifos (CPF), and malathion (MLT) in cantaloupe cultivated in Kashan and Aran-Bidgol (Iran) and to estimate the possible oral and dermal risk of these pesticides by Monte Carlo simulation (MCS). 36 cantaloupe samples, 18 samples before, and 18 samples after the latent period were collected from different places of cantaloupe cultivation from April to May 2021. After measuring the pesticides using the QuEChERS approach, oral and dermal risk assessments were calculated.The mean and standard deviation of the concentrations of chlorpyrifos, malathion, and diazinon in 18 cantaloupe samples, after the latent period, were (30.39 ± 13.85), (18.361 ± 1.8), and (21.97 ± 0.86) μg kg-1, respectively. Concentration of Malathion, diazinon, and Chlorpyrifos in the soil were 0.22, 0.25, and 0.3 mg kg-1, respectively, and pesticide cumulative risk assessment in soil was obtained 0.011 for Malathion, 0.05 for diazinon and 0.03 for Chlorpyrifos. Target Hazard Quotient (THQ) according to the cantaloupe consumption and dermal exposure in children and adults, was safe range. Although non-cancerous dermal and oral risk of cantaloupe is low, constant exposure can be harmful. Therefore, the findings of this study play an important role in increasing the understanding of the negative health consequences of pesticide contamination in cantaloupe for consumers, especially local residents, and can help by adopting remedial strategies to reduce environmental concerns.
Collapse
Affiliation(s)
- Mohsen Hesami Arani
- Department of Environmental Health Engineering, School of public Health, Iran University of Medical Sciences, Tehran, Iran; Health System Research, Deputy of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Kermani
- Department of Environmental Health Engineering, School of public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Roshanak Rezaei Kalantary
- Department of Environmental Health Engineering, School of public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
| | - Neamatollah Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Samaneh Bagheri Arani
- Advanced studies of Art, Faculty of Art and Architecture, University of Kashan, Kashan, Iran
| |
Collapse
|
11
|
Wang Z, Luo F, Guo M, Yu J, Zhou L, Zhang X, Sun H, Yang M, Lou Z, Chen Z, Wang X. The metabolism and dissipation behavior of tolfenpyrad in tea: A comprehensive risk assessment from field to cup. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162876. [PMID: 36933718 DOI: 10.1016/j.scitotenv.2023.162876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 05/06/2023]
Abstract
The metabolites of pesticides usually require rational risk assessment. In the present study, the metabolites of tolfenpyrad (TFP) in tea plants were identified using UPLC-QToF/MS analysis, and the transfer of TFP and its metabolites from tea bushes to consumption was studied for a comprehensive risk assessment. Four metabolites, PT-CA, PT-OH, OH-T-CA, and CA-T-CA, were identified, and PT-CA and PT-OH were detected along with dissipation of the parent TFP under field conditions. During processing, 3.11-50.00 % of TFP was further eliminated. Both PT-CA and PT-OH presented a downward trend (7.97-57.89 %) during green tea processing but an upward trend (34.48-124.17 %) during black tea manufacturing. The leaching rate (LR) of PT-CA (63.04-101.03 %) from dry tea to infusion was much higher than that of TFP (3.06-6.14 %). As PT-OH was no longer detected in tea infusions after 1 d of TFP application, TFP and PT-CA were taken into account in the comprehensive risk assessment. The risk quotient (RQ) assessment indicated a negligible health risk, but PT-CA posed a greater potential risk than TFP to tea consumers. Therefore, this study provides guidance for rational TFP application and suggests the sum of TFP and PT-CA residues as the maximum residual limit (MRL) in tea.
Collapse
Affiliation(s)
- Zihan Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Fengjian Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Mingming Guo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiawei Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Hezhi Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Mei Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zhengyun Lou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xinru Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China.
| |
Collapse
|
12
|
Zhou Y, Yu Y, Huang Q, Zheng H, Zhan R, Chen L, Meng X. Simultaneous Determination of 26 Pesticide Residues in Traditional Chinese Medicinal Leeches by Modified QuEChERS Coupled with HPLC-MS/MS. ACS OMEGA 2023; 8:12404-12410. [PMID: 37033865 PMCID: PMC10077569 DOI: 10.1021/acsomega.3c00217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
A Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) pretreatment technique combined with HPLC-MS/MS was established to detect 26 pesticides in traditional Chinese medicinal leeches. The sample was extracted by acetonitrile solution with sodium acetate-0.1% (v/v) acetic acid as a buffer system, then cleaned up by a mixture of 750 mg of MgSO4, 150 mg of C18, and 150 mg of PSA, separated by an ACQUITY BEH C18 column, and determined in the dynamic multiple reaction mode. Under the optimized conditions, the peak areas of the 26 pesticides in leeches showed good linearity (r > 0.99) between their mass concentrations from 1 to 100 μg/L. At the spike levels of 10, 20, and 100 μg/kg, the recoveries of 26 pesticides in leeches were 72.9-101.6% with an RSD of 1.1-12.8%, an LOQ of 10 μg/kg, and an LOD of 0.1-5.4 μg/kg. This method is easy, rapid, sensitive, and practical and meets the requirements of pesticide residue detection standards.
Collapse
Affiliation(s)
- Ying Zhou
- College
of Biological and Environmental Engineering, Jingdezhen University, Jingdezhen
City 334000, Jiangxi
Province, P.R. China
| | - Yahui Yu
- College
of Biological and Environmental Engineering, Jingdezhen University, Jingdezhen
City 334000, Jiangxi
Province, P.R. China
| | - Qian Huang
- Jingdezhen
Nursing School, Jingdezhen 333000, P.R. China
| | - Huixin Zheng
- College
of Biological and Environmental Engineering, Jingdezhen University, Jingdezhen
City 334000, Jiangxi
Province, P.R. China
| | - Ruyi Zhan
- College
of Biological and Environmental Engineering, Jingdezhen University, Jingdezhen
City 334000, Jiangxi
Province, P.R. China
| | - Luting Chen
- College
of Biological and Environmental Engineering, Jingdezhen University, Jingdezhen
City 334000, Jiangxi
Province, P.R. China
| | - Xingang Meng
- College
of Biological and Environmental Engineering, Jingdezhen University, Jingdezhen
City 334000, Jiangxi
Province, P.R. China
| |
Collapse
|
13
|
Zhu C, Wang X, Yu D, Chen L, Han X. Hairpin DNA-enabled ratiometric electrochemical aptasensor for detection of malathion. Mikrochim Acta 2023; 190:167. [PMID: 37012478 DOI: 10.1007/s00604-023-05760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
A hairpin DNA-enabled ratiometric electrochemical aptasensor is reported for sensitive and reliable detection of malathion (MAL). The approach employs hairpin DNA (ferrocene-labeled, Fc-hDNA) as a carrier to hybridize MAL aptamers (methylene blue-labeled, MB-Apt) to form double-stranded DNA structures on an electrode. The presence of MAL induces the removal of aptamers, and hDNA re-forms hairpin structures, causing a decrease in the oxidation current of MB (IMB) and an increase in the oxidation current of Fc (IFc). The ratiometric signal of IFc/IMB responds quantitatively to MAL concentrations. To compare analytical performances, a linear single-stranded DNA (ssDNA) is also used to construct the ssDNA-based aptasensor. We demonstrate that hairpin DNA possessing a rigid two-dimensional structure can improve the assembly efficiency of aptamers and the stability of redox probes. The approach combines the advantages of the ratiometric electrochemical method with hairpin DNA-based conformational switching probes, enabling hDNA-based aptasensor with enhanced sensitivity and reliability, offering a linear range of 0.001 to 1.0 ng mL-1. The platform was applied to detect MAL in lettuce, and the statistical analysis indicated that no significant differences were found between the developed platform and HPLC-MS.
Collapse
Affiliation(s)
- Chengxi Zhu
- School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, China.
| | - Xi Wang
- School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Dongmei Yu
- School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Lixing Chen
- School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Xiaoxin Han
- School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| |
Collapse
|
14
|
Bruxel MA, da Silva FN, da Silva RA, Zimath PL, Rojas A, Moreira ELG, Quesada I, Rafacho A. Preconception exposure to malathion and glucose homeostasis in rats: Effects on dams during pregnancy and post-term periods, and on their progeny. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120633. [PMID: 36370973 DOI: 10.1016/j.envpol.2022.120633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Understanding the individual and global impact of pesticides on human physiology and the different stages of life is still a challenge in environmental health. We analyzed here whether administration of the organophosphate insecticide malathion before pregnancy could affect glucose homeostasis during pregnancy and, in addition, generate possible later consequences in mothers and offspring. For this, adult Wistar rats were allocated into two groups and were treated daily (intragastric) with malathion (14 or 140 mg/kg, body mass (bm)) for 21-25 days. Corn oil was used as vehicle in the Control group. Subgroups were defined based on the absence (nulliparous) or presence (pregnant) of a copulatory plug. Pregnant rats were followed by an additional period of 2 months after the term (post-term), without continuing malathion treatment. Fetuses and adult offspring of males and females were also evaluated. We ran an additional experimental design with rats exposed to malathion before pregnancy at a dose of 0.1 mg/kg bm. Malathion exposure resulted in glucose intolerance in the mothers during pregnancy and post-term period, regardless of the exposure dose. This was accompanied by increased visceral adipose tissue mass, dyslipidemia, unchanged pancreatic β-cell mass, and varying insulin responses to glucose in vivo. The number of total newborns and birthweight was not affected by malathion exposure. Adult offspring from both sexes also became glucose-intolerant, regardless of the pesticide dose their dams were exposed to. This alteration could be associated with changes at the epigenomic level, as reduced hepatic mRNA content of DNA methylases and demethylases was found. We demonstrated that periconceptional exposure to malathion with doses aiming to mimic from work environment to indirect contamination predisposes progenitors and offspring rats to glucose intolerance. Thus, we conclude that subchronic exposure to malathion is a risk factor for gestational diabetes and prediabetes later in life.
Collapse
Affiliation(s)
- Maciel Alencar Bruxel
- Laboratory of Investigation in Chronic Diseases - LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil; Multicenter Graduate Program in Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil
| | - Flávia Natividade da Silva
- Laboratory of Investigation in Chronic Diseases - LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil; Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil
| | - Rodrigo Augusto da Silva
- Center of Epigenetic Study and Gene Regulation - CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University - UNIP, São Paulo, Brazil
| | - Priscila Laiz Zimath
- Laboratory of Investigation in Chronic Diseases - LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil; Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil
| | - Anabel Rojas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad Pablo de Olavide, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Eduardo Luis Gasnhar Moreira
- Laboratory of Investigation in Chronic Diseases - LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil; Multicenter Graduate Program in Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil
| | - Ivan Quesada
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Alex Rafacho
- Laboratory of Investigation in Chronic Diseases - LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil; Multicenter Graduate Program in Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil; Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil.
| |
Collapse
|
15
|
Zhai W, Cao M, Xiao Z, Li D, Wang M. Rapid Detection of Malathion, Phoxim and Thiram on Orange Surfaces Using Ag Nanoparticle Modified PDMS as Surface-Enhanced Raman Spectroscopy Substrate. Foods 2022; 11:3597. [PMID: 36429190 PMCID: PMC9689543 DOI: 10.3390/foods11223597] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Malathion, phoxim, and thiram are organophosphates and organosulfur pesticides widely used in agricultural products. The residues of these pesticides present a direct threat to human health. Rapid and on-site detection is critical for minimizing such risks. In this work, a simple approach was introduced using a flexible surface-enhanced Raman spectroscopy (SERS) substrate. The prepared Ag nanoparticles-polydimethylsiloxane (AgNPs-PDMS) substrate showed high SERS activity, good precision (relative standard deviation = 5.33%), and stability (30 days) after optimization. For target pesticides, the linear relationship between characteristic SERS bands and concentrations were achieved in the range of 10~1000, 100~5000, and 50~5000 μg L-1 with LODs down to 3.62, 41.46, and 15.69 μg L-1 for thiram, malathion, and phoxim, respectively. Moreover, SERS spectra of mixed samples indicated that three pesticides can be identified simultaneously, with recovery rates between 96.5 ± 3.3% and 118.9 ± 2.4%, thus providing an ideal platform for detecting more than one target. Pesticide residues on orange surfaces can be simply determined through swabbing with the flexible substrate before acquiring the SERS signal. This study demonstrated that the prepared substrate can be used for the rapid detection of pesticides on real samples. Overall, this method greatly simplified the pre-treatment procedure, thus serving as a promising analytical tool for rapid and nondestructive screening of malathion, phoxim, and thiram on various agricultural products.
Collapse
Affiliation(s)
- Wenlei Zhai
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Mingshuo Cao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhiyong Xiao
- Beijing Center of AGRI-Products Quality and Safety, Beijing 100029, China
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Meng Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
16
|
Khosropour H, Kalambate PK, Kalambate RP, Permpoka K, Zhou X, Chen GY, Laiwattanapaisal W. A comprehensive review on electrochemical and optical aptasensors for organophosphorus pesticides. Mikrochim Acta 2022; 189:362. [PMID: 36044085 DOI: 10.1007/s00604-022-05399-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/01/2022] [Indexed: 12/07/2022]
Abstract
There has been a rise in pesticide use as a result of the growing industrialization of agriculture. Organophosphorus pesticides have been widely applied as agricultural and domestic pest control agents for nearly five decades, and they remain as health and environmental hazards in water supplies, vegetables, fruits, and processed foods causing serious foodborne illness. Thus, the rapid and reliable detection of these harmful organophosphorus toxins with excellent sensitivity and selectivity is of utmost importance. Aptasensors are biosensors based on aptamers, which exhibit exceptional recognition capability for a variety of targets. Aptasensors offer numerous advantages over conventional approaches, including increased sensitivity, selectivity, design flexibility, and cost-effectiveness. As a result, interest in developing aptasensors continues to expand. This paper discusses the historical and modern advancements of aptasensors through the use of nanotechnology to enhance the signal, resulting in high sensitivity and detection accuracy. More importantly, this review summarizes the principles and strategies underlying different organophosphorus aptasensors, including electrochemical, electrochemiluminescent, fluorescent, and colorimetric ones.
Collapse
Affiliation(s)
- Hossein Khosropour
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Pramod K Kalambate
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rupali P Kalambate
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Khageephun Permpoka
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Xiaohong Zhou
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - George Y Chen
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen, 518060, China
| | - Wanida Laiwattanapaisal
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
17
|
Liang Z, Mahmoud Abdelshafy A, Luo Z, Belwal T, Lin X, Xu Y, Wang L, Yang M, Qi M, Dong Y, Li L. Occurrence, detection, and dissipation of pesticide residue in plant-derived foodstuff: A state-of-the-art review. Food Chem 2022; 384:132494. [DOI: 10.1016/j.foodchem.2022.132494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/25/2022]
|
18
|
Lamb RW, McAlexander H, Woodley CM, Shukla MK. Towards a comprehensive understanding of malathion degradation: comparison of degradation reactions under alkaline and radical conditions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1026-1036. [PMID: 35575998 DOI: 10.1039/d2em00050d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Malathion is a commercially available insecticide that functions by acting as an acetylcholinesterase inhibitor. Of significant concern, if left in the environment, some of the products observed from the degradation of malathion can function as more potent toxins than the parent compound. Accordingly, there are numerous studies revolving around possible degradation strategies to remove malathion from various environmental media. One of the possible approaches is the degradation of malathion by OH˙ radicals which could be produced from both artificial and biological means in the environment. While there is plenty of evidence that OH˙ does in fact degrade malathion, there is little understanding of the underlying mechanism by which OH˙ reacts with malathion. Moreover, it is not known how competitive the radical degradation pathway is with analogous alkaline degradation pathways. Even less is known about the reaction of additional OH˙ radicals with the degradation byproducts themselves. Herein, we demonstrate that OH˙ induced degradation pathways have variable competitiveness with OH- driven degradation pathways and, in some cases, produce quite different reactivity.
Collapse
Affiliation(s)
- Robert W Lamb
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Harley McAlexander
- US Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA.
| | - Christa M Woodley
- US Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA.
| | - Manoj K Shukla
- US Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA.
| |
Collapse
|
19
|
Liu G, Zhang X, Lu M, Tian M, Liu Y, Wang J, Li L, Li T, Chen G, Xu D. Adsorption and removal of organophosphorus pesticides from Chinese cabbages and green onions by using metal organic frameworks based on the mussel-inspired adhesive interface. Food Chem 2022; 393:133337. [PMID: 35653990 DOI: 10.1016/j.foodchem.2022.133337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 11/04/2022]
Abstract
Based on the mussel-inspired adhesive interface (Fe3O4-g-C3N4@PDA), a novel bionic metal-organic framework (Fe3O4-g-C3N4-PDA@MIL-101) was successfully prepared. The composite featured a high specific surface area and a multi-microchannel structure, as well as strong thermochemical stability. The structural property of Fe3O4-g-C3N4-PDA@MIL-101(Fe) was characterized, and the results indicated that Fe3O4, PDA, and MIL-101(Fe) were uniformly coated on the g-C3N4 surface. The adsorption and desorption of organophosphorus pesticides with Fe3O4-g-C3N4-PDA@MIL-101(Fe) were evaluated by batch experiments. This composite showed high adsorption efficiency and selective removal of coralox, phosalone, and chlorpyrifos. Under the optimal conditions, three organophosphorus pesticides were adsorbed from Chinese cabbage and green onion samples with Fe3O4-g-C3N4-PDA@MIL-101(Fe). The analytical method exhibited high sensitivity (LOD, 0.19-2.34 μg/L; LOQ, 0.65-7.82 μg/L), excellent practicality, and good stability, suggesting that Fe3O4-g-C3N4-PDA@MIL-101 was an ideal candidate magnetic adsorbent for the removal of organophosphorus pesticides in Chinese cabbage and green onion samples.
Collapse
Affiliation(s)
- Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China; College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou 075000, China; College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China.
| | - Xuan Zhang
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou 075000, China
| | - Meng Lu
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Mingshuo Tian
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Yuan Liu
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou 075000, China
| | - Jian Wang
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou 075000, China
| | - Lingyun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Tengfei Li
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Ge Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China.
| |
Collapse
|
20
|
Xu F, Xu D, Hu M, Chen L, Xu C, Zha X. Dissipation behaviour, residue analysis, and dietary safety evaluation of chlorfenapyr on various vegetables in China. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:724-739. [PMID: 35104200 DOI: 10.1080/19440049.2021.2025269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chlorfenapyr has been widely used in recent years to control a variety of pests on fruit and vegetables. Cabbage, leek, asparagus, and chive are four of the most common green foods consumed word wide; their pesticide residue issues have also received more attention. Therefore, studies on the residue analysis, degradation evaluation and dietary risk assessment based on the complete residue definition of chlorfenapyr on these four vegetables were essential and urgently needed. A reliable analytical method was developed and applied to simultaneously determine the content of chlorfenapyr and its metabolite tralopyril residues on the four vegetables. Recoveries were satisfactory (84%-110% for chlorfenapyr; 83%-106% for tralopyril) at a spiked level of 0.01-1 mg/kg, with intraday precision (n = 5) and interday precision (n = 15) ranging from 1.6% to 8.9% and from 2.4% to 9.1%, respectively. The limits of quantification (LOQs) were all 0.01 mg/kg. On the basis of supervised field trials, the degradation half-lives of chlorfenapyr were 1.2-9.8 days. Chlorfenapyr rapidly degraded on asparagus, but persisted much longer on chive. The terminal concentration of chlorfenapyr residues varied from <0.01 to 0.84 mg/kg. Additionally, the risk quotients (RQs) ranged from 4.7% to 13.8%, suggesting that chlorfenapyr had a negligible risk for chronic dietary intake of these crops. This study was thus significant in evaluating the degradation rate and quality safety of chlorfenapyr on various vegetables and promoted the development of maximum residue limits.
Collapse
Affiliation(s)
- Feng Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China.,Analysis Center, Residue Laboratory, Jiangsu Pesticide Research Institute, Nanjing, People's Republic of China
| | - Duo Xu
- Analysis Center, Residue Laboratory, Jiangsu Pesticide Research Institute, Nanjing, People's Republic of China
| | - Mengqing Hu
- Analysis Center, Residue Laboratory, Jiangsu Pesticide Research Institute, Nanjing, People's Republic of China
| | - Liuyang Chen
- Analysis Center, Residue Laboratory, Jiangsu Pesticide Research Institute, Nanjing, People's Republic of China
| | - Chenlong Xu
- Analysis Center, Residue Laboratory, Jiangsu Pesticide Research Institute, Nanjing, People's Republic of China
| | - Xinxin Zha
- Analysis Center, Residue Laboratory, Jiangsu Pesticide Research Institute, Nanjing, People's Republic of China
| |
Collapse
|
21
|
Li K, Chen W, Xiang W, Chen T, Zhang M, Ning Y, Liu Y, Chen A. Determination, residue analysis and risk assessment of thiacloprid and spirotetramat in cowpeas under field conditions. Sci Rep 2022; 12:3470. [PMID: 35236880 PMCID: PMC8891356 DOI: 10.1038/s41598-022-07119-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
The dissipation and residue levels of thiacloprid, spirotetramat and its four metabolites residues in cowpeas were investigated under field conditions. The QuEChERS technique with high-performance liquid chromatography tandem mass spectrometry (HPLC–MS/MS) was used to detect thiacloprid, spirotetramat and its four metabolites residues content in cowpeas. The recoveries were 81.3–95.1% at a spike level of 0.005–0.5 mg/kg, the relative standard deviations (RSDs) were 2.1–9.5%. The dissipation kinetics data showed that thiacloprid and spirotetramat in cowpeas were degraded with the half-lives of 1.14–1.54 days and 1.25–2.79 days. The terminal residues of thiacloprid and spirotetramat were 0.0255–0.4570 mg kg−1 and 0.0314–0.3070 mg kg−1 after application 2 times with a pre-harvest interval (PHI) of 3 days under the designed dosages. The chronic and acute dietary exposure assessment risk quotient (RQ) values of thiacloprid in cowpeas for different consumers were 2.44–4.41% and 8.72–15.78%, respectively, and those of spirotetramat were 1.03–1.87% and 0.18–0.32%, respectively, all of the RQ values were lower than 100%. The dietary risk of thiacloprid through cowpeas to consumers was higher than spirotetramat. The results from this study are important reference for Chinese governments to develop criteria for the safe and rational use of thiacloprid and spirotetramat, setting maximum residue levels (MRLs), monitoring the quality safety of agricultural products and protecting consumer health.
Collapse
Affiliation(s)
- Kailong Li
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, 410125, Hunan, People's Republic of China.
| | - Wuying Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, 410125, Hunan, People's Republic of China
| | - Wei Xiang
- Crop Research Institute, Hunan Academy of Agricultural Science, Changsha, 410125, Hunan, People's Republic of China
| | - Tongqiang Chen
- Hunan Testing Institute of Product and Commodity Supervision, Changsha, 410017, Hunan, People's Republic of China
| | - Min Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, 410125, Hunan, People's Republic of China
| | - Ying Ning
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, 410125, Hunan, People's Republic of China
| | - Yong Liu
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, 410125, Hunan, People's Republic of China
| | - Ang Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, 410125, Hunan, People's Republic of China.
| |
Collapse
|
22
|
Lin S, Zhou Y, Wu J, Zhang Z, Cheng D. Dissipation and residue of fosthiazate in tomato and cherry tomato and a risk assessment of dietary intake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9248-9256. [PMID: 34505248 DOI: 10.1007/s11356-021-16305-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
In this study, the safety and risk of fosthiazate as a nematicide against root-knot nematode in tomato and cherry tomato were evaluated. The dissipation and residue of fosthiazate for 28 days in tomatoes and cherry tomatoes were determined and studied by HPLC after simple, rapid pre-treatment. The mean recovery was 83.79~94.18%, and the relative standard deviations were 3.97~7.40%. Results showed that the half-lives of fosthiazate in tomatoes (4.81~5.37 days) were significantly lower than that in cherry tomatoes (5.25~5.73 days). At the pre-harvest interval (PHI) of 21 days, the residues of tomatoes and cherry tomatoes were 0.032~0.046 mg/kg, which were lower than the maximum residue level (MRL) established in China. The potential risks of fosthiazate exposure through the dietary intake of tomatoes and cherry tomatoes to different populations were also studied. According to the results of dietary risk assessment, the residual levels of fosthiazate were within the acceptable range of long-term dietary risk in different populations in China within the sampling interval of 21 days after the application of fosthiazate. Our results show that fosthiazate at 2250 g.a.i./ha in the field control of root-knot nematode has high safety and low risk, and can provide a reference for the safe and reasonable use of fosthiazate as a nematicide in the field.
Collapse
Affiliation(s)
- Sukun Lin
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Yi Zhou
- Department of Plant Protection, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiyingzi Wu
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Zhixiang Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Dongmei Cheng
- Department of Plant Protection, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
23
|
Li KL, Chen WY, Zhang M, Luo XW, Liu Y, Zhang DY, Chen A. Monitoring residue levels and dietary risk assessment of thiamethoxam and its metabolite clothianidin for Chinese consumption of Chinese kale. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:417-424. [PMID: 34143904 DOI: 10.1002/jsfa.11371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/13/2021] [Accepted: 06/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Thiamethoxam is widely used to control pests in Chinese kale, popularly consumed leafy vegetables. The potential risk to the environment and human health has aroused much public concern. Therefore, it is important to investigate the degradation behavior, residue distribution and dietary risk assessment of thiamethoxam in Chinese kale. RESULTS A sensitive analytical method for determination of thiamethoxam and its metabolite clothianidin residue in Chinese kale was established and validated through a quick, easy, cheap, effective, rugged, and safe (QuEChERS) technique with ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The recoveries were 85.4-101.2% for thiamethoxam and 79.5-108.1% for clothianidin, with the relative standard deviations (RSDs) of 0.9-10.2% and 1.8-6.0%, respectively. For the dissipation kinetics, the data showed that thiamethoxam in Chinese kale was degraded with the half-lives of 4.1 to 4.5 days. In the terminal residue experiments, the residues of thiamethoxam were 0.017-0.357 mg kg-1 after application 2-3 times with a preharvest interval (PHI) of 7 days under the designed dosages. The chronic and acute dietary exposure assessment risk quotient (RQ) values of thiamethoxam in Chinese kale for different Chinese consumers were 0.08-0.19% and 0.05-0.12%, respectively, and those of clothianidin were 0.01-0.04% and 0.02-0.04%, respectively, all of the RQ values were lower than 100%. CONCLUSION Thiamethoxam in Chinese kale was rapidly degraded following first-order kinetics models. The dietary risk of thiamethoxam and clothianidin through Chinese kale was negligible to consumers. The results from this study are important reference for Chinese governments to developing criteria for the safe and rational use of thiamethoxam, setting maximum residue levels (MRLs), monitoring the quality safety of agricultural products and protecting consumer health. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kai-Long Li
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Wu-Ying Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Min Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Xiang-Wen Luo
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Yong Liu
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - De-Yong Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Ang Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| |
Collapse
|
24
|
Bai A, Chen A, Chen W, Liu S, Luo X, Liu Y, Zhang D. Residue behavior, transfer and risk assessment of tolfenpyrad, dinotefuran and its metabolites during tea growing and tea brewing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5992-6000. [PMID: 33851415 DOI: 10.1002/jsfa.11253] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Tolfenpyrad and dinotefuran are two representative pesticides used for pest control in tea gardens. Their application may bring about a potential risk to the health of consumers. Therefore, it is essential to investigate the residue behavior, transfer and risk assessment of tolfenpyrad, dinotefuran and metabolites from tea garden to teacup. RESULTS An effective analytical method was established and validated to simultaneously determine tolfenpyrad, dinotefuran and its metabolites (DN and UF) in tea. The average recoveries of tolfenpyrad, dinotefuran, DN and UF were in the range 72.1-106.3%, with relative standard deviations lower than 11.8%. On the basis of the proposed method, the dissipation of tolfenpyrad and dinotefuran in fresh tea leaves followed first-order kinetics models with half-lives of 4.30-7.33 days and 4.65-5.50 days, respectively. With application amounts of 112.5-168.75 g a.i. ha-1 once or twice, the terminal residues of tolfenpyrad and total dinotefuran in green tea were lower than 19.6 and 7.13 mg kg-1 , respectively, and below their corresponding maximum residue limits . The leaching rates of tolfenpyrad and total dinotefuran during the tea brewing were in the ranges 1.4-2.3% and 93.7-98.1%, respectively. CONCLUSION Tolfenpyrad and dinotefuran in tea were easily degraded. The RQc and RQa values for tolfenpyrad were 37.6% and 5.4%, which were much higher than for dinotefuran at 24.7% and 0.84%, respectively. The data indicated that there was no significant health risk in tea for consumers at the recommended dosages. The results provide scientific data regarding the reasonable use of tolfenpyrad and dinotefuran aiming to ensure safe tea consuption. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aijuan Bai
- Longping Branch, Graduate School of Hunan University, Changsha, China
| | - Ang Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Wuying Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Shaowen Liu
- Hunan Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Science, Changsha, China
| | - Xiangwen Luo
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Yong Liu
- Longping Branch, Graduate School of Hunan University, Changsha, China
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Deyong Zhang
- Longping Branch, Graduate School of Hunan University, Changsha, China
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| |
Collapse
|
25
|
Elgueta S, Valenzuela M, Fuentes M, Ulloa PE, Ramos C, Correa A, Molinett S. Analysis of Multi-Pesticide Residues and Dietary Risk Assessment in Fresh Tomatoes ( Lycopersicum esculentum) from Local Supermarkets of the Metropolitan Region, Chile. TOXICS 2021; 9:249. [PMID: 34678945 PMCID: PMC8539118 DOI: 10.3390/toxics9100249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022]
Abstract
In recent years, the official authorities in Chile have reported transgressions in the maximum residue levels of pesticides in fresh vegetables. There is no official information about traceability, pesticide levels, and potential health risks. The aim of this study was to analyse pesticide residues and their corresponding dietary risk assessments in tomatoes from supermarkets in the Metropolitan Region. Pesticides were extracted using the Quick, Easy, Cheap, Effective, Rugged and Safe, QuEChERS method, and their concentrations were determined by using chromatography with HPLC-FL/UV and GC-MS/ECD/NPD, following the Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed, SANTE guide and ISO 17025:2017 standard. In addition, a dietary risk assessment was carried out by comparing Chilean data to international references. The results reported that 9% of the samples had pesticide residue levels above the maximum residue levels permitted in Chile. All the scenarios evaluated revealed the highest estimated daily intake and hazard quotients for methamidophos and chlorpyrifos. Both the active substances used were acetylcholinesterase inhibitors and were neurotoxic under chronic risk assessment. The results showed the highest chronic hazard index in the Chilean scenario for all age groups and genders. The evidence obtained revealed that methamidophos, methomyl, and chlorpyrifos should be restricted for their use in Chilean agriculture.
Collapse
Affiliation(s)
- Sebastian Elgueta
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de Las Américas, Sede Providencia, Santiago 7500975, Chile; (P.E.U.); (C.R.)
| | - Marcela Valenzuela
- Laboratory of Pesticide Residues, Instituto de Investigaciones Agropecuarias, La Platina, Santiago 8720000, Chile; (M.V.); (M.F.); (A.C.)
| | - Marcela Fuentes
- Laboratory of Pesticide Residues, Instituto de Investigaciones Agropecuarias, La Platina, Santiago 8720000, Chile; (M.V.); (M.F.); (A.C.)
| | - Pilar E. Ulloa
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de Las Américas, Sede Providencia, Santiago 7500975, Chile; (P.E.U.); (C.R.)
| | - Cecilia Ramos
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de Las Américas, Sede Providencia, Santiago 7500975, Chile; (P.E.U.); (C.R.)
| | - Arturo Correa
- Laboratory of Pesticide Residues, Instituto de Investigaciones Agropecuarias, La Platina, Santiago 8720000, Chile; (M.V.); (M.F.); (A.C.)
| | - Sebastian Molinett
- Bionanotechnology Department, Instituto de Investigaciones Agropecuarias La Cruz, La Cruz 2280454, Chile;
| |
Collapse
|
26
|
Lamb RW, McAlexander H, Woodley CM, Shukla MK. Towards a comprehensive understanding of malathion degradation: theoretical investigation of degradation pathways and related kinetics under alkaline conditions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1231-1241. [PMID: 34319331 DOI: 10.1039/d1em00181g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Malathion is a commercially available insecticide that functions by acting as an acetylcholinesterase inhibitor. Of more significant concern, if left in the environment, some of the products observed from the degradation of malathion can function as more potent toxins than the parent compound. These compounds may threaten human life if they are present in high quantities during operation in contaminated or industrial areas. Several experimental studies have been performed to elucidate the possible degradation products of malathion under various conditions to probe both the application of potential remediation methods and the environmental fate of the degradation products. However, only limited computational studies have been reported to delineate the mechanism by which malathion degrades under environmental conditions and how these degradation mechanisms are intertwined with one another. Herein, M06-2X DFT computations were employed to develop comprehensive degradation pathways from the parent malathion compound to a multitude of experimentally observed degradation products. These data corroborate experimental observations that multiple degradation pathways (ester hydrolysis and elimination) are in competition with each other, and the end-products can therefore be influenced by environmental factors such as temperature. Furthermore, the products resulting from any of the initial degradation pathways (ester hydrolysis, elimination, or P-S hydrolysis) can continue to degrade under the same conditions into compounds that are also reported to be toxic.
Collapse
Affiliation(s)
- Robert W Lamb
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | | | | | | |
Collapse
|
27
|
Yang C, Lim W, Song G. Mechanisms of deleterious effects of some pesticide exposure on pigs. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104850. [PMID: 33993968 DOI: 10.1016/j.pestbp.2021.104850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/29/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
The increase in the size of the global population increases the food and energy demand, making the use of pesticides in agricultural and livestock industries unavoidable. Exposure to pesticides can be toxic to the non-target species, such as humans, wildlife, and livestock, in addition to the target organisms. Various chemicals are used in the livestock industry to control harmful organisms, such as insects, weeds, and parasites. Pigs are one of the most important food sources for humans. In addition, pigs can be used as promising models for assessing the risk of absorption of environmental pollutants through the skin and oral exposure since they are physiologically similar to humans. Exposure to numerous environmental pollutants, such as mycotoxins, persistent organic pollutants, and heavy metals, has been reported to adversely affect growth, fertility, and endocrine homeostasis in pigs. Various pesticides have been observed in porcine tissues, blood, urine, and processed foods; however, there is a lack of comprehensive understanding of their effects on porcine health. This review provides a comprehensive description of the characteristics of pesticides that pigs can be exposed to and how their exposure affects porcine reproductive function, intestinal health, and endocrine homeostasis in vivo and in vitro.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
28
|
Multi-frequency multi-mode ultrasound treatment for removing pesticides from lettuce (Lactuca sativa L.) and effects on product quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Tang H, Ma L, Huang J, Li Y, Liu Z, Meng D, Wen G, Dong M, Wang W, Zhao L. Residue behavior and dietary risk assessment of six pesticides in pak choi using QuEChERS method coupled with UPLC-MS/MS. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112022. [PMID: 33609999 DOI: 10.1016/j.ecoenv.2021.112022] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/11/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
A reliable and simple modified QuEChERS method with UPLC-MS/MS was developed for the simultaneous determination of six pesticides (dimethomorph, imidaclothiz, lufenuron, methoxyfenozide, pyridaben, spinetoram) and their metabolites in pak choi. Method validation indicated good linearity (R2 ≥ 0.99), accuracy (recoveries of 75%-112%), sensitivity (limits of quantification, 0.002-0.01 mg kg-1), and precision (relative standard deviations ≤ 21%), and matrix effects were -36-28%. The half-lives of the six pesticides in pak choi were 2.2-12 d under open field and greenhouse conditions. Considering the short growth cycle of pak choi, the terminal residue levels (0.046-7.8 mg kg-1) and the relevant maximum residue limits (MRLs) of some countries, 5 d was recommended as the pre-harvest interval for the six pesticides on pak choi. Dietary risk assessment revealed that the risk quotients were 3.1%-58% for different gender and age groups in China, indicating none unacceptable public health risk for general population. The results showed that all the six pesticides degraded faster and the terminal residues were much lower under open field conditions than those under greenhouse conditions, which was mainly due to the influence of rainfall, sunlight and other environmental factors. This work was thus significant in assessing the dissipation fate and food safety risks of the six pesticides on pak choi and facilitated the establishment of maximum residue limits.
Collapse
Affiliation(s)
- Hongxia Tang
- Pesticide Safety Evaluation Research Center, Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China
| | - Lin Ma
- Shanghai Agriculture Technical Extension Service Center, Shanghai 201103, PR China
| | - Jiaqing Huang
- Pesticide Safety Evaluation Research Center, Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China
| | - Yubo Li
- Pesticide Safety Evaluation Research Center, Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China
| | - Zehui Liu
- Pesticide Safety Evaluation Research Center, Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China
| | - Dianying Meng
- Pesticide Safety Evaluation Research Center, Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China
| | - Guangyue Wen
- Pesticide Safety Evaluation Research Center, Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China
| | - Maofeng Dong
- Pesticide Safety Evaluation Research Center, Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China.
| | - Weimin Wang
- Pesticide Safety Evaluation Research Center, Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China.
| | - Li Zhao
- Shanghai Agriculture Technical Extension Service Center, Shanghai 201103, PR China
| |
Collapse
|
30
|
Bai A, Chen A, Chen W, Luo X, Liu S, Zhang M, Liu Y, Zhang D. Study on degradation behaviour, residue distribution, and dietary risk assessment of propiconazole in celery and onion under field application. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1998-2005. [PMID: 32949153 DOI: 10.1002/jsfa.10817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Propiconazole is widely used to control fungal diseases in field crops, including celery and onion. The potential risk to the environment and human health has aroused much public concern. Therefore, it is significant to investigate the degradation behaviour, residue distribution, and dietary risk assessment of propiconazole in celery and onion. RESULTS A sensitive analytical method for determination of propiconazole residue in celery and onion was established and validated through high-performance liquid chromatography tandem mass spectrometry. The average recovery rate of propiconazole ranged from 85.7% to 101.8%, with a relative standard deviation of 2.1-6.3%. For the dissipation kinetics, the data showed that propiconazole in celery and onion was degraded, with half-lives of 6.1-6.2 days and 8.7-8.8 days respectively. In the terminal residue experiments, the residues of propiconazole were below 4.66 mg kg-1 in celery after application two or three times and were below 0.029 mg kg-1 in onion after application of three or four times with an interval of 14 days under the designed dosages. The chronic and acute dietary exposure assessments for propiconazole were valued by risk quotient, with all values being lower than 100%. CONCLUSION Propiconazole in celery and onion was rapidly degraded following first-order kinetics models. The dietary risk of propiconazole through celery or onion was negligible to consumers. The study not only offers a valuable reference for reasonable usage of propiconazole on celery and onion, but also facilitates the establishment of maximum residue limits in China. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aijuan Bai
- Longping Branch, Graduate School of Hunan University, Changsha, 410125, China
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
| | - Ang Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
| | - Wuying Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
| | - Xiangwen Luo
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
| | - Shaowen Liu
- Hunan Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Science, Changsha, 410125, China
| | - Min Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
| | - Yong Liu
- Longping Branch, Graduate School of Hunan University, Changsha, 410125, China
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
| | - Deyong Zhang
- Longping Branch, Graduate School of Hunan University, Changsha, 410125, China
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
| |
Collapse
|
31
|
Tao Y, Jia C, Jing J, Zhang J, Yu P, He M, Wu J, Chen L, Zhao E. Occurrence and dietary risk assessment of 37 pesticides in wheat fields in the suburbs of Beijing, China. Food Chem 2021; 350:129245. [PMID: 33601091 DOI: 10.1016/j.foodchem.2021.129245] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 11/25/2022]
Abstract
The co-occurrence of multiple pesticides in wheat fields adversely affects human health and the environment. Herein, 206 pairs of wheat and soil samples were collected from wheat fields in Beijing, China from 2018 to 2020. One or multiple pesticide residues were detected, and carbendazim (maximum: 38511.5 μg/kg) and tebuconazole (maximum: 45.4 μg/kg) had heavy occurrence in the wheat samples. Carbendazim, triazoles, and neonicotinoids were frequently detected in the soil samples. HCHs and DDTs were detected, with p,p'-DDE in 100.0% of the soil samples at a maximum concentration of 546.0 μg/kg in 2020. Concentrations of carbendazim, tebuconazole, hexaconazole, and cyhalothrin in the paired soil and wheat samples exhibited significant positive correlations. Pesticides that exceeded the maximum residue limits do not pose non-carcinogenic risks, with one exception. The results provide important references towards risk monitoring and control in wheat fields, as well as facilitating the scientific and reasonable use of these pesticides.
Collapse
Affiliation(s)
- Yan Tao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, PR China
| | - Chunhong Jia
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, PR China
| | - Junjie Jing
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, PR China
| | - Jinwei Zhang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, PR China
| | - Pingzhong Yu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, PR China
| | - Min He
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, PR China
| | - Junxue Wu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, PR China
| | - Li Chen
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, PR China
| | - Ercheng Zhao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, PR China.
| |
Collapse
|
32
|
Acayaba RD, de Albuquerque AF, Ribessi RL, Umbuzeiro GDA, Montagner CC. Occurrence of pesticides in waters from the largest sugar cane plantation region in the world. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9824-9835. [PMID: 33156498 DOI: 10.1007/s11356-020-11428-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
In this study, a multi-residue method was used to analyze 13 pesticides and 1 degradation product in surface and groundwater in the region with the largest sugar cane production in the world. The potential effects of individual pesticides and their mixtures, for aquatic life and human consumption, were evaluated. For the surface water, 2-hydroxy atrazine, diuron, carbendazim, tebuthiuron, and hexazinone were the most frequently detected (100, 94, 93, 92, and 91%, respectively). Imidacloprid (2579 ng L-1), carbendazim (1114 ng L-1), ametryn (1101 ng L-1), and tebuthiuron (1080 ng L-1) were found at the highest concentrations. For groundwater, tebuthiuron was the only quantified pesticide (107 ng L-1). Ametryn, atrazine, diuron, hexazinone, carbofuran, imidacloprid, malathion, carbendazim, and their mixtures presented risk for the aquatic life. No risk was observed for the pesticides analyzed in this work, alone or in their mixtures for human consumption.
Collapse
Affiliation(s)
| | | | - Rafael Luis Ribessi
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | | | - Cassiana Carolina Montagner
- School of Technology, University of Campinas, UNICAMP, Limeira, São Paulo, Brazil.
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|
33
|
Dan X, Ruiyi L, Qinsheng W, Yongqiang Y, Haiyan Z, Zaijun L. A NiAg-graphene quantum dot-graphene hybrid with high oxidase-like catalytic activity for sensitive colorimetric detection of malathion. NEW J CHEM 2021. [DOI: 10.1039/d1nj00621e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper reports the synthesis of a nickel-silver-graphene quantum dot-graphene hybrid.
Collapse
Affiliation(s)
- Xu Dan
- School of Chemical and Materials Engineering
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Li Ruiyi
- School of Chemical and Materials Engineering
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Wang Qinsheng
- National Graphene Products Quality Supervision and Inspection Center (Jiangsu)
- Jiangsu Province Special Equipment Safety Supervision Inspection Institute·Branch of Wuxi
- Wuxi 214174
- China
| | - Yang Yongqiang
- National Graphene Products Quality Supervision and Inspection Center (Jiangsu)
- Jiangsu Province Special Equipment Safety Supervision Inspection Institute·Branch of Wuxi
- Wuxi 214174
- China
| | - Zhu Haiyan
- School of Chemical and Materials Engineering
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Li Zaijun
- School of Chemical and Materials Engineering
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
34
|
Chen Q, Sheng R, Wang P, Ouyang Q, Wang A, Ali S, Zareef M, Hassan MM. Ultra-sensitive detection of malathion residues using FRET-based upconversion fluorescence sensor in food. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118654. [PMID: 32659702 DOI: 10.1016/j.saa.2020.118654] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Malathion is an organophosphorus pesticide which could remain in agricultural products and exert irreversible harmful effects on human health. Hence, strict monitoring of malathion contents is very significant. Here, a highly sensitive fluorescent aptasensor was developed for the determination of malathion, the system was based on a cationic polymer-mediated fluorescence 'turn-off'. In this system, malathion-specific aptamers were bound to cationic polymer through electrostatic interactions. To produce fluorescence resonance energy transfer (FRET), negatively charged upconversion fluorescent nanoparticles (UCNPs) and cationic-polymer encapsulated gold nanoparticles (GNPs) were combined. This combination resulted in fluorescence quenching, and the degree of quenching was correlated with the concentration of malathion. Under optimum conditions, the fluorescence intensities were observed to decrease linearly with the rising concentration of the malathion from 0.01 to 1 μM with a detection limit of 1.42 nM. Furthermore, the developed sensor possessed good selective recognition ability for malathion and was successfully used to detect malathion in adulterated tap water and matcha samples with high accuracy.
Collapse
Affiliation(s)
- Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Ren Sheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Pingyue Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Ancheng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
35
|
Liang N, Hu X, Li W, Mwakosya AW, Guo Z, Xu Y, Huang X, Li Z, Zhang X, Zou X, Shi J. Fluorescence and colorimetric dual-mode sensor for visual detection of malathion in cabbage based on carbon quantum dots and gold nanoparticles. Food Chem 2020; 343:128494. [PMID: 33162257 DOI: 10.1016/j.foodchem.2020.128494] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/18/2020] [Accepted: 10/25/2020] [Indexed: 11/30/2022]
Abstract
A dual-mode fluorescence/colorimetric sensor based on carbon quantum dots (CQDs) and gold nanoparticles (GNPs) was developed for visual detection of malathion in cabbage. The CQDs-GNPs nanocomposite exhibited emission wavelength at 527 nm and absorption wavelength at 524 nm. The fluorescence intensity increased and absorption decreased with addition of malathion. Fluorescence and colorimetric calibration curves were established based on fluorescence intensity (R2 = 0.9914) and absorbance (R2 = 0.9608) in the range of 1 × 10-9-1 × 10-2 M, respectively. Furthermore, fluorescence and colorimetric standard arrays were prepared for visual detection of malathion according to the change of fluorescence brightness and color. Finally, the approximate concentrations of malathion in cabbage samples were estimated by the standard arrays and naked eyes. The calibration curves were used for accurate detection in cabbage samples with recoveries of 89.9%-103.4% (fluorescence) and 88.7%-107.6% (colorimetric). The established sensor for visual malathion detection in cabbage was accurate with strong application potential, especially for rapid screening.
Collapse
Affiliation(s)
- Nini Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuetao Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenting Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Anjelina W Mwakosya
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ziang Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yiwei Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
36
|
Lai X, Zhang S, Du G, Wang Y, Han Y, Ye N, Xiang Y. Ultrasensitive Determination of Malathion in Apples by Aptamer-Based Resonance Scattering. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1820022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xiaoxia Lai
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Sizhe Zhang
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Guorong Du
- Beijing Third Class Tobacco Supervision Station, Beijing, China
| | - Yuxian Wang
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Yang Han
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing, China
| |
Collapse
|
37
|
Li G, Wen A, Liu J, Wu D, Wu Y. Facile extraction and determination of organophosphorus pesticides in vegetables via magnetic functionalized covalent organic framework nanocomposites. Food Chem 2020; 337:127974. [PMID: 32920274 DOI: 10.1016/j.foodchem.2020.127974] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/08/2020] [Accepted: 08/30/2020] [Indexed: 11/27/2022]
Abstract
Facile enrichment and determination of trace organophosphorus pesticides (OPPs) in foods has been a constantly pursuing goal in food safety field. Herein, Zr4+-immobilized covalent organic frameworks (Fe3O4@COF@Zr4+) have been first constructed and utilized as the powerful adsorbents for magnetic solid-phase extraction (MSPE) of OPPs. Owing to the π-π stacking interaction, hydrogen bonding and Zr4+-phosphate coordination reaction, the composites exhibited excellent selectivity and superior affinity to OPPs. Under optimized conditions, the proposed MSPE method coupled with GC-FPD showed good linearity (R2 ≥ 0.9990) and yielded low limits of detection (0.7-3.0 μg kg-1) for OPPs. Moreover, the developed method was successfully employed for the quantitation of OPPs in spiked vegetable samples and obtained satisfactory recoveries in the range of 87-121% with the relative standard deviations (RSDs) ≤ 8.9%. These results demonstrated that the prepared nanoparticles hold unique advantages for trace OPPs analysis in foodstuffs.
Collapse
Affiliation(s)
- Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Aying Wen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianghua Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom.
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| |
Collapse
|
38
|
Manafi Khoshmanesh S, Hamishehkar H, Razmi H. Trace analysis of organophosphorus pesticide residues in fruit juices and vegetables by an electrochemically fabricated solid-phase microextraction fiber coated with a layer-by-layer graphenized graphite/graphene oxide/polyaniline nanocomposite. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3268-3276. [PMID: 32930190 DOI: 10.1039/d0ay00626b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, a solid-phase microextraction pencil lead fiber coated with a layer-by-layer graphenized graphite/graphene oxide/polyaniline nanocomposite (GG/GO/PANI) was fabricated by an in situ electrochemical technique for the trace analysis of organophosphorus pesticide residues in packed grape and apple juice and also fresh tomato samples. The effects of various parameters, including the type of desorption solvent, adsorption time, desorption time, pH, salt addition, and stirring rate, on the extraction efficiency of the studied pesticides were investigated and accordingly, these parameters were optimized. The proposed fiber demonstrated desirable linear ranges (0.01-300 μg L-1) with good correlation coefficients (R2 ≥ 0.996) as well as low limits of detection (0.003-0.03 μg L-1) for the studied pesticides. The relative standard deviations (n = 5) for the extraction of 50 μg L-1 of each analyte were less than 7 and 11.5% for inter and intra-day precisions, respectively. This fast, facile, and repeatable electrochemical fabrication method produced a porous and homogeneous coating. The proposed fiber demonstrated good extraction efficiency, high stability, and long life-time despite being low cost. The successful application of the proposed fiber for the trace determination of pesticides in complex food matrices was proven by the satisfactory relative recoveries of 80.7-116.5%.
Collapse
Affiliation(s)
- Sara Manafi Khoshmanesh
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran.
| | - Habib Razmi
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|