1
|
Sinkovič L, Ogrinc N, Potočnik D, Meglič V. Isotope Fingerprints of Common and Tartary Buckwheat Grains and Milling Fractions: A Preliminary Study. Foods 2022; 11:foods11101414. [PMID: 35626984 PMCID: PMC9141705 DOI: 10.3390/foods11101414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
The grains and milling fractions of common buckwheat (Fagopyrum esculentum Moench) and Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) are widely used for both industrial and small-scale food and non-food products. This paper represents a preliminary study of the isotopic signature (δ13C, δ15N, and δ34S) to differentiate between buckwheat species (common vs. Tartary), organic and conventional cultivation farming, and different buckwheat fractions (light flour, semolina, and hulls) obtained by a traditional cereal stone-mill. Stable isotope ratios were analyzed using an elemental analyzer coupled to an isotope ratio mass spectrometer (EA/IRMS). The results indicated that δ13C, δ15N, and δ34S values could be used to verify the origin and production practices of buckwheat and even its products.
Collapse
Affiliation(s)
- Lovro Sinkovič
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetocva Ulica 17, SI-1000 Ljubljana, Slovenia;
- Correspondence: ; Tel.: +386-(0)1-280-52-78
| | - Nives Ogrinc
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, SI-1000 Ljubljana, Slovenia; (N.O.); (D.P.)
- Jožef Stefan International Postgraduate School, Jamova Cesta 39, SI-1000 Ljubljana, Slovenia
| | - Doris Potočnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, SI-1000 Ljubljana, Slovenia; (N.O.); (D.P.)
| | - Vladimir Meglič
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetocva Ulica 17, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
2
|
Zaldarriaga Heredia J, Wagner M, Jofré FC, Savio M, Azcarate SM, Camiña JM. An overview on multi-elemental profile integrated with chemometrics for food quality assessment: toward new challenges. Crit Rev Food Sci Nutr 2022; 63:8173-8193. [PMID: 35319312 DOI: 10.1080/10408398.2022.2055527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food products, especially those with high value-added, are commonly subjected to strict quality controls, which are of paramount importance, especially for attesting to some peculiar features related, for instance, to their geographical origin and/or the know-how of their producers. However, the sophistication of fraudulent practices requires a continuous update of analytical platforms. Different analytical techniques have become extremely appealing since the instrumental analysis tools evolution has substantially improved the capability to reveal and understand the complexity of food. In light of this, multi-elemental composition has been successful implemented solving a plethora of food authentication and traceability issues. In the last decades, it has existed an ever-increasing trend in analysis based on spectrometry analytical platforms in order to obtain a multi-elemental profile that combined with chemometrics have been noteworthy analytical methodologies able to solve these problems. This review provides an overview of published reports in the last decade (from 2011 to 2021) on food authentication and quality control from their multi-element composition in order to evaluate the state-of-the-art of this field and to identify the main characteristics of applied analytical techniques and chemometric data treatments that have permit achieve accurate discrimination/classification models, highlighting the strengths and the weaknesses of these methodologies.
Collapse
Affiliation(s)
- Jorgelina Zaldarriaga Heredia
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP-CONICET), Santa Rosa, La Pampa, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa (UNLPam), Santa Rosa, La Pampa, Argentina
| | - Marcelo Wagner
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP-CONICET), Santa Rosa, La Pampa, Argentina
| | - Florencia Cora Jofré
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP-CONICET), Santa Rosa, La Pampa, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa (UNLPam), Santa Rosa, La Pampa, Argentina
| | - Marianela Savio
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP-CONICET), Santa Rosa, La Pampa, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa (UNLPam), Santa Rosa, La Pampa, Argentina
| | - Silvana Mariela Azcarate
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP-CONICET), Santa Rosa, La Pampa, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa (UNLPam), Santa Rosa, La Pampa, Argentina
| | - José Manuel Camiña
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP-CONICET), Santa Rosa, La Pampa, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa (UNLPam), Santa Rosa, La Pampa, Argentina
| |
Collapse
|
3
|
Kongsri S, Sricharoen P, Limchoowong N, Kukusamude C. Tracing the Geographical Origin of Thai Hom Mali Rice in Three Contiguous Provinces of Thailand Using Stable Isotopic and Elemental Markers Combined with Multivariate Analysis. Foods 2021; 10:foods10102349. [PMID: 34681398 PMCID: PMC8535565 DOI: 10.3390/foods10102349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
Rice is a staple food for more than half of the world’s population. The discrimination of geographical origin of rice has emerged as an important issue to prevent mislabeling and adulteration problems and ensure food quality. Here, the discrimination of Thai Hom Mali rice (THMR), registered as a European Protected Geographical Indication (PGI), was demonstrated. Elemental compositions (Mn, Rb, Co, and Mo) and stable isotope (δ18O) in the rice were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and elemental analyzer isotope ratio mass spectrometry (EA-IRMS), respectively. The recoveries and precisions of all elements were greater than 98% and lower than 9%, respectively. The analytical precision (±standard deviation) was below ±0.2‰ for δ18O measurement. Mean of Mn, Rb, Co, Mo, and δ18O levels was 14.0 mg kg−1, 5.39 mg kg−1, 0.049 mg kg−1, 0.47 mg kg−1, and 25.22‰, respectively. Only five valuable markers combined with radar plots and multivariate analysis, linear discriminant analysis (LDA) could distinguish THMR cultivated from three contiguous provinces with correct classification and cross-validation of 96.4% and 92.9%, respectively. These results offer valuable insight for the sustainable management and regulation of improper labeling regarding geographical origin of rice in Thailand and other countries.
Collapse
Affiliation(s)
- Supalak Kongsri
- Nuclear Technology Research and Development Center (NTRDC), Thailand Institute of Nuclear Technology (Public Organization), 9/9 Moo 7, Saimoon, Ongkharak, Nakhon Nayok 26120, Thailand; (S.K.); (P.S.)
| | - Phitchan Sricharoen
- Nuclear Technology Research and Development Center (NTRDC), Thailand Institute of Nuclear Technology (Public Organization), 9/9 Moo 7, Saimoon, Ongkharak, Nakhon Nayok 26120, Thailand; (S.K.); (P.S.)
| | - Nunticha Limchoowong
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110, Thailand;
| | - Chunyapuk Kukusamude
- Nuclear Technology Research and Development Center (NTRDC), Thailand Institute of Nuclear Technology (Public Organization), 9/9 Moo 7, Saimoon, Ongkharak, Nakhon Nayok 26120, Thailand; (S.K.); (P.S.)
- Correspondence: ; Tel.: +66-085-484-6782 (ext. 1803)
| |
Collapse
|
4
|
Dumitrascu C, Fiamegos Y, de la Calle Guntiñas MB. Feasibility study on the use of elemental profiles to authenticate aromatic rice: the case of Basmati and Thai rice. Anal Bioanal Chem 2021; 413:4947-4957. [PMID: 34156492 PMCID: PMC8405519 DOI: 10.1007/s00216-021-03455-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 12/04/2022]
Abstract
Among the thousands of existing rice varieties, aromatic rice has increasingly attracted consumer’s preference in recent years. Within aromatic rice, Basmati, cultivated in some regions in Pakistan and India, is highly demanded. Other aromatic rice, cultivated in specific regions, for instance in Thailand (commonly referred to as Jasmine Thai rice), are also highly appreciated by consumers. In this work, the elemental profiles of commercially available rice samples (17 Basmati, 11 Thai, and 7 Long Grain rice) were determined by energy-dispersive X-ray fluorescence (ED-XRF) spectroscopy. The mass fractions of P, Cl, S, K, Fe, Cu, and Zn were significantly different (95% confidence interval) between Basmati and Thai rice and between Thai and Long Grain rice; only Cl, S, and Zn were significantly different between Basmati and Long Grain rice. Multivariate evaluation of the results combining soft independent modelling by class analogy (SIMCA) and partial least square discriminant analysis (PLS-DA) allowed the correct classification (true positives) of 94.1, 85.6, and 100% of the Basmati, Long Grain, and Thai rice, respectively. The specificity (true negatives) of Basmati, Long Grain, and Thai was 94.4, 82.1, and 100%, respectively.
Collapse
Affiliation(s)
- Catalina Dumitrascu
- European Commission, Joint Research Centre (JRC), Retieseweg 111, 2440, Geel, Belgium
- Antwerp University, Campus Drie Eiken, Universiteitsplein 1, D.S.552, 2610, Wilrijk, Belgium
| | - Yiannis Fiamegos
- European Commission, Joint Research Centre (JRC), Retieseweg 111, 2440, Geel, Belgium
- Research Executive Agency, European Commission, Place Rogier 16, 1210, Brussels, Belgium
| | | |
Collapse
|
5
|
Tian X, Li C, Wang Z, Xia L, Robbat A. Application of Feature Selection Algorithms to Select Elements that Distinguish Regional Differences in Chinese Grown Winter Jujube Fruit (Zizyphus jujuba Mill. cv. Huanghua Dongzao). FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01911-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|