1
|
Shen M, Sogore T, Ding T, Feng J. Modernization of digital food safety control. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:93-137. [PMID: 39103219 DOI: 10.1016/bs.afnr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Foodborne illness remains a pressing global issue due to the complexities of modern food supply chains and the vast array of potential contaminants that can arise at every stage of food processing from farm to fork. Traditional food safety control systems are increasingly challenged to identify these intricate hazards. The U.S. Food and Drug Administration's (FDA) New Era of Smarter Food Safety represents a revolutionary shift in food safety methodology by leveraging cutting-edge digital technologies. Digital food safety control systems employ modern solutions to monitor food quality by efficiently detecting in real time a wide range of contaminants across diverse food matrices within a short timeframe. These systems also utilize digital tools for data analysis, providing highly predictive assessments of food safety risks. In addition, digital food safety systems can deliver a secure and reliable food supply chain with comprehensive traceability, safeguarding public health through innovative technological approaches. By utilizing new digital food safety methods, food safety authorities and businesses can establish an efficient regulatory framework that genuinely ensures food safety. These cutting-edge approaches, when applied throughout the food chain, enable the delivery of safe, contaminant-free food products to consumers.
Collapse
Affiliation(s)
- Mofei Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Zhongyuan Institute, Zhengzhou, Henan, P.R. China
| | - Tahirou Sogore
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, P.R. China
| | - Jinsong Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, P.R. China.
| |
Collapse
|
2
|
Xun Z, Wang X, Xue H, Zhang Q, Yang W, Zhang H, Li M, Jia S, Qu J, Wang X. Deep machine learning identified fish flesh using multispectral imaging. Curr Res Food Sci 2024; 9:100784. [PMID: 39005497 PMCID: PMC11246001 DOI: 10.1016/j.crfs.2024.100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
Food fraud is widespread in the aquatic food market, hence fast and non-destructive methods of identification of fish flesh are needed. In this study, multispectral imaging (MSI) was used to screen flesh slices from 20 edible fish species commonly found in the sea around Yantai, China, by combining identification based on the mitochondrial COI gene. We found that nCDA images transformed from MSI data showed significant differences in flesh splices of the 20 fish species. We then employed eight models to compare their prediction performances based on the hold-out method with 70% training and 30% test sets. Convolutional neural network (CNN), quadratic discriminant analysis (QDA), support vector machine (SVM), and linear discriminant analysis (LDA) models perform well on cross-validation and test data. CNN and QDA achieved more than 99% accuracy on the test set. By extracting the CNN features for optimization, a very high degree of separation was obtained for all species. Furthermore, based on the Gini index in RF, 11 bands were selected as key classification features for CNN, and an accuracy of 98% was achieved. Our study developed a successful pipeline for employing machine learning models (especially CNN) on MSI identification of fish flesh, and provided a convenient and non-destructive method to determine the marketing of fish flesh in the future.
Collapse
Affiliation(s)
- Zhuoran Xun
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Xuemeng Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Xue
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Qingzheng Zhang
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Wanqi Yang
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Hua Zhang
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Mingzhu Li
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiangyong Qu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Xumin Wang
- College of Life Sciences, Yantai University, Yantai, 264005, China
| |
Collapse
|
3
|
Zhang Z, Li Y, Zhao S, Qie M, Bai L, Gao Z, Liang K, Zhao Y. Rapid analysis technologies with chemometrics for food authenticity field: A review. Curr Res Food Sci 2024; 8:100676. [PMID: 38303999 PMCID: PMC10830540 DOI: 10.1016/j.crfs.2024.100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 02/03/2024] Open
Abstract
In recent years, the problem of food adulteration has become increasingly rampant, seriously hindering the development of food production, consumption, and management. The common analytical methods used to determine food authenticity present challenges, such as complicated analysis processes and time-consuming procedures, necessitating the development of rapid, efficient analysis technology for food authentication. Spectroscopic techniques, ambient ionization mass spectrometry (AIMS), electronic sensors, and DNA-based technology have gradually been applied for food authentication due to advantages such as rapid analysis and simple operation. This paper summarizes the current research on rapid food authenticity analysis technology from three perspectives, including breeds or species determination, quality fraud detection, and geographical origin identification, and introduces chemometrics method adapted to rapid analysis techniques. It aims to promote the development of rapid analysis technology in the food authenticity field.
Collapse
Affiliation(s)
- Zixuan Zhang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalan Li
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengjie Qie
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Bai
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhiwei Gao
- Hangzhou Nutritome Biotech Co., Ltd., Hangzhou, China
| | - Kehong Liang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Haughey SA, Montgomery H, Moser B, Logan N, Elliott CT. Utilization of Hyperspectral Imaging with Chemometrics to Assess Beef Maturity. Foods 2023; 12:4500. [PMID: 38137302 PMCID: PMC10743197 DOI: 10.3390/foods12244500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
There is a growing demand from consumers for more assurance in premium food products such as beef and especially steak. The quality of beef steak is primarily dictated by the maturation which ultimately influences its taste and flavor. These enhanced qualities have resulted in steak becoming a premium product that consumers are willing to pay a premium price for. A challenge, however, is analyzing the maturity of beef by traditional analytical techniques. Hyperspectral imaging (HSI) is a methodology that is gaining traction mainly due to miniaturization, improved optics, and software. In this study, HSI was applied to wet aged beef supplied at various stages of maturity, with spectral data generated using a portable hyperspectral camera. Two trials were conducted over a five-month period: (i) proof of principle and (ii) a bespoke sampling trial for the industry. With the support of industry participation, all samples were sourced from a highly reputable UK/Ireland supplier. To enhance data interpretation, the spectral data collected were combined with multivariate analysis. A range of chemometric models were generated using unsupervised and supervised methods to determine the maturity of the beef, and external validation was performed. The external validation showed good accuracy for "unknown samples" tested against the model set and ranged from 74 to 100% for the different stages of maturity (20, 30, and 40 days old). This study demonstrated that HSI can detect different maturity timepoints for beef samples, which could play an important role in solving some of the challenges that the industry faces with ensuring the authenticity of their products. This is the first time that portable HSI has been coupled with chemometric modeling for assessing the maturity of beef, and it can serve as a model for other food authenticity and quality applications.
Collapse
Affiliation(s)
- Simon A. Haughey
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK
| | - Holly Montgomery
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK
| | - Bernadette Moser
- Department of Chemistry, Institute of Analytical Chemistry, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Natasha Logan
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK
| | - Christopher T. Elliott
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Pahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
5
|
Okyere FG, Cudjoe D, Sadeghi-Tehran P, Virlet N, Riche AB, Castle M, Greche L, Simms D, Mhada M, Mohareb F, Hawkesford MJ. Modeling the spatial-spectral characteristics of plants for nutrient status identification using hyperspectral data and deep learning methods. FRONTIERS IN PLANT SCIENCE 2023; 14:1209500. [PMID: 37908836 PMCID: PMC10613979 DOI: 10.3389/fpls.2023.1209500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/05/2023] [Indexed: 11/02/2023]
Abstract
Sustainable fertilizer management in precision agriculture is essential for both economic and environmental reasons. To effectively manage fertilizer input, various methods are employed to monitor and track plant nutrient status. One such method is hyperspectral imaging, which has been on the rise in recent times. It is a remote sensing tool used to monitor plant physiological changes in response to environmental conditions and nutrient availability. However, conventional hyperspectral processing mainly focuses on either the spectral or spatial information of plants. This study aims to develop a hybrid convolution neural network (CNN) capable of simultaneously extracting spatial and spectral information from quinoa and cowpea plants to identify their nutrient status at different growth stages. To achieve this, a nutrient experiment with four treatments (high and low levels of nitrogen and phosphorus) was conducted in a glasshouse. A hybrid CNN model comprising a 3D CNN (extracts joint spectral-spatial information) and a 2D CNN (for abstract spatial information extraction) was proposed. Three pre-processing techniques, including second-order derivative, standard normal variate, and linear discriminant analysis, were applied to selected regions of interest within the plant spectral hypercube. Together with the raw data, these datasets were used as inputs to train the proposed model. This was done to assess the impact of different pre-processing techniques on hyperspectral-based nutrient phenotyping. The performance of the proposed model was compared with a 3D CNN, a 2D CNN, and a Hybrid Spectral Network (HybridSN) model. Effective wavebands were selected from the best-performing dataset using a greedy stepwise-based correlation feature selection (CFS) technique. The selected wavebands were then used to retrain the models to identify the nutrient status at five selected plant growth stages. From the results, the proposed hybrid model achieved a classification accuracy of over 94% on the test dataset, demonstrating its potential for identifying nitrogen and phosphorus status in cowpea and quinoa at different growth stages.
Collapse
Affiliation(s)
- Frank Gyan Okyere
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, United Kingdom
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | - Daniel Cudjoe
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, United Kingdom
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | | | - Nicolas Virlet
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, United Kingdom
| | - Andrew B. Riche
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, United Kingdom
| | - March Castle
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, United Kingdom
| | - Latifa Greche
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, United Kingdom
| | - Daniel Simms
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | - Manal Mhada
- AgroBioSciences Department, University of Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Fady Mohareb
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | | |
Collapse
|
6
|
Kharbach M, Alaoui Mansouri M, Taabouz M, Yu H. Current Application of Advancing Spectroscopy Techniques in Food Analysis: Data Handling with Chemometric Approaches. Foods 2023; 12:2753. [PMID: 37509845 PMCID: PMC10379817 DOI: 10.3390/foods12142753] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
In today's era of increased food consumption, consumers have become more demanding in terms of safety and the quality of products they consume. As a result, food authorities are closely monitoring the food industry to ensure that products meet the required standards of quality. The analysis of food properties encompasses various aspects, including chemical and physical descriptions, sensory assessments, authenticity, traceability, processing, crop production, storage conditions, and microbial and contaminant levels. Traditionally, the analysis of food properties has relied on conventional analytical techniques. However, these methods often involve destructive processes, which are laborious, time-consuming, expensive, and environmentally harmful. In contrast, advanced spectroscopic techniques offer a promising alternative. Spectroscopic methods such as hyperspectral and multispectral imaging, NMR, Raman, IR, UV, visible, fluorescence, and X-ray-based methods provide rapid, non-destructive, cost-effective, and environmentally friendly means of food analysis. Nevertheless, interpreting spectroscopy data, whether in the form of signals (fingerprints) or images, can be complex without the assistance of statistical and innovative chemometric approaches. These approaches involve various steps such as pre-processing, exploratory analysis, variable selection, regression, classification, and data integration. They are essential for extracting relevant information and effectively handling the complexity of spectroscopic data. This review aims to address, discuss, and examine recent studies on advanced spectroscopic techniques and chemometric tools in the context of food product applications and analysis trends. Furthermore, it focuses on the practical aspects of spectral data handling, model construction, data interpretation, and the general utilization of statistical and chemometric methods for both qualitative and quantitative analysis. By exploring the advancements in spectroscopic techniques and their integration with chemometric tools, this review provides valuable insights into the potential applications and future directions of these analytical approaches in the food industry. It emphasizes the importance of efficient data handling, model development, and practical implementation of statistical and chemometric methods in the field of food analysis.
Collapse
Affiliation(s)
- Mourad Kharbach
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
- Department of Computer Sciences, University of Helsinki, 00560 Helsinki, Finland
| | - Mohammed Alaoui Mansouri
- Nano and Molecular Systems Research Unit, University of Oulu, 90014 Oulu, Finland
- Research Unit of Mathematical Sciences, University of Oulu, 90014 Oulu, Finland
| | - Mohammed Taabouz
- Biopharmaceutical and Toxicological Analysis Research Team, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat BP 6203, Morocco
| | - Huiwen Yu
- Shenzhen Hospital, Southern Medical University, Shenzhen 518005, China
- Chemometrics group, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| |
Collapse
|
7
|
Hu Y, Ma B, Wang H, Zhang Y, Li Y, Yu G. Detecting different pesticide residues on Hami melon surface using hyperspectral imaging combined with 1D-CNN and information fusion. FRONTIERS IN PLANT SCIENCE 2023; 14:1105601. [PMID: 37223822 PMCID: PMC10200917 DOI: 10.3389/fpls.2023.1105601] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/31/2023] [Indexed: 05/25/2023]
Abstract
Efficient, rapid, and non-destructive detection of pesticide residues in fruits and vegetables is essential for food safety. The visible/near infrared (VNIR) and short-wave infrared (SWIR) hyperspectral imaging (HSI) systems were used to detect different types of pesticide residues on the surface of Hami melon. Taking four pesticides commonly used in Hami melon as the object, the effectiveness of single-band spectral range and information fusion in the classification of different pesticides was compared. The results showed that the classification effect of pesticide residues was better by using the spectral range after information fusion. Then, a custom multi-branch one-dimensional convolutional neural network (1D-CNN) model with the attention mechanism was proposed and compared with the traditional machine learning classification model K-nearest neighbor (KNN) algorithm and random forest (RF). The traditional machine learning classification model accuracy of both models was over 80.00%. However, the classification results using the proposed 1D-CNN were more satisfactory. After the full spectrum data was fused, it was input into the 1D-CNN model, and its accuracy, precision, recall, and F1-score value were 94.00%, 94.06%, 94.00%, and 0.9396, respectively. This study showed that both VNIR and SWIR hyperspectral imaging combined with a classification model could non-destructively detect different pesticide residues on the surface of Hami melon. The classification result using the SWIR spectrum was better than that using the VNIR spectrum, and the classification result using the information fusion spectrum was better than that using SWIR. This study can provide a valuable reference for the non-destructive detection of pesticide residues on the surface of other large, thick-skinned fruits.
Collapse
Affiliation(s)
- Yating Hu
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
| | - Benxue Ma
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Engineering Research Center for Production Mechanization of Oasis Characteristic Cash Crop, Ministry of Education, Shihezi, China
| | - Huting Wang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Engineering Research Center for Production Mechanization of Oasis Characteristic Cash Crop, Ministry of Education, Shihezi, China
| | - Yuanjia Zhang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
| | - Yujie Li
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
| | - Guowei Yu
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
| |
Collapse
|
8
|
Dashti A, Müller-Maatsch J, Roetgerink E, Wijtten M, Weesepoel Y, Parastar H, Yazdanpanah H. Comparison of a portable Vis-NIR hyperspectral imaging and a snapscan SWIR hyperspectral imaging for evaluation of meat authenticity. Food Chem X 2023. [DOI: 10.1016/j.fochx.2023.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
9
|
Cui F, Zheng S, Wang D, Tan X, Li Q, Li J, Li T. Recent advances in shelf life prediction models for monitoring food quality. Compr Rev Food Sci Food Saf 2023; 22:1257-1284. [PMID: 36710649 DOI: 10.1111/1541-4337.13110] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023]
Abstract
Each year, 1.3 billion tons of food is lost due to spoilage or loss in the supply chain, accounting for approximately one third of global food production. This requires a manufacturer to provide accurate information on the shelf life of the food in each stage. Various models for monitoring food quality have been developed and applied to predict food shelf life. This review classified shelf life models and detailed the application background and characteristics of commonly used models to better understand the different uses and aspects of the commonly used models. In particular, the structural framework, application mechanisms, and numerical relationships of commonly used models were elaborated. In addition, the study focused on the application of commonly used models in the food field. Besides predicting the freshness index and remaining shelf life of food, the study addressed aspects such as food classification (maturity and damage) and content prediction. Finally, further promotion of shelf life models in the food field, use of multivariate analysis methods, and development of new models were foreseen. More reliable transportation, processing, and packaging methods could be screened out based on real-time food quality monitoring.
Collapse
Affiliation(s)
- Fangchao Cui
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Shiwei Zheng
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
- College of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiqian Tan
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Qiuying Li
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| |
Collapse
|
10
|
Pu H, Yu J, Sun DW, Wei Q, Shen X, Wang Z. Distinguishing Fresh and Frozen-thawed Beef Using Hyperspectral Imaging Technology Combined with Convolutional Neural Networks. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
11
|
Golpelichi F, Parastar H. Quantitative Mass Spectrometry Imaging Using Multivariate Curve Resolution and Deep Learning: A Case Study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:236-244. [PMID: 36594891 DOI: 10.1021/jasms.2c00268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the present contribution, a novel approach based on multivariate curve resolution and deep learning (DL) is proposed for quantitative mass spectrometry imaging (MSI) as a potent technique for identifying different compounds and creating their distribution maps in biological tissues without need for sample preparation. As a case study, chlordecone as a carcinogenic pesticide was quantitatively determined in mouse liver using matrix-assisted laser desorption ionization-MSI (MALDI-MSI). For this purpose, data from seven standard spots containing 0 to 20 picomoles of chlordecone and four unknown tissues from the mouse livers infected with chlordecone for 1, 5, and 10 days were analyzed using a convolutional neural network (CNN). To solve the lack of sufficient data for CNN model training, each pixel was considered as a sample, the designed CNN models were trained by pixels in training sets, and their corresponding amounts of chlordecone were obtained by multivariate curve resolution-alternating least-squares (MCR-ALS). The trained models were then externally evaluated using calibration pixels in test sets for 1, 5, and 10 days of exposure, respectively. Prediction R2 for all three data sets ranged from 0.93 to 0.96, which was superior to support vector machine (SVM) and partial least-squares (PLS). The trained CNN models were finally used to predict the amount of chlordecone in mouse liver tissues, and their results were compared with MALDI-MSI and GC-MS methods, which were comparable. Inspection of the results confirmed the validity of the proposed method.
Collapse
Affiliation(s)
- Fatemeh Golpelichi
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-9516, 1458889694Tehran, Iran
| | - Hadi Parastar
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-9516, 1458889694Tehran, Iran
| |
Collapse
|
12
|
Hyperspectral Imaging Coupled with Multivariate Analyses for Efficient Prediction of Chemical, Biological and Physical Properties of Seafood Products. FOOD ENGINEERING REVIEWS 2023. [DOI: 10.1007/s12393-022-09327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Image based beef and lamb slice authentication using convolutional neural networks. Meat Sci 2023; 195:108997. [DOI: 10.1016/j.meatsci.2022.108997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/11/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
|
14
|
Laser scattering imaging combined with CNNs to model the textural variability in a vegetable food tissue. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Hassoun A, Jagtap S, Garcia-Garcia G, Trollman H, Pateiro M, Lorenzo JM, Trif M, Rusu AV, Aadil RM, Šimat V, Cropotova J, Câmara JS. Food quality 4.0: From traditional approaches to digitalized automated analysis. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Hassoun A, Anusha Siddiqui S, Smaoui S, Ucak İ, Arshad RN, Bhat ZF, Bhat HF, Carpena M, Prieto MA, Aït-Kaddour A, Pereira JA, Zacometti C, Tata A, Ibrahim SA, Ozogul F, Camara JS. Emerging Technological Advances in Improving the Safety of Muscle Foods: Framing in the Context of the Food Revolution 4.0. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2149776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Abdo Hassoun
- Univ. Littoral Côte d’Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | - Shahida Anusha Siddiqui
- Department of Biotechnology and Sustainability, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax, Tunisia
| | - İ̇lknur Ucak
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Rai Naveed Arshad
- Institute of High Voltage & High Current, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Zuhaib F. Bhat
- Division of Livestock Products Technology, SKUASTof Jammu, Jammu, Kashmir, India
| | - Hina F. Bhat
- Division of Animal Biotechnology, SKUASTof Kashmir, Kashmir, India
| | - María Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, Bragança, Portugal
| | | | - Jorge A.M. Pereira
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Carmela Zacometti
- Istituto Zooprofilattico Sperimentale Delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Alessandra Tata
- Istituto Zooprofilattico Sperimentale Delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Salam A. Ibrahim
- Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - José S. Camara
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
17
|
Setiadi IC, Hatta AM, Koentjoro S, Stendafity S, Azizah NN, Wijaya WY. Adulteration detection in minced beef using low-cost color imaging system coupled with deep neural network. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1073969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Major processed meat products, including minced beef, are one of the favorite ingredients of most people because they are high in protein, vitamins, and minerals. The high demand and high prices make processed meat products vulnerable to adulteration. In addition, eliminating morphological attributes makes the authenticity of minced beef challenging to identify with the naked eye. This paper aims to describe the feasibility study of adulteration detection in minced beef using a low-cost imaging system coupled with a deep neural network. The proposed method was expected to be able to detect minced beef adulteration. There were 500 captured images of minced beef samples. Then, there were 24 color and textural features retrieved from the image. The samples were then labeled and evaluated. A deep neural network (DNN) was developed and investigated to support classification. The proposed DNN was also compared to six machine learning algorithms in the form of accuracy, precision, and sensitivity of classification. The feature importance analysis was also performed to obtain the most impacted features to classification results. The DNN model classification accuracy was 98.00% without feature selection and 99.33% with feature selection. The proposed DNN has the best performance with individual accuracy of up to 99.33%, a precision of up to 98.68%, and a sensitivity of up to 98.67%. This work shows the enormous potential application of a low-cost imaging system coupled with DNN to rapidly detect adulterants in minced beef with high performance.
Collapse
|
18
|
Li J, He L, Liu M, Chen J, Xue L. Hyperspectral dimension reduction and navel orange surface disease defect classification using independent component analysis-genetic algorithm. Front Nutr 2022; 9:993737. [PMID: 36337614 PMCID: PMC9626814 DOI: 10.3389/fnut.2022.993737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Canker is a common disease of navel oranges that is visible before harvest, and penicilliosis is a common disease occurring after harvest and storage. In this research, the typical fruit surface, canker spots, penicillium spore, and hypha of navel oranges were, respectively, identified by hyperspectral imaging. First, the light intensity on the edge of samples in hyperspectral images was improved by spherical correction. Then, independent component images and weight coefficients were obtained using independent component analysis. This approach, combined with use of a genetic algorithm, was used to select six characteristic wavelengths. The method achieved dimension reduction of hyperspectral data, and the testing time was reduced from 46.21 to 1.26 s for a self-developed online detection system. Finally, a deep learning neural network model was established, and the four kinds of surface pixels were identified accurately.
Collapse
Affiliation(s)
- Jing Li
- Jiangxi Key Laboratory of Modern Agricultural Equipment, College of Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Liang He
- Jiangxi Key Laboratory of Modern Agricultural Equipment, College of Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Muhua Liu
- Jiangxi Key Laboratory of Modern Agricultural Equipment, College of Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Jinyin Chen
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| | - Long Xue
- Jiangxi Key Laboratory of Modern Agricultural Equipment, College of Engineering, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Optics-Electrics Application of Biomaterials of Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Long Xue,
| |
Collapse
|
19
|
Lin Y, Ma J, Wang Q, Sun DW. Applications of machine learning techniques for enhancing nondestructive food quality and safety detection. Crit Rev Food Sci Nutr 2022; 63:1649-1669. [PMID: 36222697 DOI: 10.1080/10408398.2022.2131725] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In considering the need of people all over the world for high-quality food, there has been a recent increase in interest in the role of nondestructive and rapid detection technologies in the food industry. Moreover, the analysis of data acquired by most nondestructive technologies is complex, time-consuming, and requires highly skilled operators. Meanwhile, the general applicability of various chemometric or statistical methods is affected by noise, sample, variability, and data complexity that vary under various testing conditions. Nowadays, machine learning (ML) techniques have a wide range of applications in the food industry, especially in nondestructive technology and equipment intelligence, due to their powerful ability in handling irrelevant information, extracting feature variables, and building calibration models. The review provides an introduction and comparison of machine learning techniques, and summarizes these algorithms as traditional machine learning (TML), and deep learning (DL). Moreover, several novel nondestructive technologies, namely acoustic analysis, machine vision (MV), electronic nose (E-nose), and spectral imaging, combined with different advanced ML techniques and their applications in food quality assessment such as variety identification and classification, safety inspection and processing control, are presented. In addition to this, the existing challenges and prospects are discussed. The result of this review indicates that nondestructive testing technologies combined with state-of-the-art machine learning techniques show great potential for monitoring the quality and safety of food products and different machine learning algorithms have their characteristics and applicability scenarios. Due to the nature of feature learning, DL is one of the most promising and powerful techniques for real-time applications, which needs further research for full and wide applications in the food industry.
Collapse
Affiliation(s)
- Yuandong Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510641, China
| | - Qijun Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|
20
|
Abstract
Food quality and safety are the essential hot issues of social concern. In recent years, there has been a growing demand for real-time food information, and non-destructive testing is gradually replacing traditional manual sensory testing and chemical analysis methods with lagging and destructive effects and has strong potential for application in the food supply chain. With the maturity and development of computer science and spectroscopic techniques, machine learning and hyperspectral imaging (HSI) have been widely demonstrated as efficient detection techniques that can be applied to rapidly evaluate sensory characteristics and quality attributes of food products nondestructively and efficiently. This paper first briefly described the basic concepts of hyperspectral imaging and machine learning, including the imaging process of HSI, the type of algorithms contained in machine learning, and the data processing flow. Secondly, this paper provided an objective and comprehensive overview of the current applications of machine learning and HSI in the food supply chain for sorting, packaging, transportation, storage, and sales, based on the state-of-art literature from 2017 to 2022. Finally, the potential of the technology is further discussed to provide optimized ideas for practical application.
Collapse
|
21
|
Combined hyperspectral imaging technology with 2D convolutional neural network for near geographical origins identification of wolfberry. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Hassoun A, Alhaj Abdullah N, Aït-Kaddour A, Ghellam M, Beşir A, Zannou O, Önal B, Aadil RM, Lorenzo JM, Mousavi Khaneghah A, Regenstein JM. Food traceability 4.0 as part of the fourth industrial revolution: key enabling technologies. Crit Rev Food Sci Nutr 2022; 64:873-889. [PMID: 35950635 DOI: 10.1080/10408398.2022.2110033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food Traceability 4.0 (FT 4.0) is about tracing foods in the era of the fourth industrial revolution (Industry 4.0) with techniques and technologies reflecting this new revolution. Interest in food traceability has gained momentum in response to, among others events, the outbreak of the COVID-19 pandemic, reinforcing the need for digital food traceability that prevents food fraud and provides reliable information about food. This review will briefly summarize the most common conventional methods available to determine food authenticity before highlighting examples of emerging techniques that can be used to combat food fraud and improve food traceability. A particular focus will be on the concept of FT 4.0 and the significant role of digital solutions and other relevant Industry 4.0 innovations in enhancing food traceability. Based on this review, a possible new research topic, namely FT 4.0, is encouraged to take advantage of the rapid digitalization and technological advances occurring in the era of Industry 4.0. The main FT 4.0 enablers are blockchain, the Internet of things, artificial intelligence, and big data. Digital technologies in the age of Industry 4.0 have significant potential to improve the way food is traced, decrease food waste and reduce vulnerability to fraud opening new opportunities to achieve smarter food traceability. Although most of these emerging technologies are still under development, it is anticipated that future research will overcome current limitations making large-scale applications possible.
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | | | | | - Mohamed Ghellam
- Faculty of Engineering, Food Engineering Department, Ondokuz Mayis University, Samsun, Turkey
| | - Ayşegül Beşir
- Faculty of Engineering, Food Engineering Department, Ondokuz Mayis University, Samsun, Turkey
| | - Oscar Zannou
- Faculty of Engineering, Food Engineering Department, Ondokuz Mayis University, Samsun, Turkey
| | - Begüm Önal
- Gourmet International Ltd, Izmir, Turkey
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
23
|
Xue S, Yin Y. An exploration of robust model construction for monitoring banana quality during storage based on hyperspectral information. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01542-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
24
|
Cho BH, Kim YH, Lee KB, Hong YK, Kim KC. Potential of Snapshot-Type Hyperspectral Imagery Using Support Vector Classifier for the Classification of Tomatoes Maturity. SENSORS 2022; 22:s22124378. [PMID: 35746159 PMCID: PMC9227650 DOI: 10.3390/s22124378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023]
Abstract
It is necessary to convert to automation in a tomato hydroponic greenhouse because of the aging of farmers, the reduction in agricultural workers as a proportion of the population, COVID-19, and so on. In particular, agricultural robots are attractive as one of the ways for automation conversion in a hydroponic greenhouse. However, to develop agricultural robots, crop monitoring techniques will be necessary. In this study, therefore, we aimed to develop a maturity classification model for tomatoes using both support vector classifier (SVC) and snapshot-type hyperspectral imaging (VIS: 460–600 nm (16 bands) and Red-NIR: 600–860 nm (15 bands)). The spectral data, a total of 258 tomatoes harvested in January and February 2022, was obtained from the tomatoes’ surfaces. Spectral data that has a relationship with the maturity stages of tomatoes was selected by correlation analysis. In addition, the four different spectral data were prepared, such as VIS data (16 bands), Red-NIR data (15 bands), combination data of VIS and Red-NIR (31 bands), and selected spectral data (6 bands). These data were trained by SVC, respectively, and we evaluated the performance of trained classification models. As a result, the SVC based on VIS data achieved a classification accuracy of 79% and an F1-score of 88% to classify the tomato maturity into six stages (Green, Breaker, Turning, Pink, Light-red, and Red). In addition, the developed model was tested in a hydroponic greenhouse and was able to classify the maturity stages with a classification accuracy of 75% and an F1-score of 86%.
Collapse
|
25
|
Jia W, van Ruth S, Scollan N, Koidis A. Hyperspectral imaging (HSI) for meat quality evaluation across the supply chain: Current and future trends. Curr Res Food Sci 2022; 5:1017-1027. [PMID: 35755306 PMCID: PMC9218168 DOI: 10.1016/j.crfs.2022.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 12/01/2022] Open
Abstract
Meat products are particularly plagued by safety problems because of their complicated structure, various production processes and complex supply chains. Rapid and non-invasive analytical methods to evaluate meat quality have become a priority for the industry over the conventional chemical methods. To achieve rapid analysis of safety and quality parameters of meat products, hyperspectral imaging (HSI) is now widely applied in research studies for detecting the various components of different meat products, but its application in meat production and supply chain integrity as a quality control (QC) solution is still ambiguous. This review presents the fresh look at the current states of HSI research as both the scope and the applicability of the HSI in the meat quality evaluation expanded. The future application scenarios of HSI in the supply chain and the future development of HSI hardware and software are also discussed, by which HSI technology has the potential to enable large scale meat product testing. With a fully adapted for factory setting HSI, the inspection coverage can reliably identify the chemical properties of meat products. With the introduction of Food Industry 4.0, HSI advances can change the meat industry to become from reactive to predictive when facing meat safety issues. HSI has shown promising early signs in the non-destructive analysis of meat quality and safety. Hyperspectral imaging (HSI) is now widely applied in research studies for different meat products with the help of machine learning methods. With a fully adapted factory setting and robust machine learning of HSI, the inspection coverage can reach 100% of the target meat. HSI can change the meat industry to become from reactive to predictive when facing issues, this will be translated into fewer recalls, less meat fraud, and less waste.
Collapse
Affiliation(s)
- Wenyang Jia
- Institute for Global Food Security, School of Biological Sciences, Queen's University, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Saskia van Ruth
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Nigel Scollan
- Institute for Global Food Security, School of Biological Sciences, Queen's University, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Anastasios Koidis
- Institute for Global Food Security, School of Biological Sciences, Queen's University, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| |
Collapse
|
26
|
Detection of adulteration in mutton using digital images in time domain combined with deep learning algorithm. Meat Sci 2022; 192:108850. [DOI: 10.1016/j.meatsci.2022.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/17/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022]
|
27
|
Zhang J, Guo M, Liu G. Rapid identification of lamb freshness grades using visible and near-infrared spectroscopy (Vis-NIR). J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Jung DH, Kim JD, Kim HY, Lee TS, Kim HS, Park SH. A Hyperspectral Data 3D Convolutional Neural Network Classification Model for Diagnosis of Gray Mold Disease in Strawberry Leaves. FRONTIERS IN PLANT SCIENCE 2022; 13:837020. [PMID: 35360322 PMCID: PMC8963811 DOI: 10.3389/fpls.2022.837020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Gray mold disease is one of the most frequently occurring diseases in strawberries. Given that it spreads rapidly, rapid countermeasures are necessary through the development of early diagnosis technology. In this study, hyperspectral images of strawberry leaves that were inoculated with gray mold fungus to cause disease were taken; these images were classified into healthy and infected areas as seen by the naked eye. The areas where the infection spread after time elapsed were classified as the asymptomatic class. Square regions of interest (ROIs) with a dimensionality of 16 × 16 × 150 were acquired as training data, including infected, asymptomatic, and healthy areas. Then, 2D and 3D data were used in the development of a convolutional neural network (CNN) classification model. An effective wavelength analysis was performed before the development of the CNN model. Further, the classification model that was developed with 2D training data showed a classification accuracy of 0.74, while the model that used 3D data acquired an accuracy of 0.84; this indicated that the 3D data produced slightly better performance. When performing classification between healthy and asymptomatic areas for developing early diagnosis technology, the two CNN models showed a classification accuracy of 0.73 with regards to the asymptomatic ones. To increase accuracy in classifying asymptomatic areas, a model was developed by smoothing the spectrum data and expanding the first and second derivatives; the results showed that it was possible to increase the asymptomatic classification accuracy to 0.77 and reduce the misclassification of asymptomatic areas as healthy areas. Based on these results, it is concluded that the proposed 3D CNN classification model can be used as an early diagnosis sensor of gray mold diseases since it produces immediate on-site analysis results of hyperspectral images of leaves.
Collapse
|
29
|
Squeo G, De Angelis D, Summo C, Pasqualone A, Caponio F, Amigo JM. Assessment of macronutrients and alpha-galactosides of texturized vegetable proteins by near infrared hyperspectral imaging. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Mohd Ali M, Hashim N. Non-destructive methods for detection of food quality. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
31
|
Banús N, Boada I, Xiberta P, Toldrà P, Bustins N. Deep learning for the quality control of thermoforming food packages. Sci Rep 2021; 11:21887. [PMID: 34750436 PMCID: PMC8576017 DOI: 10.1038/s41598-021-01254-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
Quality control is a key process designed to ensure that only products satisfying the defined quality requirements reach the end consumer or the next step in a production line. In the food industry, in the packaging step, there are many products that are still evaluated by human operators. To automate the process and improve efficiency and effectiveness, computer vision and artificial intelligence techniques can be applied. This automation is challenging since specific strategies designed according to the application scenario are required. Focusing on the quality control of the sealing and closure of matrix-shaped thermoforming food packages, the aim of the article is to propose a deep-learning-based solution designed to automatically perform the quality control while satisfying production cadence and ensuring 100% inline inspection of the products. Particularly, the designed computer vision system and the image-based criteria defined to determine when a product has to be accepted or rejected are presented. In addition, the vision control software is described with special emphasis on the different convolutional neural network (CNN) architectures that have been considered (ResNet18, ResNet50, Vgg19 and DenseNet161, non-pre-trained and pre-trained on ImageNet) and on the specifically designed dataset. To test the solution, different experiments are carried out in the laboratory and also in a real scenario, concluding that the proposed CNN-based approach improves the efficiency and security of the quality control process. Optimal results are obtained with the pre-trained DenseNet161, achieving false positive rates that range from 0.03 to 0.30% and false negative rates that range from 0 to 0.07%, with a rejection rate between 0.64 and 5.09% of production, and being able to detect at least 99.93% of the sealing defects that occur in any production. The modular design of our solution as well as the provided description allow it to adapt to similar scenarios and to new deep-learning models to prevent the arrival of faulty products to end consumers by removing them from the automated production line.
Collapse
Affiliation(s)
- Núria Banús
- Graphics and Imaging Laboratory, University of Girona, 17003, Girona, Catalonia, Spain.,Vision Department (R&D), TAVIL Ind. S.A.U., 17854, Girona, Catalonia, Spain
| | - Imma Boada
- Graphics and Imaging Laboratory, University of Girona, 17003, Girona, Catalonia, Spain.
| | - Pau Xiberta
- Graphics and Imaging Laboratory, University of Girona, 17003, Girona, Catalonia, Spain
| | - Pol Toldrà
- Vision Department (R&D), TAVIL Ind. S.A.U., 17854, Girona, Catalonia, Spain
| | - Narcís Bustins
- Vision Department (R&D), TAVIL Ind. S.A.U., 17854, Girona, Catalonia, Spain
| |
Collapse
|
32
|
Dixit Y, Al-Sarayreh M, Craigie C, Reis M. A global calibration model for prediction of intramuscular fat and pH in red meat using hyperspectral imaging. Meat Sci 2021; 181:108405. [DOI: 10.1016/j.meatsci.2020.108405] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/26/2020] [Accepted: 12/07/2020] [Indexed: 01/06/2023]
|
33
|
Deep proximal support vector machine classifiers for hyperspectral images classification. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-05965-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Collins T, Maktabi M, Barberio M, Bencteux V, Jansen-Winkeln B, Chalopin C, Marescaux J, Hostettler A, Diana M, Gockel I. Automatic Recognition of Colon and Esophagogastric Cancer with Machine Learning and Hyperspectral Imaging. Diagnostics (Basel) 2021; 11:diagnostics11101810. [PMID: 34679508 PMCID: PMC8535008 DOI: 10.3390/diagnostics11101810] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 01/23/2023] Open
Abstract
There are approximately 1.8 million diagnoses of colorectal cancer, 1 million diagnoses of stomach cancer, and 0.6 million diagnoses of esophageal cancer each year globally. An automatic computer-assisted diagnostic (CAD) tool to rapidly detect colorectal and esophagogastric cancer tissue in optical images would be hugely valuable to a surgeon during an intervention. Based on a colon dataset with 12 patients and an esophagogastric dataset of 10 patients, several state-of-the-art machine learning methods have been trained to detect cancer tissue using hyperspectral imaging (HSI), including Support Vector Machines (SVM) with radial basis function kernels, Multi-Layer Perceptrons (MLP) and 3D Convolutional Neural Networks (3DCNN). A leave-one-patient-out cross-validation (LOPOCV) with and without combining these sets was performed. The ROC-AUC score of the 3DCNN was slightly higher than the MLP and SVM with a difference of 0.04 AUC. The best performance was achieved with the 3DCNN for colon cancer and esophagogastric cancer detection with a high ROC-AUC of 0.93. The 3DCNN also achieved the best DICE scores of 0.49 and 0.41 on the colon and esophagogastric datasets, respectively. These scores were significantly improved using a patient-specific decision threshold to 0.58 and 0.51, respectively. This indicates that, in practical use, an HSI-based CAD system using an interactive decision threshold is likely to be valuable. Experiments were also performed to measure the benefits of combining the colorectal and esophagogastric datasets (22 patients), and this yielded significantly better results with the MLP and SVM models.
Collapse
Affiliation(s)
- Toby Collins
- Institute for Research against Digestive Cancer (IRCAD), 67091 Strasbourg, France; (M.B.); (J.M.); (A.H.); (M.D.)
- Correspondence:
| | - Marianne Maktabi
- Innovation Center Computer-Assisted Surgery (ICCAS), University of Leipzig, 04103 Leipzig, Germany; (M.M.); (C.C.)
| | - Manuel Barberio
- Institute for Research against Digestive Cancer (IRCAD), 67091 Strasbourg, France; (M.B.); (J.M.); (A.H.); (M.D.)
- General Surgery Department, Card. G. Panico, 73039 Tricase, Italy
| | - Valentin Bencteux
- ICUBE Laboratory, Photonics Instrumentation for Health, University of Strasbourg, 67400 Strasbourg, France;
| | - Boris Jansen-Winkeln
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 04103 Leipzig, Germany; (B.J.-W.); (I.G.)
| | - Claire Chalopin
- Innovation Center Computer-Assisted Surgery (ICCAS), University of Leipzig, 04103 Leipzig, Germany; (M.M.); (C.C.)
| | - Jacques Marescaux
- Institute for Research against Digestive Cancer (IRCAD), 67091 Strasbourg, France; (M.B.); (J.M.); (A.H.); (M.D.)
| | - Alexandre Hostettler
- Institute for Research against Digestive Cancer (IRCAD), 67091 Strasbourg, France; (M.B.); (J.M.); (A.H.); (M.D.)
| | - Michele Diana
- Institute for Research against Digestive Cancer (IRCAD), 67091 Strasbourg, France; (M.B.); (J.M.); (A.H.); (M.D.)
- ICUBE Laboratory, Photonics Instrumentation for Health, University of Strasbourg, 67400 Strasbourg, France;
- Department of General, Digestive, and Endocrine Surgery, University Hospital of Strasbourg, 67091 Strasbourg, France
- INSERM, Institute of Viral and Liver Disease, 67091 Strasbourg, France
- Mitochondrion, Oxidative Stress and Muscle Protection (MSP)-EA 3072, Institute of Physiology, Faculty of Medicine, University of Strasbourg, 67085 Strasbourg, France
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 04103 Leipzig, Germany; (B.J.-W.); (I.G.)
| |
Collapse
|
35
|
Jahanbakhshi A, Abbaspour-Gilandeh Y, Heidarbeigi K, Momeny M. A novel method based on machine vision system and deep learning to detect fraud in turmeric powder. Comput Biol Med 2021; 136:104728. [PMID: 34388461 DOI: 10.1016/j.compbiomed.2021.104728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/20/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
Assessing the quality of food and spices is particularly important in ensuring proper human nutrition. The use of computer vision method as a non-destructive technique in measuring the quality of food and spices has always been taken into consideration by researchers. Due to the high nutritional value of turmeric among the spices as well as the fraudulent motives to gain economic profit from the selling of this product, its quality assessment is very important. The lack of marketability of grade 3 chickpeas (small and broken chickpeas) and their very low price have made them a good choice to be mixed with turmeric in powder form and sold in the market. In this study, an improved convolutional neural network (CNN) was used to classify turmeric powder images to detect fraud. CNN was improved through the use of gated pooling functions. We also show with a combined approach based on the integration of average pooling and max pooling that the accuracy and performance of the proposed CNN has increased. In this study, 6240 image samples were prepared in 13 categories (pure turmeric powder, chickpea powder, chickpea powder mixed with food coloring, 10, 20, 30, 40 and 50% fraud in turmeric). In the preprocessing step, unwanted parts of the image were removed. The data augmentation (DA) was used to reduce the overfitting problem on CNN. Also in this research, MLP, Fuzzy, SVM, GBT and EDT algorithms were used to compare the proposed CNN results with other classifiers. The results showed that prevention of the overfitting problem using gated pooling, the proposed CNN was able to grade the images of turmeric powder with 99.36% accuracy compared to other classifiers. The results of this study also showed that computer vision, especially when used with deep learning (DL), can be a valuable method in evaluating the quality and detecting fraud in turmeric powder.
Collapse
Affiliation(s)
- Ahmad Jahanbakhshi
- Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.
| | | | | | - Mohammad Momeny
- Department of Computer Engineering, Yazd University, Yazd, Iran
| |
Collapse
|
36
|
Huang H, Hu X, Tian J, Jiang X, Luo H, Huang D. Rapid detection of the reducing sugar and amino acid nitrogen contents of Daqu based on hyperspectral imaging. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103970] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
37
|
Efficient extraction of deep image features using convolutional neural network (CNN) for applications in detecting and analysing complex food matrices. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Combination of spectral and image information from hyperspectral imaging for the prediction and visualization of the total volatile basic nitrogen content in cooked beef. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00983-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Ma P, Lau CP, Yu N, Li A, Liu P, Wang Q, Sheng J. Image-based nutrient estimation for Chinese dishes using deep learning. Food Res Int 2021; 147:110437. [PMID: 34399450 DOI: 10.1016/j.foodres.2021.110437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/12/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022]
Abstract
Food image recognition systems facilitate dietary assessment and in turn track users' dietary behaviors. However, due to the diversity of Chinese food, a quick and accurate food image recognizing is a particularly challenging task. The success of deep learning in computer vision inspired us to investigate its potential in this task. To satisfy its requirement on large-scale data, we established the first open-access image database for Chinese dishes, named ChinaFood-100, with quantitative nutrient annotations. We collected 10,074 images covering 100 food categories, including staple, meat, seafood, and vegetables. Based on this dataset, we trained four state-of-art deep learning neural network architectures for image recognition and showed that deep learning model Inception V3 resulted in the most advantageous recognition performance 78.26% in top-1 accuracy and 96.62% in top-5 accuracy. Based on this image recognition posterior, we further compared three nutrition estimation algorithms for food nutrient estimation. The results showed that the top-5 Arithmetic Mean (AM) algorithm achieved the highest regression coefficient (R2) up to 0.73 for protein estimation, which validated its applicability in practice. In addition, we analyzed our algorithm in terms of precision-recall and Grad-CAM. The results achieved by deep learning for food nutrient estimation may encourage artificial intelligence to be applied to the field of food, which shed the light on improvement in the future.
Collapse
Affiliation(s)
- Peihua Ma
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, China; Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, United States
| | - Chun Pong Lau
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Ning Yu
- Department of Computer Science, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, United States
| | - An Li
- Maryland Applied Graduate Department of Robotics Engineering, Maryland Robotics Center, A. James Clark School College of Engineering, University of Maryland, College Park, MD 20742, United States
| | - Ping Liu
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Qin Wang
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, United States
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
40
|
Zhang X, Zhang K, Jiang M, Yang L. Research on the classification of lymphoma pathological images based on deep residual neural network. Technol Health Care 2021; 29:335-344. [PMID: 33682770 PMCID: PMC8150517 DOI: 10.3233/thc-218031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Malignant lymphoma is a type of tumor that originated from the lymphohematopoietic system, with complex etiology, diverse pathological morphology, and classification. It takes a lot of time and energy for doctors to accurately determine the type of lymphoma by observing pathological images. OBJECTIVE At present, an automatic classification technology is urgently needed to assist doctors in analyzing the type of lymphoma. METHODS In this paper, by comparing the training results of the BP neural network and BP neural network optimized by genetic algorithm (GA-BP), adopts a deep residual neural network model (ResNet-50), with 374 lymphoma pathology images as the experimental data set. After preprocessing the dataset by image flipping, color transformation, and other data enhancement methods, the data set is input into the ResNet-50 network model, and finally classified by the softmax layer. RESULTS The training results showed that the classification accuracy was 98.63%. By comparing the classification effect of GA-BP and BP neural network, the accuracy of the network model proposed in this paper is improved. CONCLUSIONS The network model can provide an objective basis for doctors to diagnose lymphoma types.
Collapse
Affiliation(s)
- Xiaoli Zhang
- College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Kuixing Zhang
- College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Mei Jiang
- College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Lin Yang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
| |
Collapse
|
41
|
Liu Y, Qiao F, Wang S, Wang R, Xu L. Application of hyperspectral imaging technology for rapid identification of Ruditapes philippinarum contaminated by heavy metals. RSC Adv 2021; 11:33939-33951. [PMID: 35497300 PMCID: PMC9042362 DOI: 10.1039/d1ra03664e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/07/2021] [Indexed: 11/21/2022] Open
Abstract
Combined with pattern recognition analysis hyperspectral imaging technology can be used to identify heavy metal contamination in Ruditapes philippinarum rapidly and non-destructively, even with only a small number of training samples.
Collapse
Affiliation(s)
- Yao Liu
- School of Electronic and Electrical Engineering, Lingnan Normal University, 29 Cunjin Road, Chikan District, Zhanjiang 524048, Guangdong Province, China
| | - Fu Qiao
- School of Computer Science and Intelligence Education, Lingnan Normal University, Zhanjiang 524048, China
| | - Shuwen Wang
- School of Electronic and Electrical Engineering, Lingnan Normal University, 29 Cunjin Road, Chikan District, Zhanjiang 524048, Guangdong Province, China
| | - Runtao Wang
- School of Electronic and Electrical Engineering, Lingnan Normal University, 29 Cunjin Road, Chikan District, Zhanjiang 524048, Guangdong Province, China
| | - Lele Xu
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
| |
Collapse
|
42
|
Mu Q, Kang Z, Guo Y, Chen L, Wang S, Zhao Y. Hyperspectral image classification of wolfberry with different geographical origins based on three-dimensional convolutional neural network. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1987457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Qingshuang Mu
- School of Electronic Information Engineering, Hebei University of Technology, Tianjin, China
| | - Zhilong Kang
- School of Electronic Information Engineering, Hebei University of Technology, Tianjin, China
| | - Yanju Guo
- School of Electronic Information Engineering, Hebei University of Technology, Tianjin, China
| | - Lei Chen
- School of Information Engineering, Tianjin University of Commerce, Tianjin, China
| | - Shenyi Wang
- School of Electronic Information Engineering, Hebei University of Technology, Tianjin, China
| | - Yuchen Zhao
- School of Electronic Information Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
43
|
Bwambok DK, Siraj N, Macchi S, Larm NE, Baker GA, Pérez RL, Ayala CE, Walgama C, Pollard D, Rodriguez JD, Banerjee S, Elzey B, Warner IM, Fakayode SO. QCM Sensor Arrays, Electroanalytical Techniques and NIR Spectroscopy Coupled to Multivariate Analysis for Quality Assessment of Food Products, Raw Materials, Ingredients and Foodborne Pathogen Detection: Challenges and Breakthroughs. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6982. [PMID: 33297345 PMCID: PMC7730680 DOI: 10.3390/s20236982] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/23/2022]
Abstract
Quality checks, assessments, and the assurance of food products, raw materials, and food ingredients is critically important to ensure the safeguard of foods of high quality for safety and public health. Nevertheless, quality checks, assessments, and the assurance of food products along distribution and supply chains is impacted by various challenges. For instance, the development of portable, sensitive, low-cost, and robust instrumentation that is capable of real-time, accurate, and sensitive analysis, quality checks, assessments, and the assurance of food products in the field and/or in the production line in a food manufacturing industry is a major technological and analytical challenge. Other significant challenges include analytical method development, method validation strategies, and the non-availability of reference materials and/or standards for emerging food contaminants. The simplicity, portability, non-invasive, non-destructive properties, and low-cost of NIR spectrometers, make them appealing and desirable instruments of choice for rapid quality checks, assessments and assurances of food products, raw materials, and ingredients. This review article surveys literature and examines current challenges and breakthroughs in quality checks and the assessment of a variety of food products, raw materials, and ingredients. Specifically, recent technological innovations and notable advances in quartz crystal microbalances (QCM), electroanalytical techniques, and near infrared (NIR) spectroscopic instrument development in the quality assessment of selected food products, and the analysis of food raw materials and ingredients for foodborne pathogen detection between January 2019 and July 2020 are highlighted. In addition, chemometric approaches and multivariate analyses of spectral data for NIR instrumental calibration and sample analyses for quality assessments and assurances of selected food products and electrochemical methods for foodborne pathogen detection are discussed. Moreover, this review provides insight into the future trajectory of innovative technological developments in QCM, electroanalytical techniques, NIR spectroscopy, and multivariate analyses relating to general applications for the quality assessment of food products.
Collapse
Affiliation(s)
- David K. Bwambok
- Chemistry and Biochemistry, California State University San Marcos, 333 S. Twin Oaks Valley Rd, San Marcos, CA 92096, USA;
| | - Noureen Siraj
- Department of Chemistry, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204, USA; (N.S.); (S.M.)
| | - Samantha Macchi
- Department of Chemistry, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204, USA; (N.S.); (S.M.)
| | - Nathaniel E. Larm
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, MO 65211, USA; (N.E.L.); (G.A.B.)
| | - Gary A. Baker
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, MO 65211, USA; (N.E.L.); (G.A.B.)
| | - Rocío L. Pérez
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA; (R.L.P.); (C.E.A.); (I.M.W.)
| | - Caitlan E. Ayala
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA; (R.L.P.); (C.E.A.); (I.M.W.)
| | - Charuksha Walgama
- Department of Physical Sciences, University of Arkansas-Fort Smith, 5210 Grand Ave, Fort Smith, AR 72913, USA; (C.W.); (S.B.)
| | - David Pollard
- Department of Chemistry, Winston-Salem State University, 601 S. Martin Luther King Jr Dr, Winston-Salem, NC 27013, USA;
| | - Jason D. Rodriguez
- Division of Complex Drug Analysis, Center for Drug Evaluation and Research, US Food and Drug Administration, 645 S. Newstead Ave., St. Louis, MO 63110, USA;
| | - Souvik Banerjee
- Department of Physical Sciences, University of Arkansas-Fort Smith, 5210 Grand Ave, Fort Smith, AR 72913, USA; (C.W.); (S.B.)
| | - Brianda Elzey
- Science, Engineering, and Technology Department, Howard Community College, 10901 Little Patuxent Pkwy, Columbia, MD 21044, USA;
| | - Isiah M. Warner
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA; (R.L.P.); (C.E.A.); (I.M.W.)
| | - Sayo O. Fakayode
- Department of Physical Sciences, University of Arkansas-Fort Smith, 5210 Grand Ave, Fort Smith, AR 72913, USA; (C.W.); (S.B.)
| |
Collapse
|
44
|
Zhu H, Gowen A, Feng H, Yu K, Xu JL. Deep Spectral-Spatial Features of Near Infrared Hyperspectral Images for Pixel-Wise Classification of Food Products. SENSORS 2020; 20:s20185322. [PMID: 32957597 PMCID: PMC7570506 DOI: 10.3390/s20185322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 11/25/2022]
Abstract
Hyperspectral imaging (HSI) emerges as a non-destructive and rapid analytical tool for assessing food quality, safety, and authenticity. This work aims to investigate the potential of combining the spectral and spatial features of HSI data with the aid of deep learning approach for the pixel-wise classification of food products. We applied two strategies for extracting spatial-spectral features: (1) directly applying three-dimensional convolution neural network (3-D CNN) model; (2) first performing principal component analysis (PCA) and then developing 2-D CNN model from the first few PCs. These two methods were compared in terms of efficiency and accuracy, exemplified through two case studies, i.e., classification of four sweet products and differentiation between white stripe (“myocommata”) and red muscle (“myotome”) pixels on salmon fillets. Results showed that combining spectral-spatial features significantly enhanced the overall accuracy for sweet dataset, compared to partial least square discriminant analysis (PLSDA) and support vector machine (SVM). Results also demonstrated that spectral pre-processing techniques prior to CNN model development can enhance the classification performance. This work will open the door for more research in the area of practical applications in food industry.
Collapse
Affiliation(s)
- Hongyan Zhu
- College of Electronic Engineering, Guangxi Normal University, Guilin 541004, China;
| | - Aoife Gowen
- UCD School of Biosystems and Food Engineering, University College of Dublin (UCD), Belfield, Dublin 4, Ireland;
| | - Hailin Feng
- School of Information Engineering, Zhejiang Agricultural and Forestry University, Hangzhou 310000, China;
| | - Keping Yu
- Global Information and Telecommunication Institute, Waseda University, Shinjuku, Tokyo 169-8050, Japan;
| | - Jun-Li Xu
- UCD School of Biosystems and Food Engineering, University College of Dublin (UCD), Belfield, Dublin 4, Ireland;
- Correspondence:
| |
Collapse
|
45
|
Hassoun A, Måge I, Schmidt WF, Temiz HT, Li L, Kim HY, Nilsen H, Biancolillo A, Aït-Kaddour A, Sikorski M, Sikorska E, Grassi S, Cozzolino D. Fraud in Animal Origin Food Products: Advances in Emerging Spectroscopic Detection Methods over the Past Five Years. Foods 2020; 9:E1069. [PMID: 32781687 PMCID: PMC7466239 DOI: 10.3390/foods9081069] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022] Open
Abstract
Animal origin food products, including fish and seafood, meat and poultry, milk and dairy foods, and other related products play significant roles in human nutrition. However, fraud in this food sector frequently occurs, leading to negative economic impacts on consumers and potential risks to public health and the environment. Therefore, the development of analytical techniques that can rapidly detect fraud and verify the authenticity of such products is of paramount importance. Traditionally, a wide variety of targeted approaches, such as chemical, chromatographic, molecular, and protein-based techniques, among others, have been frequently used to identify animal species, production methods, provenance, and processing of food products. Although these conventional methods are accurate and reliable, they are destructive, time-consuming, and can only be employed at the laboratory scale. On the contrary, alternative methods based mainly on spectroscopy have emerged in recent years as invaluable tools to overcome most of the limitations associated with traditional measurements. The number of scientific studies reporting on various authenticity issues investigated by vibrational spectroscopy, nuclear magnetic resonance, and fluorescence spectroscopy has increased substantially over the past few years, indicating the tremendous potential of these techniques in the fight against food fraud. It is the aim of the present manuscript to review the state-of-the-art research advances since 2015 regarding the use of analytical methods applied to detect fraud in food products of animal origin, with particular attention paid to spectroscopic measurements coupled with chemometric analysis. The opportunities and challenges surrounding the use of spectroscopic techniques and possible future directions will also be discussed.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Ingrid Måge
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Walter F. Schmidt
- United States Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705-2325, USA;
| | - Havva Tümay Temiz
- Department of Food Engineering, Bingol University, 12000 Bingol, Turkey;
| | - Li Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China;
| | - Hae-Yeong Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea;
| | - Heidi Nilsen
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, University of L’Aquila, 67100 Via Vetoio, Coppito, L’Aquila, Italy;
| | | | - Marek Sikorski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland;
| | - Ewa Sikorska
- Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland;
| | - Silvia Grassi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Celoria, 2, 20133 Milano, Italy;
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 39 Kessels Rd, Coopers Plains, QLD 4108, Australia;
| |
Collapse
|