1
|
Laranja DC, Cacciatore FA, Cardoso LT, Malheiros PDS, Tondo EC. Determination of Nisin Concentration to Control Listeria monocytogenes in Cooked Ham. Indian J Microbiol 2024; 64:1664-1671. [PMID: 39678960 PMCID: PMC11645367 DOI: 10.1007/s12088-024-01208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/17/2024] [Indexed: 12/17/2024] Open
Abstract
Listeria monocytogenes contamination may occur after thermal processing of cooked ham. This study aimed to determine the effective nisin concentration to inhibit the growth of L. monocytogenes. Two batches of ham were prepared by adding 12.5 mg nisin/kg ham at brine injection (assay 1) or tumbling stage (assay 2). Another piece of cooked ham was prepared by adding 32 mg nisin/kg ham at brine injection (assay 3). Afterward, samples of cooked ham were contaminated with L. monocytogenes cocktail (4 log CFU/mL). The results of assays 1 and 2 revealed that this nisin concentration was ineffective in inhibiting L. monocytogenes in ham. The minimum bactericidal concentration test results indicated that each L. monocytogenes strain had a different sensitivity profile and the cocktail had greater resistance. High concentrations of nisin (32 mg/mL) were efficient in controlling the most resistant strains. Statistical analyses were performed using ANOVA and Tukey's test. This higher nisin concentration was effective in controlling the L. monocytogenes cocktail in cooked ham over 10 days. The findings highlight the potential of high nisin concentrations to effectively reduce L. monocytogenes contamination in cooked ham.
Collapse
Affiliation(s)
- Daniela Comparsi Laranja
- Departamento de Ciência de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (ICTA-UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS CEP 91501-970 Brazil
| | - Fabiola Ayres Cacciatore
- Departamento de Ciência de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (ICTA-UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS CEP 91501-970 Brazil
| | - Louise Thomé Cardoso
- Departamento de Ciência de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (ICTA-UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS CEP 91501-970 Brazil
| | - Patricia da Silva Malheiros
- Departamento de Ciência de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (ICTA-UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS CEP 91501-970 Brazil
| | - Eduardo Cesar Tondo
- Departamento de Ciência de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (ICTA-UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS CEP 91501-970 Brazil
| |
Collapse
|
2
|
Watson SC, Neujahr AC, Chaves BD, Fernando SC, Sullivan GA. Environmental Monitoring of Nebraska Ready-to-eat Meat Processing Establishments Resulted in the Isolation of Listeria Alongside Pseudomonas Highly Resistant to Quaternary Ammonia Sanitizer. J Food Prot 2024; 87:100391. [PMID: 39490688 DOI: 10.1016/j.jfp.2024.100391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Robust environmental monitoring for Listeria monocytogenes often may not be feasible for small and very small meat processors in the United States due to the limitations in finances, staffing, or expertise. Three small/very small processors in Nebraska were sampled using sponge applicators in nonfood contact surface areas to determine if biofilm and sanitizer resistance behaviors of Pseudomonas could relate to the prevalence of L. monocytogenes and Listeria spp. in ready-to-eat meat processing environments. Samples were 3.3% (3/90) positive for L. monocytogenes, and 12.2% (11/90) of samples were positive for Listeria spp. Pseudomonas spp. were also isolated. When Listeria spp. and Pseudomonas spp. were assayed for biofilm production and resistance to a quaternary ammonia sanitizer, multiple isolates belonging to both genera capable of forming biofilms were identified. Four Pseudomonas spp. isolates resisted the 200 ppm manufacturer-recommended sanitizer concentration for food contact surface sanitation, and one Pseudomonas spp. isolated from a drain sample that was also positive for L. monocytogenes demonstrated a sanitizer minimum bactericidal concentration of 1000 ppm. These findings further support the need for monitoring of small and very small meat processors for L. monocytogenes as well as highlight the need to identify other bacteria in these processing environments, like Pseudomonas, that are resistant to environmental stressors.
Collapse
Affiliation(s)
- Samuel C Watson
- Department of Animal Science, University of Nebraska - Lincoln, C203 ANSC, Lincoln, NE 68583-0908, USA.
| | - Alison C Neujahr
- Department of Complex Biosystems, University of Nebraska - Lincoln, Lincoln, NE, 68583-0908, USA.
| | - Byron D Chaves
- Department of Food Science and Technology, University of Nebraska - Lincoln, 1901 N 21 St, Lincoln, NE 68588-6205, USA.
| | - Samodha C Fernando
- Department of Animal Science, University of Nebraska - Lincoln, C203 ANSC, Lincoln, NE 68583-0908, USA.
| | - Gary A Sullivan
- Department of Animal Science, University of Nebraska - Lincoln, C203 ANSC, Lincoln, NE 68583-0908, USA.
| |
Collapse
|
3
|
Belias A, Bolten S, Wiedmann M. Challenges and opportunities for risk- and systems-based control of Listeria monocytogenes transmission through food. Compr Rev Food Sci Food Saf 2024; 23:e70071. [PMID: 39610177 PMCID: PMC11605164 DOI: 10.1111/1541-4337.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
Listeria monocytogenes contamination of ready-to-eat (RTE) food products and food-associated built environments (e.g., processing facilities) represents a food safety issue with major public health and business risk implications. A number of factors make L. monocytogenes control a particular challenge, including (i) its frequent presence in different environments, (ii) its propensity for establishing persistence in food-associated environments, (iii) its ability to grow under a variety of stressful conditions, and (iv) its ability to cause severe illness, particularly in immunocompromised individuals and pregnant people. Key sources of L. monocytogenes contamination of RTE foods are food-associated built environments. However, raw materials can also be an important source, particularly for products without a "kill step" (e.g., fresh produce, raw dairy products, cold-smoked seafood). While certain RTE foods (e.g., deli meats, soft cheeses, produce) have commonly been linked to listeriosis outbreaks, cases, and recalls, a number of factors will influence the specific public health risk a given RTE food represents, including the likelihood of contamination, ability to support L. monocytogenes growth, and consumer-related factors (including consumption by pregnant or immunocompromised individuals). Consequently, a risk-based approach presents the most appropriate strategy to minimize the public health and business impact of L. monocytogenes. Key challenges to control L. monocytogenes include (i) development and implementation of food safety systems that prevent L. monocytogenes persistence in food-associated built environments, (ii) minimizing L. monocytogenes contamination of raw material sources, (iii) implementation of effective root cause analysis procedures, (iv) minimizing L. monocytogenes growth in finished product, and (v) consumer education.
Collapse
Affiliation(s)
| | - Samantha Bolten
- Department of Food ScienceCornell UniversityIthacaNew YorkUSA
| | - Martin Wiedmann
- Department of Food ScienceCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
4
|
Jung Y, Qian C, Barnett-Neefs C, Ivanek R, Wiedmann M. Developing an Agent-Based Model that Predicts Listeria spp. Transmission to Assess Listeria Control Strategies in Retail Stores. J Food Prot 2024; 87:100337. [PMID: 39094766 DOI: 10.1016/j.jfp.2024.100337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Contamination of fresh produce with Listeria monocytogenes can occur throughout the supply chain, including at retail, where Listeria spp., including L. monocytogenes, may be introduced and spread via various routes. However, limited tools are available for retailers to assess practices that can enhance control of Listeria transmission to fresh produce. Therefore, we developed an agent-based model that can simulate Listeria transmission in retail produce sections to optimize environmental sampling programs and evaluate control strategies. A single retail store was used as a model environment, in which various routes of Listeria introduction into and transmission between environmental surfaces were modeled. Model prediction (i.e., Listeria prevalence) was validated using a published longitudinal study for all surfaces that were included in both the model and the validation data. Sensitivity analysis using the Partial Rank Correlation Coefficient showed that (i) initial Listeria concentration from incoming produce, (ii) transfer coefficient from produce to employee's hands, and (iii) transfer coefficient from consumer to produce were the top three parameters that were significantly (p < 0.0018) associated with the mean Listeria prevalence across all agents, suggesting that the accuracy of these parameters are important for prediction of overall Listeria prevalence at retail. Cluster analysis grouped agents with similar contamination patterns into six unique clusters; this information can be used to optimize the sampling plans for retail environments. Scenario analysis suggested that (i) more stringent supplier control as well as (ii) practices reducing Listeria transmission via consumer's hands may have the largest impact on reducing finished product contamination. Overall, we show that an agent-based model can serve as a foundational tool to help with decision-making on Listeria control strategies at retail.
Collapse
Affiliation(s)
- YeonJin Jung
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Chenhao Qian
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | - Cecil Barnett-Neefs
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Hu X, Du X, Li M, Sun J, Li X, Pang X, Lu Y. Preparation and characterization of nisin-loaded chitosan nanoparticles functionalized with DNase I for the removal of Listeria monocytogenes biofilms. J Food Sci 2024; 89:2305-2315. [PMID: 38369953 DOI: 10.1111/1750-3841.16976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Abstract
Listeria monocytogenes biofilms represent a continuous source of contamination, leading to serious food safety concerns and economic losses. This study aims to develop novel nisin-loaded chitosan nanoparticles (CSNPs) functionalized with DNase I and evaluate its antibiofilm activity against L. monocytogenes on food contact surfaces. Nisin-loaded CSNPs (CS-N) were first prepared by ionic cross-linking, and DNase I was covalently grafted on the surface (DNase-CS-N). The NPs were subsequently characterized by Zetasizer Nano, transmission electron microscopy, Fourier transform infrared (FT-IR), and X-ray diffraction (XRD). The antibiofilm activity of NPs was evaluated against L. monocytogenes on polyurethane (PU). The DNase-CS-N was fabricated and characterized with quality attributes (particle size-427.0 ± 15.1 nm, polydispersity [PDI]-0.114 ± 0.034, zeta potential-+52.5 ± 0.2 mV, encapsulation efficiency-46.5% ± 3.6%, DNase conjugate rate-70.4% ± 0.2). FT-IR and XRD verified the loading of nisin and binding of DNase I with chitosan. The DNase-CS-N caused a 3 log colony-forming unit (CFU)/cm2 reduction of L. monocytogenes biofilm cells, significantly higher than those in CSNPs (1.4 log), CS-N (1.8 log), and CS-N in combination with DNase I (2.2 log) treatment groups. In conclusion, nisin-loaded CSNPs functionalized with DNase I were successfully prepared and characterized with smooth surface and nearly spherical shape, high surface positive charge, and good stability, which is effective to eradicate L. monocytogenes biofilm cells on food contact surfaces, exhibiting great potential as antibiofilm agents in food industry. PRACTICAL APPLICATION: Listeria monocytogenes biofilms are a common safety hazard in food processing. In this study, novel nanoparticles were successfully constructed and are expected to be a promising antibiofilm agent in the food industry.
Collapse
Affiliation(s)
- Xin Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xueying Du
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Mingwei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
6
|
Jung J, Young I, Sekercioglu F. Descriptive analysis of the most common types of food safety infractions at ready-to-eat meat processing plants in Ontario, Canada. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1499-1510. [PMID: 37306113 DOI: 10.1080/09603123.2023.2223487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Food safety inspections of meat processing plants and abattoirs that process ready-to-eat (RTE) meats have identified a lack of compliance with good manufacturing practices. This study was undertaken to identify common food safety infractions in the RTE meat processing sector in Ontario through an analysis of historical audit records. A total of 376,457 audit item results were evaluated across 912 unique audits of 204 different RTE meat plants. A nearly two-thirds overall item pass rate (64.4%; n = 242,478) was identified. Across all other risk categories, the highest rates of infractions were observed in the "maintenance of premises, equipment and utensils" (56.7%; n = 750). The overall item pass rate was higher in free-standing meat processing plants than abattoirs, while pass rates gradually decreased across the study period. The results of this study have identified key areas for improvement in future inspection, audit and outreach with RTE meat processing plants.
Collapse
Affiliation(s)
- Jiin Jung
- School of Occupational and Public Health, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Ian Young
- School of Occupational and Public Health, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Fatih Sekercioglu
- School of Occupational and Public Health, Toronto Metropolitan University, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Bombelli A, Araya-Cloutier C, Boeren S, Vincken JP, Abee T, den Besten HMW. Effects of the antimicrobial glabridin on membrane integrity and stress response activation in Listeria monocytogenes. Food Res Int 2024; 175:113687. [PMID: 38128979 DOI: 10.1016/j.foodres.2023.113687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Glabridin is a prenylated isoflavan which can be extracted from liquorice roots and has shown antimicrobial activity against foodborne pathogens and spoilage microorganisms. However, its application may be hindered due to limited information about its mode of action. In this study, we aimed to investigate the mode of action of glabridin using a combined phenotypic and proteomic approach on Listeria monocytogenes. Fluorescence and transmission electron microscopy of cells exposed to glabridin showed membrane permeabilization upon treatment with lethal concentrations of glabridin. Comparative proteomics analysis of control cells and cells exposed to sub-lethal concentrations of glabridin showed upregulation of proteins related to the two-component systems LiaSR and VirRS, confirming cell envelope damage during glabridin treatment. Additional upregulation of SigmaB regulon members signified activation of the general stress response in L. monocytogenes during this treatment. In line with the observed upregulation of cell envelope and general stress response proteins, sub-lethal treatment of glabridin induced (cross)protection against lethal heat and low pH stress and against antimicrobials such as nisin and glabridin itself. Overall, this study sheds light on the mode of action of glabridin and activation of the main stress responses to this antimicrobial isoflavan and highlights possible implications of its use as a naturally derived antimicrobial compound.
Collapse
Affiliation(s)
- Alberto Bombelli
- Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands; Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Jean-Paul Vincken
- Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
8
|
Finn L, Onyeaka H, O’Neill S. Listeria monocytogenes Biofilms in Food-Associated Environments: A Persistent Enigma. Foods 2023; 12:3339. [PMID: 37761048 PMCID: PMC10529182 DOI: 10.3390/foods12183339] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Listeria monocytogenes (LM) is a bacterial pathogen responsible for listeriosis, a foodborne illness associated with high rates of mortality (20-30%) and hospitalisation. It is particularly dangerous among vulnerable groups, such as newborns, pregnant women and the elderly. The persistence of this organism in food-associated environments for months to years has been linked to several devastating listeriosis outbreaks. It may also result in significant costs to food businesses and economies. Currently, the mechanisms that facilitate LM persistence are poorly understood. Unravelling the enigma of what drives listerial persistence will be critical for developing more targeted control and prevention strategies. One prevailing hypothesis is that persistent strains exhibit stronger biofilm production on abiotic surfaces in food-associated environments. This review aims to (i) provide a comprehensive overview of the research on the relationship between listerial persistence and biofilm formation from phenotypic and whole-genome sequencing (WGS) studies; (ii) to highlight the ongoing challenges in determining the role biofilm development plays in persistence, if any; and (iii) to propose future research directions for overcoming these challenges.
Collapse
Affiliation(s)
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
9
|
Centorotola G, Ziba MW, Cornacchia A, Chiaverini A, Torresi M, Guidi F, Cammà C, Bowa B, Mtonga S, Magambwa P, D’Alterio N, Scacchia M, Pomilio F, Muuka G. Listeria monocytogenes in ready to eat meat products from Zambia: phenotypical and genomic characterization of isolates. Front Microbiol 2023; 14:1228726. [PMID: 37711697 PMCID: PMC10498467 DOI: 10.3389/fmicb.2023.1228726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
The contamination of ready to eat foods (RTE) products due to Listeria monocytogenes could compromise the products safety becoming a great risk for the consumers. The high presence of L. monocytogenes in RTE products has been described worldwide, but few data are available about these products from African countries. The aims of this study were to report the presence of L. monocytogenes in Zambian RTE products, providing genomic characterization and data on similarity with African circulating strains using whole genome sequencing (WGS). A total of 304 RTE products, produced by different Zambian manufacturers, were purchased at retail, from major supermarkets located in Lusaka, Zambia, comprising 130 dairy and 174 meat products. L. monocytogenes was detected only in 18 (10.3%) RTE meat products of the 174 samples tested. The MLST analysis grouped the 18 L. monocytogenes isolates in 7 clonal complexes (CCs): CC1 (n = 5), CC2 (n = 4), CC9 (n = 4), CC5 (n = 2), CC121 (n = 1), CC155 (n = 1), and CC3 (n = 1). According to the cgMLST results, several clusters were detected, in particular belonging to hyper-virulent clones CC1 and CC2. Regarding the virulence factors, a complete L. monocytogenes Pathogenicity Island 3 (LIPI-3) was present both in the CC1 and CC3, in addition to LIPI-1. Several resistance genes and mobile genetic elements were detected, including Stress Islands, the bcrABC cassette and Tn6188_qac transposon, plasmids and intact prophages. Despite being a first preliminary work with a limited number of samples and isolates, this study helped to increase existing knowledge on contaminated RTE products in Zambia, confirming the presence of hyper-virulent L. monocytogenes CCs, which could play an important role in human diseases, posing a public health concern for consumers.
Collapse
Affiliation(s)
- Gabriella Centorotola
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Maureen Wakwamba Ziba
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Alessandra Cornacchia
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Alexandra Chiaverini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Fabrizia Guidi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Benson Bowa
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Samson Mtonga
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Phelly Magambwa
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Nicola D’Alterio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Massimo Scacchia
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Geoffrey Muuka
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| |
Collapse
|
10
|
Bombelli A, Araya-Cloutier C, Vincken JP, Abee T, den Besten HMW. Impact of food-relevant conditions and food matrix on the efficacy of prenylated isoflavonoids glabridin and 6,8-diprenylgenistein as potential natural preservatives against Listeria monocytogenes. Int J Food Microbiol 2023; 390:110109. [PMID: 36806890 DOI: 10.1016/j.ijfoodmicro.2023.110109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/23/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Prenylated isoflavonoids can be extracted from plants of the Leguminosae/Fabaceae family and have shown remarkable antimicrobial activity against Gram-positive food-borne pathogens, such as Listeria monocytogenes. Promising candidates from this class of compounds are glabridin and 6,8-diprenylgenistein. This research aimed to investigate the potential of glabridin and 6,8-diprenylgenistein as food preservatives against L. monocytogenes. Their antimicrobial activity was tested in vitro at various conditions relevant for food application, such as different temperatures (from 10 °C to 37 °C), pH (5 and 7.2), and in the presence or absence of oxygen. The minimum inhibitory concentrations of glabridin and 6,8-diprenylgenistein in vitro were between 0.8 and 12.5 μg/mL in all tested conditions. Growth inhibitory activities were similar at 10 °C compared to higher temperatures, although bactericidal activities decreased when the temperature decreased. Notably, lower pH (pH 5) increased the growth inhibitory and bactericidal activity of the compounds, especially for 6,8-diprenylgenistein. Furthermore, similar antimicrobial efficacies were shown anaerobically compared to aerobically at the tested conditions. Glabridin showed a more stable inhibitory and bactericidal activity when the temperature decreased compared to 6,8-diprenylgenistein. Therefore, we further determined the antimicrobial efficacy of glabridin against L. monocytogenes growth on fresh-cut cantaloupe at 10 °C. In these conditions, concentrations of glabridin of 50, 100 and 250 μg/g significantly reduced the growth of L. monocytogenes compared to the control, resulting on average in >1 Log CFU/g difference after 4 days compared to the control. Our results further underscored the importance of considering the food matrix when assessing the activity of novel antimicrobials. Overall, this study highlights the potential of prenylated isoflavonoids as naturally derived food preservatives.
Collapse
Affiliation(s)
- Alberto Bombelli
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands; Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Carla Araya-Cloutier
- Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Jean-Paul Vincken
- Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| |
Collapse
|
11
|
Natural Killers: Opportunities and Challenges for the Use of Bacteriophages in Microbial Food Safety from the One Health Perspective. Foods 2023; 12:foods12030552. [PMID: 36766081 PMCID: PMC9914193 DOI: 10.3390/foods12030552] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Ingestion of food or water contaminated with pathogenic bacteria may cause serious diseases. The One Health approach may help to ensure food safety by anticipating, preventing, detecting, and controlling diseases that spread between animals, humans, and the environment. This concept pays special attention to the increasing spread and dissemination of antibiotic-resistant bacteria, which are considered one of the most important environment-related human and animal health hazards. In this context, the development of innovative, versatile, and effective alternatives to control bacterial infections in order to assure comprehensive food microbial safety is becoming an urgent issue. Bacteriophages (phages), viruses of bacteria, have gained significance in the last years due to the request for new effective antimicrobials for the treatment of bacterial diseases, along with many other applications, including biotechnology and food safety. This manuscript reviews the application of phages in order to prevent food- and water-borne diseases from a One Health perspective. Regarding the necessary decrease in the use of antibiotics, results taken from the literature indicate that phages are also promising tools to help to address this issue. To assist future phage-based real applications, the pending issues and main challenges to be addressed shortly by future studies are also taken into account.
Collapse
|
12
|
Gomez M, Szewczyk A, Szamosi J, Leung V, Filipe C, Hosseinidoust Z. Stress Exposure of Evolved Bacteriophages under Laboratory versus Food Processing Conditions Highlights Challenges in Translatability. Viruses 2022; 15:113. [PMID: 36680153 PMCID: PMC9865000 DOI: 10.3390/v15010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Bacterial viruses, or bacteriophages, are highly potent, target-specific antimicrobials. Bacteriophages can be safely applied along the food production chain to aid control of foodborne pathogens. However, bacteriophages are often sensitive to the environments encountered in food matrices and under processing conditions, thus limiting their applicability. We sought to address this challenge by exposing commercially available Listeria monocytogenes bacteriophage, P100, to three stress conditions: desiccation, elevated temperature, and low pH, to select for stress-resistant bacteriophages. The stressed bacteriophage populations lost up to 5.1 log10 in infectivity; however, the surviving subpopulation retained their stress-resistant phenotype through five passages with a maximum of 2.0 log10 loss in infectivity when exposed to the same stressor. Sequencing identified key mutation regions but did not reveal a clear mechanism of resistance. The stress-selected bacteriophage populations effectively suppressed L. monocytogenes growth at a modest multiplicity of infection of 0.35-0.43, indicating no trade-off in lytic ability in return for improved survivability. The stressed subpopulations were tested for survival on food grade stainless steel, during milk pasteurization, and within acidic beverages. Interestingly, air drying on stainless steel and pasteurization in milk led to significantly less stress and titer loss in bacteriophage compared to similar stress under model lab conditions. This led to a diminished benefit for stress-selection, thus highlighting a major challenge in real-life translatability of bacteriophage adaptational evolution.
Collapse
Affiliation(s)
- Mellissa Gomez
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Alexandra Szewczyk
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Jake Szamosi
- Department of Medicine, McMaster University, Hamilton, ON L8P 1H6, Canada
| | - Vincent Leung
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Carlos Filipe
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Zeinab Hosseinidoust
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
13
|
Carvacrol encapsulation into nanoparticles produced from chia and flaxseed mucilage: Characterization, stability and antimicrobial activity against Salmonella and Listeria monocytogenes. Food Microbiol 2022; 108:104116. [DOI: 10.1016/j.fm.2022.104116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022]
|
14
|
Hewage SN, Makawita P, Gibson KE, Lee JA, Fraser AM. Relationship between ATP Bioluminescence Measurements and Microbial Assessments in Studies Conducted in Food Establishments: A Systematic Literature Review and Meta-Analysis. J Food Prot 2022; 85:1855-1864. [PMID: 36173898 DOI: 10.4315/jfp-22-187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/25/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Adherence to proper environmental cleaning practices is critical in food establishments. To validate cleanliness, cleaning practices should be routinely monitored, preferably by a rapid, reliable, and cost-effective method. The aim of this study was to determine whether a correlation exists between ATP bioluminescence measurements and selected microbial assessments in studies conducted in food establishments. A systematic literature review and meta-analysis was conducted using the principles of preferred reporting items for systematic reviews and meta-analyses. Twelve online databases and search engines were selected for the review. Peer-reviewed articles published in English between January 2000 and July 2020 were included in the search. From a total of 19 eligible studies, 3 that included Pearson correlation coefficients (r) between ATP bioluminescence measurements and microbial assessments were used for the meta-analysis calculations. Only the fixed-effect model produced a strong correlation because one value dominated the estimates: r = 0.9339 (0.9278, 0.9399). In contrast, both the random effects model, 0.2978 (0.24, 0.3471), and the mixed effects model, r = 0.3162 (-0.0387, 0.6711), indicated a weak relationship between ATP bioluminescence and microbial assessments, with no evidence of a strong correlation. The meta-analysis results indicated no sufficient evidence of a strong correlation between ATP bioluminescence measurements and microbial assessments when applied within food establishments. This lack of evidence for a strong correlation between the results of these two monitoring tools suggests that food establishments cannot depend on only one method. Yet, with immediate feedback and quantification of organic soiling, ATP bioluminescence could be an effective monitoring tool to use in food establishments. HIGHLIGHTS
Collapse
Affiliation(s)
- Supun Nabadawa Hewage
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, 223 Poole Agricultural Center, Box 340316, Clemson, South Carolina 29634-0316
| | - P Makawita
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, 223 Poole Agricultural Center, Box 340316, Clemson, South Carolina 29634-0316
| | - Kristen E Gibson
- Department of Food Science, System Division of Agriculture, University of Arkansas, 2650 North Young Avenue, Fayetteville, Arkansas 72704
| | - Jung-Ae Lee
- Department of Population and Quantitative Health Sciences, Chan Medical School, University of Massachusetts, 368 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Angela M Fraser
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, 223 Poole Agricultural Center, Box 340316, Clemson, South Carolina 29634-0316
| |
Collapse
|
15
|
Hu L, Dong Q, Li Z, Ma Y, Aslam MZ, Liu Y. Modelling the Adhesion and Biofilm Formation Boundary of Listeria monocytogenes ST9. Foods 2022; 11:foods11131940. [PMID: 35804756 PMCID: PMC9266252 DOI: 10.3390/foods11131940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Listeria monocytogenes is a major foodborne pathogen that can adhere to or form a biofilm on food contact surfaces, depending on the environmental conditions. The purpose of this work is to determine the adhesion and biofilm formation boundaries for L. monocytogenes ST9 under the combination environments of temperature (5, 15, and 25 °C), NaCl concentration (0%, 3%, 6%, and 9% (w/v)) and pH (5.0, 6.0, 7.0, and 8.0). The probability models of adhesion and biofilm formation were built using the logistic regression. For adhesion, only the terms of linear T and NaCl are significant for L. monocytogenes ST9 (p < 0.05), whereas the terms of linear T, NaCl, and pH, and the interaction between T and pH were significant for biofilm formation (p < 0.05). By analyzing contour maps and their surface plots for two different states, we discovered that high temperature promoted adhesion and biofilm formation, whereas excessive NaCl concentration inhibited both of them. With a stringent threshold of 0.1667, the accuracy rate for identifying both adhesion/no-adhesion and biofilm formation/no-biofilm formation events were 0.929, indicating that the probability models are reasonably accurate in predicting the adhesion and biofilm formation boundary of L. monocytogenes ST9. The boundary model may provide a useful way for determining and further controlling L. monocytogenes adhesion and biofilm formation in various food processing environments.
Collapse
|
16
|
Xu JG, Huang XN, Meng J, Chen JY, Han BZ. Characterization and comparison of the bacterial community on environmental surfaces through a fresh-cut vegetables processing line in China. Food Res Int 2022; 155:111075. [DOI: 10.1016/j.foodres.2022.111075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/20/2022]
|
17
|
Sanitation and customer service strategies implemented during COVID-19 correlated with lower Listeria monocytogenes prevalence in retail delicatessens. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Inhibition Activity of Plantaricin Q7 Produced by Lactobacillus plantarum Q7 against Listeria monocytogenes and Its Biofilm. FERMENTATION 2022. [DOI: 10.3390/fermentation8020075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Plantaricin Q7 is a broad-spectrum antimicrobial peptide produced by Lactobacillus plantarum Q7. The effects of plantaricin Q7 on Listeria monocytogenes and its biofilm were investigated. The results showed that plantaricin Q7 changed the cell membrane permeability and integrity of Listeria monocytogenes significantly. The extracellular lactate dehydrogenase activity increased from 156.74 U/L to 497.62 U/L, and the K+ concentration was increased rapidly from 0.02 g/L to 0.09 g/L. Furthermore, the flagellum motility of Listeria monocytogenes reduced and the relative adhesion rate decreased about 30% after treatment with plantaricin Q7. Meanwhile, the morphology and structure of Listeria monocytogenes cell and biofilm were damaged. These findings suggested that plantaricin Q7 exhibited significant inhibitory effects on not only Listeria monocytogenes cell but also its biofilm, which might be used as a natural and effective biological preservative for food storage.
Collapse
|
19
|
Cavalcanti AAC, Limeira CH, Siqueira IND, Lima ACD, Medeiros FJPD, Souza JGD, Medeiros NGDA, Oliveira Filho AAD, Melo MAD. The prevalence of Listeria monocytogenes in meat products in Brazil: A systematic literature review and meta-analysis. Res Vet Sci 2022; 145:169-176. [PMID: 35217271 DOI: 10.1016/j.rvsc.2022.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
Listeria monocytogenes, a foodborne pathogen that causes human listeriosis, is commonly found in meat products. This study aimed to estimate the prevalence of L. monocytogenes in a variety of Brazilian meat products, using a meta-analysis of data from the literature. A total of 29 publications from five databases, published between January 1, 2009, and December 31, 2019, were included in the study. Estimated by the random-effects model, the combined prevalence of L. monocytogenes was 13%, ranging from 0 to 59%. The combined prevalence of L. monocytogenes was 14% and 11% for raw meat and ready-to-eat (RTE) meat, respectively. The prevalence of L. monocytogenes was higher in the swine species' meat products and the Southeast region of Brazil. Regarding the type of establishment, it was the retail market that presented the highest combined prevalence rate (19%). The most prevalent serotypes of L. monocytogenes were 4b, 1/2a, 1/2b, and 1/2c. The knowledge of differences in the prevalence levels of L. monocytogenes in different meat products can guide in its efficient control by the competent authorities and by industry.
Collapse
Affiliation(s)
| | - Clécio Henrique Limeira
- Federal University of Campina Grande, Post-Graduate Program in Animal Science and Health, Patos, PB, Brazil
| | - Iara Nunes de Siqueira
- Federal University of Campina Grande, Post-Graduate Program in Animal Science and Health, Patos, PB, Brazil
| | | | | | - Joyce Galvão de Souza
- Federal University of Campina Grande, Post-Graduate Program in Animal Science and Health, Patos, PB, Brazil
| | | | | | - Marcia Almeida de Melo
- Federal University of Campina Grande, Post-Graduate Program in Animal Science and Health, Patos, PB, Brazil.
| |
Collapse
|
20
|
Zhu L, Hao H, Ding C, Gan H, Jiang S, Zhang G, Bi J, Yan S, Hou H. A Novel Photoelectrochemical Aptamer Sensor Based on CdTe Quantum Dots Enhancement and Exonuclease I-Assisted Signal Amplification for Listeria monocytogenes Detection. Foods 2021; 10:2896. [PMID: 34945447 PMCID: PMC8701101 DOI: 10.3390/foods10122896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
To achieve the rapid detection of Listeria monocytogenes, this study used aptamers for the original identification and built a photoelectrochemical aptamer sensor using exonuclease-assisted amplification. Tungsten trioxide (WO3) was used as a photosensitive material, was modified with gold nanoparticles to immobilize complementary DNA, and amplified the signal by means of the sensitization effect of CdTe quantum dots and the shearing effect of Exonuclease I (Exo I) to achieve high-sensitivity detection. This strategy had a detection limit of 45 CFU/mL in the concentration range of 1.3 × 101-1.3 × 107 CFU/mL. The construction strategy provides a new way to detect Listeria monocytogenes.
Collapse
Affiliation(s)
- Liangliang Zhu
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Hongshun Hao
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (G.Z.); (J.B.); (H.H.)
| | - Chao Ding
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Hanwei Gan
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Shuting Jiang
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Gongliang Zhang
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (G.Z.); (J.B.); (H.H.)
| | - Jingran Bi
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (G.Z.); (J.B.); (H.H.)
| | - Shuang Yan
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Hongman Hou
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (G.Z.); (J.B.); (H.H.)
| |
Collapse
|
21
|
Listeria monocytogenes: health risk and a challenge for food processing establishments. Arch Microbiol 2021; 203:5907-5919. [DOI: 10.1007/s00203-021-02590-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022]
|
22
|
Review controlling Listeria monocytogenes in ready-to-eat meat and poultry products: An overview of outbreaks, current legislations, challenges, and future prospects. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Calvo-Arrieta K, Matamoros-Montoya K, Arias-Echandi ML, Huete-Soto A, Redondo-Solano M. Presence of Listeria monocytogenes in Ready-to-Eat Meat Products Sold at Retail Stores in Costa Rica and Analysis of Contributing Factors. J Food Prot 2021; 84:1729-1740. [PMID: 34047780 DOI: 10.4315/jfp-21-020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/24/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Listeria monocytogenes is a pathogenic bacterium associated with ready-to-eat (RTE) meat products sold at the retail level. The objective of this research was to determine the prevalence of L. monocytogenes in RTE meat products sold at retail in Costa Rica and to study the factors associated with the levels of contamination; analyzed factors include hygienic practices within stores (cutting techniques and microbial contamination of products) and the behavior of the isolates (persistence against antimicrobials and transfer potential). A total of 190 samples of RTE meat products were collected and analyzed for the presence of coliforms and Listeria spp. Isolates of L. monocytogenes were then evaluated in terms of resistance to disinfectants (quaternary ammonium compound [QAC] and chlorine) and their transfer potential from food contact surfaces (knife and cutting boards). Overall Listeria spp. prevalence was 37.4% (71 of 190); Listeria innocua was present in 32.1% (61 of 190) of the products, and L. monocytogenes was found in just 2.6% (5 of 190) of the samples. Most contaminated samples were cut with a knife at the moment of purchase (44.2%). When analyzing practices within the stores, it was observed that L. monocytogenes transfer from inoculated knife to salchichón was higher for samples cut at the beginning of the experiment. In addition, L. monocytogenes transfer from inoculated cutting boards was independent of the number of slices but contamination from plastic was higher than wood. Regarding L. monocytogenes resistance to disinfectants, average reductions of 2.6 ± 1.1 log CFU/mL were detected after 6 min of exposure to 200 ppm of chlorine; however, chlorine resistance varied among the strains. Prevalence of L. monocytogenes in RTE meat products sold at retail could be associated with handling practices within the stores; further studies are necessary to estimate the impact of these practices on the overall risk for consumers. HIGHLIGHTS
Collapse
Affiliation(s)
- Karol Calvo-Arrieta
- Tropical Disease Investigation Center (CIET) and Food Microbiology Research and Training Laboratory (LIMA), Department of Microbiology and Immunology, Faculty of Microbiology, University of Costa Rica, San José 11501, Costa Rica
| | - Karol Matamoros-Montoya
- Tropical Disease Investigation Center (CIET) and Food Microbiology Research and Training Laboratory (LIMA), Department of Microbiology and Immunology, Faculty of Microbiology, University of Costa Rica, San José 11501, Costa Rica
| | - María Laura Arias-Echandi
- Tropical Disease Investigation Center (CIET) and Food Microbiology Research and Training Laboratory (LIMA), Department of Microbiology and Immunology, Faculty of Microbiology, University of Costa Rica, San José 11501, Costa Rica
| | - Alejandra Huete-Soto
- Tropical Disease Investigation Center (CIET) and Food Microbiology Research and Training Laboratory (LIMA), Department of Microbiology and Immunology, Faculty of Microbiology, University of Costa Rica, San José 11501, Costa Rica
| | - Mauricio Redondo-Solano
- Tropical Disease Investigation Center (CIET) and Food Microbiology Research and Training Laboratory (LIMA), Department of Microbiology and Immunology, Faculty of Microbiology, University of Costa Rica, San José 11501, Costa Rica
| |
Collapse
|
24
|
Centorotola G, Guidi F, D’Aurizio G, Salini R, Di Domenico M, Ottaviani D, Petruzzelli A, Fisichella S, Duranti A, Tonucci F, Acciari VA, Torresi M, Pomilio F, Blasi G. Intensive Environmental Surveillance Plan for Listeria monocytogenes in Food Producing Plants and Retail Stores of Central Italy: Prevalence and Genetic Diversity. Foods 2021; 10:foods10081944. [PMID: 34441721 PMCID: PMC8392342 DOI: 10.3390/foods10081944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Listeria monocytogenes (Lm) can persist in food processing environments (FPEs), surviving environmental stresses and disinfectants. We described an intensive environmental monitoring plan performed in Central Italy and involving food producing plants (FPPs) and retail grocery stores (RSs). The aim of the study was to provide a snapshot of the Lm circulation in different FPEs during a severe listeriosis outbreak, using whole genome sequencing (WGS) to investigate the genetic diversity of the Lm isolated, evaluating their virulence and stress resistance profiles. A total of 1217 samples were collected in 86 FPEs with 12.0% of positive surfaces at FPPs level and 7.5% at RSs level; 133 Lm isolates were typed by multilocus sequencing typing (MLST) and core genome MLST (cgMLST). Clonal complex (CC) 121 (25.6%), CC9 (22.6%), CC1 (11.3%), CC3 (10.5%), CC191 (4.5%), CC7 (4.5%) and CC31 (3.8%) were the most frequent MLST clones. Among the 26 cgMLST clusters obtained, 5 of them persisted after sanitization and were re-isolated during the follow-up sampling. All the CC121 harboured the Tn6188_qac gene for tolerance to benzalkonium chloride and the stress survival islet SSI-2. The CC3, CC7, CC9, CC31 and CC191 carried the SSI-1. All the CC9 and CC121 strains presented a premature stop codon in the inlA gene. In addition to the Lm Pathogenicity Island 1 (LIPI-1), CC1, CC3 and CC191 harboured the LIPI-3. The application of intensive environmental sampling plans for the detection and WGS analysis of Lm isolates could improve surveillance and early detection of outbreaks.
Collapse
Affiliation(s)
- Gabriella Centorotola
- Laboratorio Nazionale di Riferimento Per Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, Italy; (G.C.); (V.A.A.); (M.T.); (F.P.)
| | - Fabrizia Guidi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, via Gaetano Salvemini, 1, 06126 Perugia, Italy; (D.O.); (A.P.); (S.F.); (A.D.); (F.T.); (G.B.)
- Correspondence: or ; Tel.: +39-075-3431
| | - Guglielmo D’Aurizio
- ARS P.F. Prevenzione Veterinaria e Sicurezza Alimentare, Regione Marche, via Don Gioia, 8, 60122 Ancona, Italy;
| | - Romolo Salini
- Centro Operativo Veterinario Per l’Epidemiologia, Programmazione, Informazione e Analisi del Rischio (COVEPI), National Reference Center for Veterinary Epidemiology, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, Italy;
| | - Marco Di Domenico
- Centro di Referenza Nazionale Per Sequenze Genomiche di Microrganismi Patogeni, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, Italy;
| | - Donatella Ottaviani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, via Gaetano Salvemini, 1, 06126 Perugia, Italy; (D.O.); (A.P.); (S.F.); (A.D.); (F.T.); (G.B.)
| | - Annalisa Petruzzelli
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, via Gaetano Salvemini, 1, 06126 Perugia, Italy; (D.O.); (A.P.); (S.F.); (A.D.); (F.T.); (G.B.)
| | - Stefano Fisichella
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, via Gaetano Salvemini, 1, 06126 Perugia, Italy; (D.O.); (A.P.); (S.F.); (A.D.); (F.T.); (G.B.)
| | - Anna Duranti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, via Gaetano Salvemini, 1, 06126 Perugia, Italy; (D.O.); (A.P.); (S.F.); (A.D.); (F.T.); (G.B.)
| | - Franco Tonucci
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, via Gaetano Salvemini, 1, 06126 Perugia, Italy; (D.O.); (A.P.); (S.F.); (A.D.); (F.T.); (G.B.)
| | - Vicdalia Aniela Acciari
- Laboratorio Nazionale di Riferimento Per Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, Italy; (G.C.); (V.A.A.); (M.T.); (F.P.)
| | - Marina Torresi
- Laboratorio Nazionale di Riferimento Per Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, Italy; (G.C.); (V.A.A.); (M.T.); (F.P.)
| | - Francesco Pomilio
- Laboratorio Nazionale di Riferimento Per Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, Italy; (G.C.); (V.A.A.); (M.T.); (F.P.)
| | - Giuliana Blasi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, via Gaetano Salvemini, 1, 06126 Perugia, Italy; (D.O.); (A.P.); (S.F.); (A.D.); (F.T.); (G.B.)
| |
Collapse
|
25
|
Holst MM, Brown LG, Viveiros B, Faw BV, Hedeen N, McKELVEY W, Nicholas D, Ripley D, Hammons SR. Observed Potential Cross-Contamination in Retail Delicatessens. J Food Prot 2021; 84:1055-1059. [PMID: 33508127 DOI: 10.4315/jfp-20-403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/20/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Listeria monocytogenes is a persistent public health concern in the United States and is the third leading cause of death from foodborne illness. Cross-contamination of L. monocytogenes (between contaminated and uncontaminated equipment, food, and hands) is common in delicatessens and likely plays a role in the foodborne illness associated with retail deli meats. In 2012, the Centers for Disease Control and Prevention's Environmental Health Specialists Network conducted a study to describe deli characteristics related to cross-contamination with L. monocytogenes. The study included 298 retail delis in six state and local health departments' jurisdictions and assessed how well deli practices complied with the U.S. Food and Drug Administration Food Code provisions. Among delis observed using wet wiping cloths for cleaning, 23.6% did not store the cloths in a sanitizing solution between uses. Observed potential cross-contamination of raw meats and ready-to-eat foods during preparation (e.g., same knife used on raw meats and ready-to-eat foods, without cleaning in between) was present in 9.4% of delis. In 24.6% of delis with a cold storage unit, raw meats were not stored separately from ready-to-eat products in containers, bins, or trays. A proper food safety management plan can reduce gaps in cross-contamination prevention and should include adopting procedures to minimize food safety risks, instituting training with instruction and in-person demonstrations and certifying staff on those procedures, and monitoring to ensure the procedures are followed. HIGHLIGHTS
Collapse
Affiliation(s)
- Meghan M Holst
- Centers for Disease Control and Prevention, National Center for Environmental Health, 4770 Buford Highway, Atlanta, Georgia 30341
| | - Laura G Brown
- Centers for Disease Control and Prevention, National Center for Environmental Health, 4770 Buford Highway, Atlanta, Georgia 30341
| | - Brendalee Viveiros
- Rhode Island Department of Health, 3 Capitol Hill, Providence, Rhode Island 02908
| | - Brenda V Faw
- California Department of Public Health, P.O. Box 997377, MS 0500, Sacramento, California 95899
| | - Nicole Hedeen
- Minnesota Department of Health, 625 Robert Street North, St. Paul, Minnesota 55164
| | - Wendy McKELVEY
- New York City Department of Health and Mental Hygiene, 125 Worth Street CN-34E, New York, New York 10013
| | - David Nicholas
- New York State Department of Health, Empire State Plaza, Albany, New York 12237
| | - Danny Ripley
- Tennessee Department of Health, 710 James Robertson Parkway, Nashville, Tennessee 37243
| | - Susan R Hammons
- U.S. Department of Agriculture, Food Safety and Inspection Service, 1400 Independence Avenue S.W., Washington, D.C. 20250, USA
| |
Collapse
|
26
|
Tsaloumi S, Aspridou Z, Tsigarida E, Gaitis F, Garofalakis G, Barberis K, Tzoumanika F, Dandoulaki M, Skiadas R, Koutsoumanis K. Quantitative risk assessment of Listeria monocytogenes in ready-to-eat (RTE) cooked meat products sliced at retail stores in Greece. Food Microbiol 2021; 99:103800. [PMID: 34119094 DOI: 10.1016/j.fm.2021.103800] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
A quantitative microbial risk assessment (QMRA) model predicting the listeriosis risk related to the consumption of Ready- To- Eat (RTE) cooked meat products sliced at retail stores in Greece was developed. The probability of illness per serving assessed for 87 products available in the Greek market was found highly related to the nitrite concentration; products having a lower concentration showed a higher risk per serving. The predicted 95th percentiles of the annual listeriosis cases totaled 33 of which 13 cases were <65 years old and 20 cases ≥65 years old. The highest number of cases was predicted for mortadella, smoked turkey, boiled turkey and parizer, which were the most frequently consumed product categories. Two scenarios for assessing potential interventions to reduce the risk were tested: setting a use-by date of 14 days (these products have no use-by date based on current European Union legislation) and improving the temperature control during domestic storage. The two scenarios resulted in a decrease of the 95th and 99th percentiles of the total annual cases by 97% and 88%, respectively.
Collapse
Affiliation(s)
- Sofia Tsaloumi
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Zafiro Aspridou
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | | | | | | | | | | | | | | | - Konstantinos Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
| |
Collapse
|