1
|
Xue Y, He S, Li M, Qiu Y. Development and Application of Four Foodborne Pathogens by TaqMan Multiplex Real-Time PCR. Foodborne Pathog Dis 2024. [PMID: 38563784 DOI: 10.1089/fpd.2023.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
A TaqMan multiplex real-time PCR (mRT-PCR) was developed to detect simultaneously Salmonella spp., Escherichia coli O157, Staphylococcus aureus, and Listeria monocytogenes in food samples. The method involves four sets of primers and probes tailored to the unique DNA sequences found in the invA, nuc, rfbE, and hly genes of each pathogen. The generated standard curves, correlating gene copy numbers with Ct values, demonstrated high accuracy (R2 > 0.99) and efficiency (92%-104%). Meanwhile, the limit of detection was 100 CFU/mL for the four target bacteria in artificially contaminated food samples after 6-8 h of enrichment. The assay's effectiveness was further verified by testing 80 naturally contaminated food samples, showing results largely in agreement with traditional culture methods. Overall, this newly developed TaqMan mRT-PCR, inclusive of a pre-enrichment step, proves to be a dependable and effective tool for detecting single or multiple pathogens in diverse food items, offering significant potential for in vitro diagnostics.
Collapse
Affiliation(s)
- Yinlei Xue
- Food Inspection and Testing Center of Yexian County, Yexian County, Henan, China
| | - Shengfang He
- Yinchuan Customs Technology Center, Yinchuan, Ningxia, China
| | - Meng Li
- Luoyang Giant-Bio Technology Co., Ltd., Luoyang, Henan, China
| | - Yuanhao Qiu
- Luoyang Giant-Bio Technology Co., Ltd., Luoyang, Henan, China
- Department of Pharmacy, College of Medicine, Pingdingshan University, Pingdingshan, Henan, China
| |
Collapse
|
2
|
Yang SM, Kim JS, Kim E, Kim HY. Rapid and Simultaneous Authentication of Six Laver Species Using Capillary Electrophoresis-Based Multiplex PCR. Foods 2024; 13:363. [PMID: 38338499 PMCID: PMC10855616 DOI: 10.3390/foods13030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Lavers are typically consumed in dried or seasoned forms. However, commercially processed lavers can lead to seafood fraud because it is impossible to authenticate the original species based on morphological characteristics alone. In this study, we developed a capillary electrophoresis-based multiplex polymerase chain reaction (PCR) to authenticate six different laver species. The species-specific primer sets to target the chloroplast rbcL or rbcS genes were newly designed. We successfully established both singleplex and multiplex conditions, which resulted in specific amplicons for each species (N. dentata, 274 bp; N. yezoensis, 211 bp; N. seriata, 195 bp; N. tenera, 169 bp; N. haitanensis, 127 bp; P. suborbiculata, 117 bp). Moreover, the assays were sensitive enough to detect DNA ranging from 10 to 0.1 pg of DNA. The optimized capillary electrophoresis-based multiplex PCR was successfully applied to 40 commercial laver products. In addition to detecting the laver species as stated on the commercial label, the assay discovered cases where less expensive species were mixed in. With its advantageous properties, such as short amplicon size, high specificity, and superior sensitivity, this assay could be used for the authentication of the six laver species.
Collapse
Affiliation(s)
| | | | | | - Hae-Yeong Kim
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (S.-M.Y.); (J.-S.K.); (E.K.)
| |
Collapse
|
3
|
Freitas L, Barbosa AJ, Vale BA, Sampaio I, Santos S. Development of rapid and cost-effective multiplex PCR assays to differentiate catfish of the genus Brachyplatystoma (Pimelodidae-Siluriformes) sold in Brazil. PeerJ 2023; 11:e15364. [PMID: 37304874 PMCID: PMC10249622 DOI: 10.7717/peerj.15364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/16/2023] [Indexed: 06/13/2023] Open
Abstract
The catfishes Brachyplatystoma filamentosum (Kumakuma), Brachyplatystoma vaillantii (Laulao catfish), and Brachyplatystoma rousseauxii (gilded catfish) are important fishery resources in Brazil, where they are sold both fresh and in the form of fillets or steaks. These species have morphological similarities, thus, they can be easily misidentified or substituted, especially after processed. Therefore, accurate, sensitive, and reliable methods are needed for the identification of these species to avoid commercial fraud. In the present study, we develop two multiplex PCR assays for the identification of the three catfish species. Each multiplex protocol combined three species-specific forward primers and a universal reverse primer to produce banding patterns able to discriminate the target species unequivocally. The length of the cytochrome C oxidase subunit I (COI) fragments was approximately 254 bp for B. rousseauxii, 405 bp for B. vaillantii, and 466 bp for B. filamentosum, while the control region (CR) assay produced fragments of approximately 290 bp for B. filamentosum, 451 bp for B. vaillantii, and 580 bp for B. rousseauxii. The protocols were sensitive enough to detect the target species at a DNA concentration of 1 ng/µL, with the exception of the CR of B. vaillantii, in which the fragment was only detectable at 10 ng/µL. Therefore, the multiplex assays developed in the present study were sensitive, accurate, efficient, rapid, and cost-effective for the unequivocal identification of the target species of Brachyplatystoma. They can be utilized by fish processing industries to certify their products, or by government agencies to authenticate products and prevent fraudulent commercial substitutions.
Collapse
Affiliation(s)
- Leilane Freitas
- Laboratory of Fish Microbiology, Institute of Coastal Studies, Universidade Federal do Pará, Bragança, PA, Brasil
| | - Andressa J. Barbosa
- Laboratory of Fish Microbiology, Institute of Coastal Studies, Universidade Federal do Pará, Bragança, PA, Brasil
| | - Bianca A. Vale
- Laboratory of Fish Microbiology, Institute of Coastal Studies, Universidade Federal do Pará, Bragança, PA, Brasil
| | - Iracilda Sampaio
- Laboratory of Evolution, Institute of Coastal Studies, Universidade Federal do Pará, Bragança, PA, Brasil
| | - Simoni Santos
- Laboratory of Fish Microbiology, Institute of Coastal Studies, Universidade Federal do Pará, Bragança, PA, Brasil
| |
Collapse
|
4
|
Zhao J, Timira V, Ahmed I, Chen Y, Wang H, Zhang Z, Lin H, Li Z. Crustacean shellfish allergens: influence of food processing and their detection strategies. Crit Rev Food Sci Nutr 2022; 64:3794-3822. [PMID: 36263970 DOI: 10.1080/10408398.2022.2135485] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Despite the increasing popularity of crustacean shellfish among consumers due to their rich nutrients, they can induce a serious allergic response, sometimes even life-threatening. In the past decades, a variety of crustacean allergens have been identified to facilitate the diagnosis and management of crustacean allergies. Although food processing techniques can ease the risk of crustacean shellfish allergy, no available processing methods to tackle crustacean allergies thoroughly. Strict dietary avoidance of crustacean shellfish and its component is the best option for the protection of sensitized individuals, which should rely on the compliance of food labeling and, as such, on their verification by sensitive, reliable, and accurate detection techniques. In this present review, the physiochemical properties, structure aspects, and immunological characteristics of the major crustacean allergens have been described and discussed. Subsequently, the current research progresses on how various processing techniques cause the alterations and modifications in crustacean allergens to produce hypoallergenic crustacean food products were summarized and discussed. Particularly, various analytical methodologies employed in crustacean shellfish allergen detection, and the effect of food processing and matrix on these techniques, are also herein emphasized for the appropriate selection of analytical detection tools to safeguard consumers safety.
Collapse
Affiliation(s)
- Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Vaileth Timira
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Yan Chen
- China National Center for Food Safety Risk Assessment, Chaoyang District, Beijing, P.R. China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| |
Collapse
|
5
|
Yao L, Qu M, Jiang Y, Guo Y, Li N, Li F, Tan Z, Wang L. The development of genus-specific and species-specific real-time PCR assays for the authentication of Patagonian toothfish and Antarctic toothfish in commercial seafood products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1674-1683. [PMID: 34453344 DOI: 10.1002/jsfa.11507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/05/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The substitution or mislabeling of toothfish is an issue of significant concern for seafood authorities; it also reduces the effectiveness of marine conservation and management programs for its over-exploitation and illegal trafficking, boosting the need for identification methods. RESULTS Two species-specific real-time polymerase chain reaction (PCR) assays for the identification of Patagonian toothfish (Dissostichus eleginoides) and Antarctic toothfish (Dissostichus mawsoni) and a genus-specific real-time PCR assay for Dissostichus spp. identification were developed based on fragments of the 16S rRNA and COI (cytochrome c oxidase subunit I) genes. These methods were confirmed to be rapid, simple, and sensitive (absolute sensitivity of 0.0002 ng μL-1 and relative sensitivity of 0.1 g kg-1 with good specificity). These methods can be applied to processed and commercial fish products. CONCLUSIONS These approaches can be beneficial for protecting both consumers and producers from economic fraud and might also help protect toothfish from over-exploitation as well as combat illegal, unreported, and unregulated (IUU) fisheries. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lin Yao
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Meng Qu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yanhua Jiang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yingying Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Na Li
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Fengling Li
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Lianzhu Wang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| |
Collapse
|