1
|
Zhu H, Liu F, He L, Wang X, Li C. Effect of Zanthoxylum bungeanum extract on the quality and cathepsin L activity of Niuganba. Meat Sci 2024; 217:109594. [PMID: 39002357 DOI: 10.1016/j.meatsci.2024.109594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Niuganba (NGB) is a traditional fermented beef product. Protease activity typically significantly affects the quality of NGB. Some natural food extracts may markedly influence NGB's protease activity and performance. This study aims to investigate the effect of Zanthoxylum bungeanum extract (ZBE) on the quality and cathepsin L activity of NGB. Following ZBE treatment, the myofibril fragmentation index (MFI), the content of TCA-soluble peptides, surface hydrophobicity, disulfide bond content, and cathepsin L activity of NGB significantly decrease. The content of free thiol groups and β-sheet significantly increases. Scanning electron microscopy (SEM) reveals that the arrangement of muscle fibers in the cross-section of NGB is more compact after ZBE treatment. The research results indicate that ZBE effectively inhibits cathepsin L activity, alleviates the degradation of myofibrillar proteins, improves the physicochemical characteristics of NGB, and enhances its structural stability.
Collapse
Affiliation(s)
- Hong Zhu
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China
| | - Fangrui Liu
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China
| | - Laping He
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China.
| | - Xiao Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China.
| | - Cuiqin Li
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
2
|
Liu J, Huang J, Jiang L, Lin J, Ge Y, Hu Y. Chitosan/polyvinyl alcohol food packaging incorporated with purple potato anthocyanins and nano-ZnO: Application on the preservation of hairtail (Trichiurus haumela) during chilled storage. Int J Biol Macromol 2024; 277:134435. [PMID: 39098679 DOI: 10.1016/j.ijbiomac.2024.134435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
The objective of this work was to evaluate the potential application of chitosan/PVA food packaging films incorporating nano-ZnO and purple potato anthocyanins for preserving chilled hairtail pieces. The hairtail pieces were packaged with chitosan/PVA (CP) and chitosan/PVA/nano-ZnO/purple potato anthocyanins (CPZP), respectively, and Control named without any packaging. The changes in pH, total volatile basic nitrogen (TVB-N), total bacterial colony (TVC), thiobarbituric acid (TBA), color value, and sensory evaluation scores of hairtail pieces were periodically determined. Notably, pH, TVC, TVB-N and TBA values of CPZP group on day 15 were 11.67 %, 23.71 %, 80.73 %, and 35.07 %, respectively, lower than Control group. In addition, CPZP group also performed the best in color and sensory evaluation. These results indicated that CPZP, an active food packaging, could extend the shelf-life of hairtail at least 6 days. Overall, chitosan/PVA food films incorporated with nano-ZnO and purple potato anthocyanins (180 mg/100 mL) provides a potential application in food preservation.
Collapse
Affiliation(s)
- Jialin Liu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute; Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022; Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayin Huang
- College of Food Science and Engineering, Yazhou Bay Innovation Institute; Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022; Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Jiang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jianhong Lin
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingliang Ge
- College of Food Science and Engineering, Yazhou Bay Innovation Institute; Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022.
| | - Yaqin Hu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute; Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022.
| |
Collapse
|
3
|
Yu T, Xu J. Characteristics of Films Prepared from Wheat Gluten and Phenolic Extracts from Porphyra haitanensis and Its Application for Salmon Preservation. Foods 2024; 13:2442. [PMID: 39123633 PMCID: PMC11311298 DOI: 10.3390/foods13152442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The effect of wheat gluten (WG)/phenolic extracts (PE) coating on the storage qualities of salmon fillets was studied. Porphyra haitanensis, belonging to red algae, possesses abundant phenolic compounds. Films were prepared by incorporating phenolic extracts (0, 0.5%, 0.75%, and 1.0%, w/v) from Porphyra haitanensis to WG. The PE showed strong antioxidant activities by scavenging DPPH and ABTS radicals. The increased addition of PE to WG film significantly increased tensile strength compared to that of WG film, but reduced water vapor permeability. The quality of salmon fillet stored at 4 °C from 0 to 9 days was decreased due to the oxidation of lipid and protein. However, the increased addition of PE to WG significantly reduced pH, TVB-N, TBA, peroxide value, total sulfhydryl content, and carbonyl content of salmon fillet compared to control salmon fillet. In addition, the increased addition of PE to WG also significantly improved water holding capacity, hardness, chewiness, and springiness of salmon fillet during storage compared to those of control salmon fillet. Taken together, this study showed phenolic extracts from Porphyra haitanensis improved wheat gluten-based film properties and further enhanced the qualities of coated salmon fillet during storage.
Collapse
Affiliation(s)
| | - Jingwen Xu
- College of Food Science, Shanghai Ocean University, Shanghai 201306, China;
| |
Collapse
|
4
|
Zhu Y, Gu M, Su Y, Li Z, Xiao Z, Lu F, Han C. Recent advances in spoilage mechanisms and preservation technologies in beef quality: A review. Meat Sci 2024; 213:109481. [PMID: 38461675 DOI: 10.1016/j.meatsci.2024.109481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Beef is a popular meat product that can spoil and lose quality during postharvest handling and storage. This review examines different preservation methods for beef, from conventional techniques like low-temperature preservation, irradiation, vacuum packing, and chemical preservatives, to novel approaches like bacteriocin, essential oil, and non-thermal technologies. It also discusses how these methods work and affect beef quality. The review shows that beef spoilage is mainly due to enzymatic and microbial activities that impact beef freshness, texture, and quality. Although traditional preservation methods can extend beef shelf life, they have some drawbacks and limitations. Therefore, innovative preservation methods have been created and tested to improve beef quality and safety. These methods have promising results and potential applications in the beef industry. However, more research is needed to overcome the challenges and barriers for their commercialization. This review gives a comprehensive and critical overview of the current and emerging preservation methods for beef and their implications for the beef supply chain.
Collapse
Affiliation(s)
- Yiqun Zhu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Mengqing Gu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Yuhan Su
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Zhe Li
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang, Liaoning 110034, China
| | - Zhigang Xiao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang, Liaoning 110034, China
| | - Fei Lu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang, Liaoning 110034, China.
| | - Chunyang Han
- Guangxi Key Laboratory of Health Care Food Science and Technology, Hezhou, Guangxi 542899, China.
| |
Collapse
|
5
|
Zhao Z, Deng Q, Wang X, Xiao H, Fan X, Chen L, Feng X. Effect of portulaca (Portulaca oleracea L.) extract on the quality and physicochemical attributes of vacuum-packed seasoned steaks during chilled storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5231-5243. [PMID: 38415797 DOI: 10.1002/jsfa.13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Vacuum packaging has the ability to reduce oxidative deterioration and microbial-induced spoilage of meat. However, in an oxygen-free environment, it can lead to the development of an unappealing purplish-red color and a decrease in the water-holding capacity of meat, thereby impacting the overall meat quality. Portulaca oleracea L. (POL) is a homology of medicine and food known for its exceptional antioxidant and antimicrobial properties. RESULTS The aim of our present study was to investigate the antioxidant and antimicrobial ability of n-butanol phase extract of POL and the effect of POL extract incorporation on the quality (water-holding capacity, shear force, color, and texture) and physicochemical (pH, total volatile base nitrogen, and total viable counts) attributes of vacuum-packed seasoned steaks at 4 °C over a 15-day period. Results showed that the POL extract had excellent antioxidant and antimicrobial capacity. Furthermore, the addition of POL extract significantly inhibited protein oxidation and microbial growth of steaks (P < 0.05), and improved the water-holding capacity, color properties, and tenderness (P < 0.05). Moreover, there were no significant differences (P > 0.05) in the color, water-holding capacity, or tenderness between the 0.5 and 1 g kg-1 POL extract treatment groups compared to the sodium nitrite control group. CONCLUSION These results indicate that POL extract had the potential to replace sodium nitrite due to its ability to hinder protein oxidation and microbial growth of vacuum-packed seasoned steaks, while enhancing the color, water-holding capacity, and tenderness of seasoned steaks. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhengshan Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Qiuhao Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Huijie Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Xiaojing Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Lin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| |
Collapse
|
6
|
Pires JB, Santos FND, Cruz EPD, Fonseca LM, Siebeneichler TJ, Lemos GS, Gandra EA, Zavareze EDR, Dias ARG. Starch extraction from avocado by-product and its use for encapsulation of ginger essential oil by electrospinning. Int J Biol Macromol 2024; 254:127617. [PMID: 37879583 DOI: 10.1016/j.ijbiomac.2023.127617] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Starches from alternative sources, such as avocado seed, have potential for application in the encapsulation of essential oils. This study aimed to extract starch from avocado seeds and its use as wall material to encapsulate ginger essential oil (GEO), at different concentrations. The fibers were produced by electrospinning and evaluated by morphology, size, infrared spectra, thermogravimetric properties, contact angle, loading capacity, and antibacterial activity. The major compounds in GEO were α-zingiberene, β-sesquiphellandrene, α-farnesene, and α-curcumene. The starch-GEO fibers presented a higher diameter (∼553 nm) than those without GEO (345 nm). Encapsulation of GEO in starch fibers increased their thermal degradation temperatures from 165.8 °C (free GEO) to 257.6 °C (40 % GEO fibers). The starch-GEO fibers presented characteristic bands of their constituents by infrared spectra. Loading capacity ranged from 44 to 54 %. The fibers showed hydrophilic character, with a contact angle of <90°. Free GEO and the fibers with 50 % of GEO displayed antibacterial activity against Escherichia coli, proving the bioactivity of the starch-GEO fibers and its possible applicability for food packaging. Avocado seed starch showed to be a great wall material for GEO encapsulation.
Collapse
Affiliation(s)
- Juliani Buchveitz Pires
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil.
| | - Felipe Nardo Dos Santos
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Elder Pacheco da Cruz
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Laura Martins Fonseca
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Tatiane Jéssica Siebeneichler
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Graciele Saraiva Lemos
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Eliezer Avila Gandra
- Laboratory of Food Science and Molecular Biology (LACABIM), Center for Chemical, Pharmaceutical, and Food Sciences, Federal University of Pelotas, 96010-900 Pelotas, RS, Brazil
| | - Elessandra da Rosa Zavareze
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Alvaro Renato Guerra Dias
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| |
Collapse
|
7
|
Shaukat MN, Nazir A, Fallico B. Ginger Bioactives: A Comprehensive Review of Health Benefits and Potential Food Applications. Antioxidants (Basel) 2023; 12:2015. [PMID: 38001868 PMCID: PMC10669910 DOI: 10.3390/antiox12112015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Ginger is an herbaceous and flowering plant renowned for its rhizome, which is widely employed as both a spice and an herb. Since ancient times, ginger has been consumed in folk medicine and traditional cuisines for its favorable health effects. Different in vitro and in vivo studies have disclosed the advantageous physiological aspects of ginger, primarily due to its antioxidant, anti-inflammatory, antimicrobial, and anti-carcinogenic properties. These health-promoting features are linked to the variety of bioactive compounds that are present in ginger. Following the advancement in consumer awareness and the industrial demand for organic antioxidants and functional ingredients, the application of ginger and its derivatives has been broadly investigated in a wide range of food products. The prominent features transmitted by ginger into different food areas are antioxidant and nutraceutical values (bakery); flavor, acceptability, and techno-functional characteristics (dairy); hedonic and antimicrobial properties (beverages); oxidative stability, tenderization, and sensorial attributes (meat); and shelf life and sensorial properties (film, coating, and packaging). This review is focused on providing a comprehensive overview of the tendencies in the application of ginger and its derivatives in the food industry and concurrently briefly discusses the beneficial aspects and processing of ginger.
Collapse
Affiliation(s)
- Muhammad Nouman Shaukat
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia 100, 95123 Catania, Italy;
| | - Akmal Nazir
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Biagio Fallico
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia 100, 95123 Catania, Italy;
| |
Collapse
|
8
|
He J, Hadidi M, Yang S, Khan MR, Zhang W, Cong X. Natural food preservation with ginger essential oil: Biological properties and delivery systems. Food Res Int 2023; 173:113221. [PMID: 37803539 DOI: 10.1016/j.foodres.2023.113221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
Recently, the increasing demand from consumers for preservative-free or naturally preserved foods has forced the food industry to turn to natural herbal and plant-derived preservatives rather than synthetic preservatives to produce safe foods. Essential oils derived from ginger (Zingiber officinale Roscoe) are widely known for their putative health-promoting bioactivities, and this paper covers their extraction methods, chemical composition, and antibacterial and antioxidant activities. Especially, the paper reviews their potential applications in food preservation, including nanoemulsions, emulsions, solid particle encapsulation, and biodegradable food packaging films/coatings. The conclusion drawn is that ginger essential oil can be used not only for direct food preservation but also encapsulated using various delivery forms such as nanoemulsions, Pickering emulsions, and solid particle encapsulation to improve its release control ability. The film of encapsulated ginger essential oil has been proven to be superior to traditional methods in preserving foods such as bread, meat, fish, and fruit.
Collapse
Affiliation(s)
- Jinman He
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; School of Life Sciences, Hainan University, Haikou 570228, PR China
| | - Milad Hadidi
- Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Siyuan Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Xinli Cong
- School of Life Sciences, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
9
|
Yang X, Zhao D, Ge S, Bian P, Xue H, Lang Y. Alginate-based edible coating with oregano essential oil/β-cyclodextrin inclusion complex for chicken breast preservation. Int J Biol Macromol 2023; 251:126126. [PMID: 37541460 DOI: 10.1016/j.ijbiomac.2023.126126] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 07/13/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
A sodium alginate (SA) edible coating containing oregano essential oil (OEO)/β-cyclodextrin (β-CD) inclusion complexes (SA/OEO-MP coating) was developed to extend the shelf life of fresh chicken breast during refrigeration storage. First, OEO was inserted into the hydrophobic interior of β-CD to form an inclusion complex (OEO-MP) that maintained its excellent antioxidant and antibacterial activities. The formed OEO-MP was characterized using fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). In addition, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) results demonstrated that β-CD could improve the thermal stability of OEO. The encapsulation efficiency reached 71.6 %, and OEO was released continuously from the OEO-MP. The lipid oxidation, total viable count (TVC) and sensory properties of chicken breasts were regularly monitored when OEO-MP was incorporated into the SA coating for chicken breast preservation. Compared with the uncoated group, the SA/OEO-MP-coated groups showed significantly reduced increases in pH, thiobarbituric acid reactive substances (TBARS), total volatile base nitrogen (TVB-N), and TVC, especially in the SA/OEO-MP1 group. In summary, the SA/OEO-MP coating could preserve the chicken breast by reducing lipid oxidation and inhibiting the proliferation of microorganisms. It would be developed as a prospective edible packaging for chicken preservation.
Collapse
Affiliation(s)
- Xiaoxi Yang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China.
| | - Dongxue Zhao
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Shaohui Ge
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Pengsha Bian
- Hebei Research Center for Geoanalysis, Baoding 071051, China
| | - Hongmei Xue
- Department of Clinical Nutrition, The First Hospital of Hebei Medical University, Shijiazhuang 050031, China
| | - Yumiao Lang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China.
| |
Collapse
|
10
|
Lin L, Peng S, Chen X, Li C, Cui H. Silica nanoparticles loaded with caffeic acid to optimize the performance of cassava starch/sodium carboxymethyl cellulose film for meat packaging. Int J Biol Macromol 2023; 241:124591. [PMID: 37116847 DOI: 10.1016/j.ijbiomac.2023.124591] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Cassava starch/sodium carboxymethyl cellulose (CC) was used as the substrate to create a multipurpose food packaging film, and caffeic acid@silica nanoparticles (C@SNPs) was added. The encapsulation rate of caffeic acid in C@SNPs was 84.7 ± 0.97 %. According to SEM pictures, the nanoparticles were evenly dispersed throughout the film and exhibited good compatibility with the other polymers. C@SNPs was added, which enhanced the physical characteristics of film and decreased its water solubility. The best mechanical and oxygen barrier qualities among them are found in the C@SCC5:1 film, whose tensile strength rises from 7.17 MPa to 15.44 MPa. The C@SCC5:1 film has scavenging rates of 95.43 % and 84.67 % against ABTS and DPPH free radicals, respectively, and CA can be released continuously in various food systems. In addition, the antibacterial rate of E. coli O157:H7 and S. aureus of C@SCC5:1 film in meat was 99.9 %, and it can effectively delay lipid oxidation and pH rise. In conclusion,C@SCC5:1 film is a new type of antibacterial and antioxidant food packaging material.
Collapse
Affiliation(s)
- Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shuangxi Peng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaochen Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
11
|
Ghasemi S, Jaldani S, Sanaei F, Ghiafehshirzadi A, Alidoost A, Hashemi M, Hossaeini Marashi SM, Khodaiyan F, Noori SMA. Application of alginate polymer films and coatings incorporated with essential oils in foods: a review of recent literature with emphasis on nanotechnology. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2023. [DOI: 10.1515/ijfe-2022-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Abstract
Food waste is one of the major challenges in food safety and finding a solution for this issue is critically important. Herein, edible films and coatings became attractive for scientists as they can keep food from spoilage. Edible films and coatings can effectively preserve the original quality of food and extend its shelf life. Polysaccharides, including starch and cellulose derivatives, chitosan, alginate and pectin, have been extensively studied as biopackaging materials. One of the most interesting polysaccharides is alginate, which has been used to make edible films and coatings. Incorporating essential oils (EO) in alginate matrices results in an improvement in some properties of the edible packages, such as antioxidant and antimicrobial properties. Additionally, the use of nanotechnology can improve the desirable properties of edible films and coatings. In this article we reviewed the antimicrobial and antioxidant properties of alginate coatings and films and their use in various food products.
Collapse
Affiliation(s)
- Sajjad Ghasemi
- Faculty of Agriculture, Department of Food Science and Technology , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Shima Jaldani
- Faculty of Agriculture, Department of Food Science and Technology , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Farideh Sanaei
- Faculty of Agriculture, Department of Food Science and Technology , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Asiyeh Ghiafehshirzadi
- Faculty of Agriculture, Department of Food Science and Technology , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Ahmadreza Alidoost
- Faculty of Agriculture, Department of Food Science and Technology , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
- Department of Nutrition, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Sayed Mahdi Hossaeini Marashi
- College of Engineering, Design and Physical Sciences Michael Sterling Building (MCST 055) , Brunel University London , Uxbridge , UB8 3PH , UK
- School of Physics, Engineering and Computer Science, Centre for Engineering Research , University of Hertfordshire , Mosquito Way , Hatfield AL10 9EU , UK
| | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering , University of Tehran , Karaj , Iran
| | - Seyyed Mohammad Ali Noori
- Toxicology Research Center , Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
- Department of Nutrition, School of Allied Medical Sciences , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| |
Collapse
|
12
|
Mansour HA, Abdelrahman HA, Zayed NE, Abdel-Naeem HH. The effects of novel alginate-lauric arginate coatings with temperature on bacterial quality, oxidative stability, and organoleptic characteristics of frozen stored chicken drumsticks. Int J Biol Macromol 2023; 239:124242. [PMID: 37001774 DOI: 10.1016/j.ijbiomac.2023.124242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
Although alginate has been reported to be used as an edible film and coating in food, to the best of our knowledge, this study is the first to investigate the individual effects of coatings, temperatures, storage times, as well as their interactions, on the bacterial quality, deterioration criteria, and sensory attributes of chicken drumsticks. To accomplish this, six groups of chicken drumsticks were treated with different coatings, temperatures, and storage conditions. The groups included 2 % alginate at 25 °C (Alg25) and 50 °C (Alg50), a mixture of 2 % alginate and 2 % LAE at 25 °C (M25) and 50 °C (M50), besides control untreated samples in distilled water at 25 °C (C25) and 50 °C (C50). The chicken drumsticks were stored at -18 °C for 3 months. The results showed that all treated chicken drumsticks induced a significant reduction in all bacterial counts, as well as a significant decrease in pH and thiobarbituric acid values, with an improvement in all sensory attributes, particularly in the M25 and M50 coated samples compared to the C25 and C50. Furthermore, exposing alginate and LAE to a temperature of 50 °C can increase their antimicrobial activity. In conclusion, the innovative combinations of LAE and alginate can be used successfully to decontaminate chicken carcasses in poultry processing plants.
Collapse
|
13
|
Alginate Coating Charged by Hydroxyapatite Complexes with Lactoferrin and Quercetin Enhances the Pork Meat Shelf Life. Foods 2023; 12:foods12030553. [PMID: 36766082 PMCID: PMC9914435 DOI: 10.3390/foods12030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
In this work, the effect of an alginate-based coating loaded with hydroxyapatite/lactoferrin/quercetin (HA/LACTO-QUE) complexes during the storage of pork meat was evaluated. FT-IR spectra of HA/LACTO-QUE complexes confirmed the adsorption of QUE and LACTO into HA crystals showing the characteristic peaks of both active compounds. The kinetic releases of QUE and LACTO from coatings in an aqueous medium pointed out a faster release of LACTO than QUE. The activated alginate-based coating showed a high capability to slow down the growth of total viable bacterial count, psychotropic bacteria count, Pseudomonas spp. and Enterobacteriaceae during 15 days at 4 °C, as well as the production of the total volatile basic nitrogen. Positive effects were found for maintaining the hardness and water-holding capacity of pork meat samples coated with the activated edible coatings. Sensory evaluation results demonstrated that the active alginate-based coating was effective to preserve the colour and odour of fresh pork meat with overall acceptability up to the end of storage time.
Collapse
|
14
|
Khwaldia K, M'Rabet Y, Boulila A. Active food packaging films from alginate and date palm pit extract: Physicochemical properties, antioxidant capacity, and stability. Food Sci Nutr 2023; 11:555-568. [PMID: 36655113 PMCID: PMC9834853 DOI: 10.1002/fsn3.3093] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/21/2022] [Accepted: 09/25/2022] [Indexed: 01/21/2023] Open
Abstract
Date palm pits are highly available and inexpensive palm date by-products, representing a valuable source of natural antioxidants, particularly phenolic compounds. Date palm pit extract (DPPE) was prepared from these waste products and characterized for its phenolic content and in vitro antioxidant activity. Profiling DPPE by liquid chromatography coupled with mass spectrometry (LC/MS) showed the presence of dimers and trimers of (epi)catechin as the main constituents. Alginate-based films with four increasing concentrations of DPPE (10%, 20%, 30%, and 40% w/w) were prepared by the casting method. DPPE incorporation reduced solubility values of alginate films by 37%-64% and their surface wettability by 72%-111%. The incorporation of 10% DPPE improved water vapor barrier properties and increased tensile strength (TS) and elongation at break (%E) of alginate films by more than 23%, 50%, and 45%, respectively. The film containing 40% DPPE showed the lowest loss of phenolic content (32%), DPPH (1,1-diphenyl-2-picrylhydrazyl) scavenging activity (38%), and ferric reducing antioxidant power (FRAP) (30%) after storage for 3 months.
Collapse
Affiliation(s)
- Khaoula Khwaldia
- Laboratoire des Substances NaturellesInstitut National de Recherche et d'Analyse Physico‐chimique (INRAP)Sidi ThabetTunisia
| | - Yassine M'Rabet
- Laboratoire des Substances NaturellesInstitut National de Recherche et d'Analyse Physico‐chimique (INRAP)Sidi ThabetTunisia
| | - Abdennacer Boulila
- Laboratoire des Substances NaturellesInstitut National de Recherche et d'Analyse Physico‐chimique (INRAP)Sidi ThabetTunisia
| |
Collapse
|
15
|
Yilmaz MT, Hassanein WS, Alkabaa AS, Ceylan Z. Electrospun eugenol-loaded gelatin nanofibers as bioactive packaging materials to preserve quality characteristics of beef. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
16
|
Yan Q, Wang L, Sun X, Fan F, Ding J, Li P, Zhu Y, Xu T, Fang Y. Improvement in the storage quality of fresh salmon (Salmo salar) using a powerful composite film of rice protein hydrolysates and chitosan. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Postbiotics enhance the functionality of a probiotic edible coating for salmon fillets and the probiotic stability during simulated digestion. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Influence of Gelatin-Chitosan-Glycerol Edible Coating Incorporated with Chlorogenic Acid, Gallic Acid, and Resveratrol on the Preservation of Fresh Beef. Foods 2022; 11:foods11233813. [PMID: 36496621 PMCID: PMC9737340 DOI: 10.3390/foods11233813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Chlorogenic acid (CA), gallic acid (GA), and resveratrol (RES) were added to a gelatin (GEL)-chitosan (CHI)-glycerol (GLY) edible coating, and their effects on the coating of fresh beef preservation were investigated. The results revealed that CA had the most significant improvement effect on fresh beef preservation. The combination of GEL-CHI-GLY-CA preserved the color of the beef better and delayed the increase of the total volatile base nitrogen, even though its total phenolic content decreased at a faster rate during beef preservation. GA also improved the preservation effect as on the 12th day of storage, the beef samples treated with GEL-CHI-GLY-GA had the lowest thiobarbituric acid reactive substances (0.76 mg Malondialdehyde (MDA)/kg) and total viable count (6.0 log cfu/g). On the whole, though RES showed an improvement on beef preservation, the improvement was not as good as the other two polyphenols. After 12 days of storage, the beef samples treated with GEL-CHI-GLY-RES had a higher pH value (6.25) than the other two polyphenol treatmed groups. Overall, the three polyphenol-added combinations increased the shelf life of beef by approximately 3-6 days compared to the control group (treated GEL-CHI-GLY with distilled water).
Collapse
|
19
|
Rout S, Tambe S, Deshmukh RK, Mali S, Cruz J, Srivastav PP, Amin PD, Gaikwad KK, Andrade EHDA, Oliveira MSD. Recent trends in the application of essential oils: The next generation of food preservation and food packaging. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Chaari M, Elhadef K, Akermi S, Ben Akacha B, Fourati M, Chakchouk Mtibaa A, Ennouri M, Sarkar T, Shariati MA, Rebezov M, Abdelkafi S, Mellouli L, Smaoui S. Novel Active Food Packaging Films Based on Gelatin-Sodium Alginate Containing Beetroot Peel Extract. Antioxidants (Basel) 2022; 11:2095. [PMID: 36358468 PMCID: PMC9686688 DOI: 10.3390/antiox11112095] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 08/13/2023] Open
Abstract
Currently, the exploration of natural colorants from vegetal waste has gained particular attention. Furthermore, incorporation of these natural sources into biopolymers is an encouraging environmentally friendly approach to establishing active films with biological activities for food packaging. The present study developed bioactive antioxidant films based on gelatin-sodium alginate (NaAlg) incorporated with aqueous beetroot peel extract (BPE). Firstly, the effects of combining gelatin-NaAlg and BPE at 0.25, 0.5, and 1% on the mechanical, physical, antioxidant, and antibacterial properties of the films were analyzed. With increasing BPE, mechanico-physical properties and antioxidant and anti-foodborne pathogen capacities were enhanced. Likewise, when added to gelatin-NaAlg films, BPE remarkably increased the instrumental color properties. Moreover, during 14 days of storage at 4 °C, the impact of gelatin-NaAlg coating impregnated with BPE on microbial and chemical oxidation and on the sensory characteristics of beef meat samples was periodically assessed. Interestingly, by the end of the storage, BPE at 1% limited the microbial deterioration, enhanced the instrumental color, delayed chemical oxidation, and improved sensory traits. By practicing chemometrics tools (principal component analysis and heat maps), all data provided valuable information for categorizing all samples regarding microbiological and oxidative properties, sensory features, and instrumental color. Our findings revealed the ability of gelatin-NaAlg with BPE as an antioxidant to be employed as food packaging for meat preservation.
Collapse
Affiliation(s)
- Moufida Chaari
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Khaoula Elhadef
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Sarra Akermi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, Sfax 3018, Tunisia
| | - Mariam Fourati
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Ahlem Chakchouk Mtibaa
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Monia Ennouri
- Olive Tree Institute, University of Sfax, Sfax 3018, Tunisia
- Valuation, Security and Food Analysis Laboratory, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, Bengal State Council of Technical Education, Government of West Bengal, Malda 732102, West Bengal, India
| | - Mohammad Ali Shariati
- Department of Scientific Research, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia
| | - Maksim Rebezov
- Department of Scientific Research, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia
- Department of Scientific Research, V. M. Gorbatov Federal Research, Center for Food Systems, 26 Talalikhin St., 109316 Moscow, Russia
| | - Slim Abdelkafi
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Unit, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Lotfi Mellouli
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| |
Collapse
|
21
|
Zhang L, Zhang M, Ju R, Mujumdar AS, Liu K. Synergistic antibacterial mechanism of different essential oils and their effect on quality attributes of ready-to-eat pakchoi (Brassica campestris L. ssp. chinensis). Int J Food Microbiol 2022; 379:109845. [PMID: 35940117 DOI: 10.1016/j.ijfoodmicro.2022.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 10/16/2022]
Abstract
The mixture of garlic essential oil (GEO), ginger essential oil (GIEO) and litsea cubeba essential oil (LCEO) was prepared and its effect on the antibacterial activity of E. coli, S. aureus and P. aeruginosa, as well as properties of ready-to-eat pakchoi during storage were assessed. GEO, GIEO or LCEO treatment significantly enhanced the accumulation of reactive oxygen species (ROS) levels, resulting in disruption of the permeability of cell membrane, the leakage of cytoplasmic contents, and the alteration of the secondary structure of bacterial proteins. Meanwhile, GEO, GIEO or LCEO treatment repressed the key enzyme in tricarboxylic acid (TCA) and Hexose monophosphate pathway (HMP) cycle of E. coli, S. aureus and P. aeruginosa. Essential oil treatments (p < 0.05) could significantly prolong the shelf life of pakchoi, total bacterial count (TBC) values and chlorophyll content of GEO/GIEO/LCEO sample were 3.47 log cfu/g and 0.82 mg/g, respectively, after storage for 7 days. E. coli, S. aureus and P. aeruginosa counts in GEO/GIEO/LCEO samples decreased by 56.76 %, 70.10 %, 73.95 % compared to CK (no essential oil) samples. The comprehensive results from the sensory (flavor and color) and microbial analysis (especially TBC) showed that GEO/GIEO/LCEO could extend the shelf life of ready-to-eat pakchoi from 4 d to 7 d. As compared with GEO, GIEO or LCEO individually, the combination of GEO, GIEO and LCEO exhibited synergistic effect and more pronouncedly antibacterial activity to improve quality of ready-to-eat pakchoi.
Collapse
Affiliation(s)
- Lihui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Ronghua Ju
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, Nanjing Forestry University, 210037 Nanjing, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| | - Kun Liu
- Sichuan Tianwei Food Group Co., Ltd., 610000 Chengdu, China
| |
Collapse
|
22
|
He S, Wang Y. Antimicrobial and Antioxidant Effects of Kappa-Carrageenan Coatings Enriched with Cinnamon Essential Oil in Pork Meat. Foods 2022; 11:foods11182885. [PMID: 36141013 PMCID: PMC9498619 DOI: 10.3390/foods11182885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/23/2022] Open
Abstract
Fresh pork is susceptible to microbial contamination and lipid oxidation, which leads to food safety and quality issues. This study aimed to develop a kappa-carrageenan (KC) coating embedded with cinnamon essential oil (CEO) for antimicrobial and antioxidant purposes in pork meat. The uncoated controls and coated samples were subjected to microbial (total viable count, lactic acid bacteria, and H2S-producing bacteria), chemical (DPPH and pH), and physical (surface color) analyses during refrigerated storage at 4 °C for 7 days. It was observed that KC coatings exhibited a better preservation effect on pork meat after the addition of CEO. The KC−CEO coatings were effective in retarding the growth of total viable count, lactic acid bacteria, and H2S-producing bacteria. In a DPPH test, the level of lipid oxidation in pork meat was also significantly (p < 0.05) reduced by the KC−CEO coatings. Furthermore, these coatings displayed pronounced activity in inhibiting the adverse alterations of pH value and surface color. Practically, KC−CEO-coated samples still exhibited an attractive bright red color at the end of refrigerated storage. Taken together, the developed KC−CEO coatings exerted pronounced antimicrobial and antioxidant activities in pork, thus providing a potential approach to preserving perishable meat.
Collapse
Affiliation(s)
- Shoukui He
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yifei Wang
- Department of Food Science & Technology, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
- Correspondence:
| |
Collapse
|
23
|
Effects of barberry extract and alginate coating enriched with cinnamaldehyde and nisin on the microbiological, chemical and sensory properties of chicken meat. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01606-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Ahmad Puat N, Kamaruding N, Shaharuddin S. Effect of dual-functional coating of chicken fillet with pectin-curcumin-lemongrass oil emulsion on the shelf-life stability and fat uptake during frying. ACTA ALIMENTARIA 2022. [DOI: 10.1556/066.2022.00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
This study aims to formulate the optimal pectin-curcumin-lemongrass oil emulsion (PE) for coating of chicken fillet at 50:50%, 70:30%, and 90:10%, based on microbial growth inhibition, freshness consistency, and fat absorption during frying. Throughout the 7 days of storage, chicken fillet coated with 70:30% PE showed significant (P < 0.05) suppressive activity against psychrophilic bacteria (8.09 ± 0.00 log10 CFU g−1) compared to non-coated sample (8.27 ± 0.06 log10 CFU g−1). In contrast, 90:10% PE coating inhibited the growth of yeasts or moulds on chicken fillet at 8.24 ± 0.28 log10 CFU g−1, compared to non-coated sample (9.16 ± 0.14 log10 CFU g−1). The 70:30% PE coating showed a better fillet's toughness (18.30 ± 1.32 N mm−1 s−1) and firmness (1.49 ± 0.22 N mm−1) when compared to fillet without coating. After 7 days of storage, coated and uncoated samples showed the same total colour difference (E value) indicating PE coating preserved the texture of fillet and colour. Both coated samples (70:30% and 90:10%) reduced fat uptake during frying by 13.70%–14.25%. The application of PE coating at 90:10% was effectively functioned as an excellent coating to preserve the quality and safety of fillet.
Collapse
Affiliation(s)
- N.N. Ahmad Puat
- Section of Food Engineering Technology, Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Vendor City, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - N.A. Kamaruding
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - S. Shaharuddin
- Plant Engineering Technology Section, Universiti Kuala Lumpur Branch Campus Malaysian Institute of Industrial Technology, Persiaran Sinaran Ilmu, Bandar Seri Alam, 81750, Johor Bahru, Johor, Malaysia
| |
Collapse
|
25
|
Alirezalu K, Moazami‐Goodarzi AH, Roufegarinejad L, Yaghoubi M, Lorenzo JM. Combined effects of calcium-alginate coating and Artemisia fragrance essential oil on chicken breast meat quality. Food Sci Nutr 2022; 10:2505-2515. [PMID: 35959270 PMCID: PMC9361436 DOI: 10.1002/fsn3.2856] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 01/10/2023] Open
Abstract
The objective of the present study was to evaluate the effects of calcium-alginate (CA) containing Artemisia fragrance essential oils (AFEOs) as a potential antioxidant and antimicrobial coating on quality attributes and shelf life of chicken meat throughout keeping period (4°C). Five treatments were produced as follows: T1 (distilled water as control), T2 (2% CA), T3 (2% CA +500 ppm AFEOs), T4 (2% CA +1000 ppm AFEOs), and T5 (2% CA +1500 ppm AFEOs). The chicken meats packaged in polyethylene bags at atmospheric condition and physicochemical, microbiological, and organoleptic properties were assessed at days 1, 4, 8, and 12. There was no remarkable difference in proximate composition (moisture, ash, protein, and fat) of meat samples by treating with CA or AFEOs. The results revealed that CA +AFEOs coating reduced significantly the pH, total volatile base nitrogen (TVB-N), and thiobarbituric acid reactive substances (TBARS) values and also displayed higher contents of the total phenolic content (TPC) and redness value when compared with control. According to results, 2% CA +1500 ppm AFEOs reduced 58.3 (mg MDA (malondialdehyde)/kg) and 0.63 (mg/100 g) of TBARS and TVB-N values when compared to control, respectively. The microbiological count showed that CA +AFEOs had a significantly higher inhibitory impact on the total viable count (TVC), coliforms, molds and yeasts. At day 12, 6.89 Log CFU (colony-forming units)/g was recorded for TVC in 2% CA +1500 ppm AFEOs, which was the lowest overall. This treatment also displayed the reduction of 2.97 Log CFU/g in coliforms and 3.3 Log CFU/g in molds and yeasts in comparison with uncoated samples. The outcomes of pH, TBARS, TPC, color values, microbiological count, and organoleptic properties suggested 2% CA +1500 ppm AFEOs as an efficient coating for quality stability and improving the shelf life of chicken breast meat without negative impact on organoleptic properties.
Collapse
Affiliation(s)
- Kazem Alirezalu
- Department of Food Science and TechnologyAhar Faculty of Agriculture and Natural ResourcesUniversity of TabrizTabrizIran
| | | | - Leila Roufegarinejad
- Department of Food Science and TechnologyTabriz BranchIslamic Azad UniversityTabrizIran
| | - Milad Yaghoubi
- Department of Food Science and TechnologyFaculty of AgricultureUniversity of TabrizTabrizIran
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de GaliciaParque Tecnológico de GaliciaOurenseSpain
- Área de Tecnología de los AlimentosFacultad de Ciencias de OurenseUniversidad de VigoOurenseSpain
| |
Collapse
|
26
|
Chacha JS, Ofoedu CE, Xiao K. Essential
Oil‐Based
Active
Polymer‐Based
Packaging System: A Review on its Effect on the Antimicrobial, Antioxidant, and Sensory Properties of Beef and Chicken Meat. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James S. Chacha
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
- Department of Food Science and Agroprocessing School of Engineering and Technology Sokoine University of Agriculture, P.O. Box 3006, Chuo Kikuu Morogoro Tanzania
| | - Chigozie E. Ofoedu
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
- Department of Food Science and Technology, School of Engineering and Engineering Technology Federal University of Technology Imo State Owerri Nigeria
| | - Kaijun Xiao
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
| |
Collapse
|
27
|
|
28
|
Combined effects of microencapsulated essential oils and irradiation from gamma and X-ray sources on microbiological and physicochemical properties of dry fermented sausages during storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Elawady HE, Sallam YI, Abd El‐Salam EAE. Optimization of a new coating agar gel formulation using D‐optimal mixture design and study its effects on fresh‐cut apple slices along with cold storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
|
31
|
Jayakody MM, Vanniarachchy MPG, Wijesekara I. Seaweed derived alginate, agar, and carrageenan based edible coatings and films for the food industry: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01277-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Li H, Tang R, Mustapha WAW, Liu J, Hasan KMF, Li X, Huang M. Application of Gelatin Composite Coating in Pork Quality Preservation during Storage and Mechanism of Gelatin Composite Coating on Pork Flavor. Gels 2021; 8:gels8010021. [PMID: 35049558 PMCID: PMC8774881 DOI: 10.3390/gels8010021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/20/2022] Open
Abstract
Gelatin coating is an effective way to prolong the shelf life of meat products. Aiming at solving the problem of flavor deterioration during the storage of pork at room temperature, pork coating technology was developed to preserve the pork at 25 °C, and the comprehensive sensory analysis of vision, touch, smell, and taste was used to study the effect of coating on preservation of pork flavor. Herein, uncoated (control) and coated pork samples (including gelatin coating and gelatin coating incorporated with ginger essential oil) were analyzed to investigate the integrity of pork periodically during storage at 25 °C for weight loss, color, texture (springiness, chewiness, cohesiveness, gumminess, and hardness), microstructure, odor (electronic nose), taste (electronic tongue), volatile flavor substance, and taste ingredients. The results suggested that ginger essential oil (GEO) gelatin coating and gelatin coating can effectively inhibit the loss of water dispersion and slow down the oxidation reaction, coating treatments could significantly (p < 0.05) retarded the weight loss of pork slices, with values of 20.19%, 15.95%, 13.12% for uncoated, gelatin coated, and GEO-gelatin coated samples during 24 h of storage, respectively. Compared with control group, the color, texture, smell, and taste evaluations demonstrated that coating treatments had improved sensory and texture attributes during the storage period. Furthermore, the comprehensive results from the physical property assays (especially the texture), morphological assay and volatile odor assays showed that the GEO-fish gelatin composite coating had better preservation effect on pork flavor than the fish gelatin coating. The study suggests that the gelatin composite coating could be developed as a prospective active packaging to preserve pork meat at room temperature.
Collapse
Affiliation(s)
- Haoxin Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; (H.L.); (R.T.)
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia;
| | - Renrun Tang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; (H.L.); (R.T.)
| | - Wan Aida Wan Mustapha
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia;
| | - Jia Liu
- Institute of Food Processing Technology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China;
| | - K. M. Faridul Hasan
- Simonyi Karoly Faculty of Engineering, University of Sopron, 9400 Sopron, Hungary;
| | - Xin Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; (H.L.); (R.T.)
- Correspondence: (X.L.); (M.H.)
| | - Mingzheng Huang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550025, China
- Correspondence: (X.L.); (M.H.)
| |
Collapse
|
33
|
Ma T, Wang Q, Wei P, Zhu K, Feng A, He Y, Wang J, Shen X, Cao J, Li C. EGCG-gelatin biofilm improved the protein degradation, flavor and micromolecule metabolites of tilapia fillets during chilled storage. Food Chem 2021; 375:131662. [PMID: 34865925 DOI: 10.1016/j.foodchem.2021.131662] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/13/2021] [Accepted: 11/20/2021] [Indexed: 12/27/2022]
Abstract
The protein degradation, flavor and micromolecule metabolites changes of (-)-epigallocatechin gallate (EGCG)-gelatin biofilm treatment (EGT) on chilled tilapia fillets in 21 days were investigated. Morphology observations revealed EGT protected good connective myofibrillar protein. It maintained protein secondary structure by significantly increasing the proportion of α-helix (15.20%) and decreasing the ratio of random coils (22.02%) in the EGT group compared to the control (CON) group (P < 0.05). Metabolomics with UHPLC-Q-TOF/MS analysis indicated a distinct separation between the CON and treatment groups at the end of storage. Small peptides analysis demonstrated that the EGT group increased the level of sweet peptides. Additionally, the EGT group significantly reduced the formation of amino acid derivatives and esters and off-flavor development. Overall, EGT effectively improved flavor, inhibited fish protein oxidation/degradation, and verified metabolomics results. This study unveiled the potential of metabolomics to analyze metabolites determined by tilapia and monitor the changes during storage.
Collapse
Affiliation(s)
- Tingting Ma
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Qi Wang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Peiyu Wei
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Kexue Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Aiguo Feng
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yanfu He
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiamei Wang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xuanri Shen
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of Provincial and ministerial co-constructin for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jun Cao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Chuan Li
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of Provincial and ministerial co-constructin for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|