1
|
Abi-Rizk H, Jouan-Rimbaud Bouveresse D, Chamberland J, Cordella CBY. Recent developments of e-sensing devices coupled to data processing techniques in food quality evaluation: a critical review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5410-5440. [PMID: 37818969 DOI: 10.1039/d3ay01132a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A greater demand for high-quality food is being driven by the growth of economic and technological advancements. In this context, consumers are currently paying special attention to organoleptic characteristics such as smell, taste, and appearance. Motivated to mimic human senses, scientists developed electronic devices such as e-noses, e-tongues, and e-eyes, to spot signals relative to different chemical substances prevalent in food systems. To interpret the information provided by the sensors' responses, multiple chemometric approaches are used depending on the aim of the study. This review based on the Web of Science database, endeavored to scrutinize three e-sensing systems coupled to chemometric approaches for food quality evaluation. A total of 122 eligible articles pertaining to the e-nose, e-tongue and e-eye devices were selected to conduct this review. Most of the performed studies used exploratory analysis based on linear factorial methods, while classification and regression techniques came in the second position. Although their applications have been less common in food science, it is to be noted that nonlinear approaches based on artificial intelligence and machine learning deployed in a big-data context have generally yielded better results for classification and regression purposes, providing new perspectives for future studies.
Collapse
Affiliation(s)
- Hala Abi-Rizk
- LAboratoire de Recherche et de Traitement de l'Information Chimiosensorielle - LARTIC, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, G1V 0A6, Canada.
| | | | - Julien Chamberland
- Department of Food Sciences, STELA Dairy Research Center, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Christophe B Y Cordella
- LAboratoire de Recherche et de Traitement de l'Information Chimiosensorielle - LARTIC, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
2
|
Shu Z, Li X, Liu Y. Detection of Chili Foreign Objects Using Hyperspectral Imaging Combined with Chemometric and Target Detection Algorithms. Foods 2023; 12:2618. [PMID: 37444353 DOI: 10.3390/foods12132618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Chilies undergo multiple stages from field production to reaching consumers, making them susceptible to contamination with foreign materials. Visually similar foreign materials are difficult to detect manually or using color sorting machines, which increases the risk of their presence in the market, potentially affecting consumer health. This paper aims to enhance the detection of visually similar foreign materials in chilies using hyperspectral technology, employing object detection algorithms for fast and accurate identification and localization to ensure food safety. First, the samples were scanned using a hyperspectral camera to obtain hyperspectral image information. Next, a spectral pattern recognition algorithm was used to classify the pixels in the images. Pixels belonging to the same class were assigned the same color, enhancing the visibility of foreign object targets. Finally, an object detection algorithm was employed to recognize the enhanced images and identify the presence of foreign objects. Random forest (RF), support vector machine (SVM), and minimum distance classification algorithms were used to enhance the hyperspectral images of the samples. Among them, RF algorithm showed the best performance, achieving an overall recognition accuracy of up to 86% for randomly selected pixel samples. Subsequently, the enhanced targets were identified using object detection algorithms including R-CNN, Faster R-CNN, and YoloV5. YoloV5 exhibited a recognition rate of over 96% for foreign objects, with the shortest detection time of approximately 12 ms. This study demonstrates that the combination of hyperspectral imaging technology, spectral pattern recognition techniques, and object detection algorithms can accurately and rapidly detect challenging foreign objects in chili peppers, including red stones, red plastics, red fabrics, and red paper. It provides a theoretical reference for online batch detection of chili pepper products, which is of significant importance for enhancing the overall quality of chili pepper products. Furthermore, the detection of foreign objects in similar particulate food items also holds reference value.
Collapse
Affiliation(s)
- Zhan Shu
- School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Xiong Li
- School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Yande Liu
- School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China
| |
Collapse
|
3
|
Shi Y, Wang Y, Hu X, Li Z, Huang X, Liang J, Zhang X, Zheng K, Zou X, Shi J. Nondestructive discrimination of analogous density foreign matter inside soy protein meat semi-finished products based on transmission hyperspectral imaging. Food Chem 2023; 411:135431. [PMID: 36681022 DOI: 10.1016/j.foodchem.2023.135431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Analogous density foreign matter (ADFM) embedded in soy protein meat semi-finished (SFSPM) is hidden by SFSPM and has similar acoustic impedance features to SFSPM, which makes non-destructive testing techniques such as computer vision (CV), reflectance spectroscopy and ultrasound imaging inappropriate for ADFM, which not only seriously affects the quality of soy protein meat (SPM) products but also increases the safety risk to consumers. In this study, to locate and separate ADFM by using transmission hyperspectral imaging (T-HSI) technique which is sensitive to chemical composition and highlight internal contours. The optimal discrimination model SVM + PCA + MSC + SPA was constructed using transmission spectral information with an accuracy of 95.00 %. The visualization results based on the optimal model showed clearer localization results than CV and ultrasound imaging. The study demonstrated that the advantages of T-HSI technology in detecting and locating ADFM inside SFSPM, which provides a basis for improving the production quality and safety of SPM.
Collapse
Affiliation(s)
- Yu Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yueying Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xuetao Hu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jing Liang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Kaiyi Zheng
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Li Q, Zhou W, Wang Q, Fu D. Research on Online Nondestructive Detection Technology of Duck Egg Origin Based on Visible/Near-Infrared Spectroscopy. Foods 2023; 12:foods12091900. [PMID: 37174438 PMCID: PMC10178549 DOI: 10.3390/foods12091900] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
As living standards rise, people have higher requirements for the quality of duck eggs. The quality of duck eggs is related to their origin. Thus, the origin traceability and identification of duck eggs are crucial for protecting the rights and interests of consumers and preserving food safety. As the world's largest producer and consumer of duck eggs, China's duck egg market suffers from a severe lack of duck egg traceability and rapid origin identification technology. As a result, a large number of duck eggs from other regions are sold as products from well-known brands, which seriously undermines the rights and interests of consumers and is not conducive to the sound development of the duck egg industry. To address the above issues, this study collected visible/near-infrared spectral data online from duck eggs of three distinct origins. To reduce noise in the spectral data, various pre-processing algorithms, including MSC, SNV, and SG, were employed to process the spectral data of duck eggs in the range of 400-1100 nm. Meanwhile, CARS and SPA were used to select feature variables that reflect the origin of duck eggs. Finally, classification models of duck egg origin were developed based on RF, SVM, and CNN, achieving the highest accuracy of 97.47%, 98.73%, and 100.00%, respectively. To promote the technology's implementation in the duck egg industry, an online sorting device was built for duck eggs, which mainly consists of a mechanical drive device, spectral software, and a control system. The online detection performance of the machine was validated using 90 duck eggs, and the final detection accuracy of the RF, SVM, and CNN models was 90%, 91.11%, and 94.44%, with a detection speed of 0.1 s, 0.3 s, and 0.5 s, respectively. These results indicate that visible/near-infrared spectroscopy can be exploited to realize rapid online detection of the origin of duck eggs, and the methodologies used in this study can be immediately implemented in production practice.
Collapse
Affiliation(s)
- Qingxu Li
- Department of Computer Science, Anhui University of Finance and Economics, Bengbu 233030, China
| | - Wanhuai Zhou
- Department of Computer Science, Anhui University of Finance and Economics, Bengbu 233030, China
| | - Qiaohua Wang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Dandan Fu
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
5
|
Xu P, Sun W, Xu K, Zhang Y, Tan Q, Qing Y, Yang R. Identification of Defective Maize Seeds Using Hyperspectral Imaging Combined with Deep Learning. Foods 2022; 12:foods12010144. [PMID: 36613360 PMCID: PMC9818215 DOI: 10.3390/foods12010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Seed quality affects crop yield and the quality of agricultural products, and traditional identification methods are time-consuming, complex, and irreversibly destructive. This study aims to establish a fast, non-destructive, and effective approach for defect detection in maize seeds based on hyperspectral imaging (HSI) technology combined with deep learning. Raw spectra collected from maize seeds (200 each healthy and worm-eaten) were pre-processed using detrending (DE) and multiple scattering correction (MSC) to highlight the spectral differences between samples. A convolutional neural network architecture (CNN-FES) based on a feature selection mechanism was proposed according to the importance of wavelength in the target classification task. The results show that the subset of 24 feature wavelengths selected by the proposed CNN-FES can capture important feature information in the spectral data more effectively than the conventional successive projections algorithm (SPA) and competitive adaptive reweighted sampling (CARS) algorithms. In addition, a convolutional neural network architecture (CNN-ATM) based on an attentional classification mechanism was designed for one-dimensional spectral data classification and compared with three commonly used machine learning methods, linear discriminant analysis (LDA), random forest (RF), and support vector machine (SVM). The results show that the classification performance of the designed CNN-ATM on the full wavelength does not differ much from the above three methods, and the classification accuracy is above 90% on both the training and test sets. Meanwhile, the accuracy, sensitivity, and specificity of CNN-ATM based on feature wavelength modeling can reach up to 97.50%, 98.28%, and 96.77% at the highest, respectively. The study shows that hyperspectral imaging-based defect detection of maize seed is feasible and effective, and the proposed method has great potential for the processing and analysis of complex hyperspectral data.
Collapse
Affiliation(s)
- Peng Xu
- College of Information and Communication Engineering, Hainan University, Haikou 570228, China
| | - Wenbin Sun
- College of Information and Communication Engineering, Hainan University, Haikou 570228, China
| | - Kang Xu
- College of Information and Communication Engineering, Hainan University, Haikou 570228, China
| | - Yunpeng Zhang
- College of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China
| | - Qian Tan
- College of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China
| | - Yiren Qing
- College of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China
| | - Ranbing Yang
- College of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China
- Correspondence: ; Tel.: +86-0898-66267576
| |
Collapse
|
6
|
Zhang G, Abdulla W. New Zealand honey botanical origin classification with hyperspectral imaging. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|