1
|
Cheng JH, Du R, Sun DW. Regulating bacterial biofilms in food and biomedicine: unraveling mechanisms and Innovating strategies. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38384205 DOI: 10.1080/10408398.2024.2312539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Bacterial biofilm has brought a lot of intractable problems in food and biomedicine areas. Conventional biofilm control mainly focuses on inactivation and removal of biofilm. However, with robust construction and enhanced resistance, the established biofilm is extremely difficult to eradicate. According to the mechanism of biofilm development, biofilm formation can be modulated by intervening in the key factors and regulatory systems. Therefore, regulation of biofilm formation has been proposed as an alternative way for effective biofilm control. This review aims to provide insights into the regulation of biofilm formation in food and biomedicine. The underlying mechanisms for early-stage biofilm establishment are summarized based on the key factors and correlated regulatory networks. Recent developments and applications of novel regulatory strategies such as anti/pro-biofilm agents, nanomaterials, functionalized surface materials and physical strategies are also discussed. The current review indicates that these innovative methods have contributed to effective biofilm control in a smart, safe and eco-friendly way. However, standard methodology for regulating biofilm formation in practical use is still missing. As biofilm formation in real-world systems could be far more complicated, further studies and interdisciplinary collaboration are still needed for simulation and experiments in the industry and other open systems.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Rong Du
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|
2
|
Ban GH, Kim SH, Kang DH, Park SH. Comparison of the efficacy of physical and chemical strategies for the inactivation of biofilm cells of foodborne pathogens. Food Sci Biotechnol 2023; 32:1679-1702. [PMID: 37780592 PMCID: PMC10533464 DOI: 10.1007/s10068-023-01312-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilm formation is a strategy in which microorganisms generate a matrix of extracellular polymeric substances to increase survival under harsh conditions. The efficacy of sanitization processes is lowered when biofilms form, in particular on industrial devices. While various traditional and emerging technologies have been explored for the eradication of biofilms, cell resistance under a range of environmental conditions renders evaluation of the efficacy of control challenging. This review aimed to: (1) classify biofilm control measures into chemical, physical, and combination methods, (2) discuss mechanisms underlying inactivation by each method, and (3) summarize the reduction of biofilm cells after each treatment. The review is expected to be useful for future experimental studies and help to guide the establishment of biofilm control strategies in the food industry.
Collapse
Affiliation(s)
- Ga-Hee Ban
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Soo-Hwan Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sang-Hyun Park
- Department of Food Science and Technology, Kongju National University, Yesan, Chungnam 32439 Republic of Korea
| |
Collapse
|
3
|
Cross-contamination of mature Listeria monocytogenes biofilms from stainless steel surfaces to chicken broth before and after the application of chlorinated alkaline and enzymatic detergents. Food Microbiol 2023; 112:104236. [PMID: 36906320 DOI: 10.1016/j.fm.2023.104236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023]
Abstract
The objectives of this study were, firstly, to compare a conventional (i.e., chlorinated alkaline) versus an alternative (chlorinated alkaline plus enzymatic) treatment effectivity for the elimination of biofilms from different L. monocytogenes strains (CECT 5672, CECT 935, S2-bac and EDG-e). Secondly, to evaluate the cross-contamination to chicken broth from non-treated and treated biofilms formed on stainless steel surfaces. Results showed that all L. monocytogenes strains were able to adhere and develop biofilms at approximately the same growth levels (≈5.82 log CFU/cm2). When non-treated biofilms were put into contact with the model food, obtained an average transference rate of potential global cross-contamination of 20.4%. Biofilms treated with the chlorinated alkaline detergent obtained transference rates similar to non-treated biofilms as a high number of residual cells (i.e., around 4 to 5 Log CFU/cm2) were present on the surface, except for EDG-e strain on which transference rate diminished to 0.45%, which was related to the protective matrix. Contrarily, the alternative treatment was shown to not produce cross-contamination to the chicken broth due to its high effectivity for biofilm control (<0.50% of transference) except for CECT 935 strain that had a different behavior. Therefore, changing to more intense cleaning treatments in the processing environments can reduce risk of cross-contamination.
Collapse
|
4
|
Michaelis C, Grohmann E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics (Basel) 2023; 12:antibiotics12020328. [PMID: 36830238 PMCID: PMC9952180 DOI: 10.3390/antibiotics12020328] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Most bacteria attach to biotic or abiotic surfaces and are embedded in a complex matrix which is known as biofilm. Biofilm formation is especially worrisome in clinical settings as it hinders the treatment of infections with antibiotics due to the facilitated acquisition of antibiotic resistance genes (ARGs). Environmental settings are now considered as pivotal for driving biofilm formation, biofilm-mediated antibiotic resistance development and dissemination. Several studies have demonstrated that environmental biofilms can be hotspots for the dissemination of ARGs. These genes can be encoded on mobile genetic elements (MGEs) such as conjugative and mobilizable plasmids or integrative and conjugative elements (ICEs). ARGs can be rapidly transferred through horizontal gene transfer (HGT) which has been shown to occur more frequently in biofilms than in planktonic cultures. Biofilm models are promising tools to mimic natural biofilms to study the dissemination of ARGs via HGT. This review summarizes the state-of-the-art of biofilm studies and the techniques that visualize the three main HGT mechanisms in biofilms: transformation, transduction, and conjugation.
Collapse
|
5
|
Liu Q, Li R, Qu W, Tian X, Zhang Y, Wang W. Influence of surface properties on the adhesion of bacteria onto different casings. Food Res Int 2023; 164:112463. [PMID: 36738014 DOI: 10.1016/j.foodres.2023.112463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/30/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Bacteria adhere to the surfaces of sausage casing and form biofilms, which causes food spoilage and quality deterioration. However, bacterial adhesion to the casing surfaces has not received enough attention and has not been extensively studied. In this study, the effect of the physicochemical properties of casing surfaces on bacterial initial adhesion were investigated with Leuconostoc mesenteroides as model bacteria. The adhesion of Leuconostoc mesenteroides onto 5 types of casings were systematically investigated, including animal casings, collagen casings, cellulose casings, fiber casings, and nylon casings, which are the most frequently encountered casings in sausage processing. It was found that the number of viable cells on the casings following the trend as: animal casings > collagen casings > fiber casings > cellulose casings > nylon casings after 4 h of incubation time. This phenomenon might be due to the different physicochemical properties of the different casings. Therefore, physicochemical factors, including zeta potential, hydrophobicity and roughness of casings, zeta potential and hydrophobicity of Leuconostoc mesenteroides, were further characterized. In terms of hydrophobic interactions, the results showed that the number of bacteria attached to the casings did not conform to the trend of hydrophobic interaction. In terms of electrostatic interactions, the results showed that the number of bacteria attached to the casings did not conform to the trend of hydrophobic interaction. The casings with different surface roughnesses in a range of 1.67-20.83 μm, the variation of bacterial adhesion quantity was in good agreement with the variation trend of casing roughness, the result showed that the surface roughness was the key factor dominating the bacterial adhesion rate compared with the surface hydrophobicity and zeta potential. The results give new insights to explore the mechanism of bacterial adhesion on casings and prevent sausage spoilage.
Collapse
Affiliation(s)
- Qiubo Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ruonan Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wei Qu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaojing Tian
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yafei Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
6
|
Besenhard MO, Pal S, Gkogkos G, Gavriilidis A. Non-fouling flow reactors for nanomaterial synthesis. REACT CHEM ENG 2023. [DOI: 10.1039/d2re00412g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review provides a holistic description of flow reactor fouling for wet-chemical nanomaterial syntheses. Fouling origins and consequences are discussed together with the variety of flow reactors for its prevention.
Collapse
Affiliation(s)
| | - Sayan Pal
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Georgios Gkogkos
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| |
Collapse
|
7
|
Phenyllactic acid application to control Listeria monocytogenes biofilms and its growth in milk and spiced beef. Int J Food Microbiol 2022; 381:109910. [DOI: 10.1016/j.ijfoodmicro.2022.109910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/05/2022] [Accepted: 08/27/2022] [Indexed: 11/21/2022]
|
8
|
Durand H, Whiteley A, Mailley P, Nonglaton G. Combining Topography and Chemistry to Produce Antibiofouling Surfaces: A Review. ACS APPLIED BIO MATERIALS 2022; 5:4718-4740. [PMID: 36162127 DOI: 10.1021/acsabm.2c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite decades of research on the reduction of surface fouling from biomolecules or micro-organisms, the ultimate antibiofouling surface remains undiscovered. The recent covid-19 pandemic strengthened the crucial need for such treatments. Among the numerous approaches that are able to provide surfaces with antibiofouling properties, chemical, biological, and topographical strategies have been implemented for instance in the marine, medical, or food industries. However, many of these methods have a biocidal effect and, with antibioresistance and biocide resistance a growing threat on humanity, strategies based on reducing adsorption of biomolecules and micro-organism are necessary for long-term solutions. Bioinspired strategies, combining both surface chemistry and topography, are currently at the heart of the best innovative and sustainable solutions. The synergistic effect of micro/nanostructuration, together with engineered chemical or biological functionalization is believed to contribute to the development of antibiofouling surfaces. This review aims to present approaches combining hydrophobic or hydrophilic chemistries with a specific topography to avoid biofouling in various industrial environments and healthcare facilities.
Collapse
Affiliation(s)
| | - Amelia Whiteley
- Univ. Grenoble Alpes, CEA, LETI, DTBS, F-38000 Grenoble, France
| | - Pascal Mailley
- Univ. Grenoble Alpes, CEA, LETI, DTBS, F-38000 Grenoble, France
| | | |
Collapse
|
9
|
Novel Approaches to Environmental Monitoring and Control of Listeria monocytogenes in Food Production Facilities. Foods 2022; 11:foods11121760. [PMID: 35741961 PMCID: PMC9222551 DOI: 10.3390/foods11121760] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a serious public health hazard responsible for the foodborne illness listeriosis. L. monocytogenes is ubiquitous in nature and can become established in food production facilities, resulting in the contamination of a variety of food products, especially ready-to-eat foods. Effective and risk-based environmental monitoring programs and control strategies are essential to eliminate L. monocytogenes in food production environments. Key elements of the environmental monitoring program include (i) identifying the sources and prevalence of L. monocytogenes in the production environment, (ii) verifying the effectiveness of control measures to eliminate L. monocytogenes, and (iii) identifying the areas and activities to improve control. The design and implementation of the environmental monitoring program are complex, and several different approaches have emerged for sampling and detecting Listeria monocytogenes in food facilities. Traditional detection methods involve culture methods, followed by confirmation methods based on phenotypic, biochemical, and immunological characterization. These methods are laborious and time-consuming as they require at least 2 to 3 days to obtain results. Consequently, several novel detection approaches are gaining importance due to their rapidness, sensitivity, specificity, and high throughput. This paper comprehensively reviews environmental monitoring programs and novel approaches for detection based on molecular methods, immunological methods, biosensors, spectroscopic methods, microfluidic systems, and phage-based methods. Consumers have now become more interested in buying food products that are minimally processed, free of additives, shelf-stable, and have a better nutritional and sensory value. As a result, several novel control strategies have received much attention for their less adverse impact on the organoleptic properties of food and improved consumer acceptability. This paper reviews recent developments in control strategies by categorizing them into thermal, non-thermal, biocontrol, natural, and chemical methods, emphasizing the hurdle concept that involves a combination of different strategies to show synergistic impact to control L. monocytogenes in food production environments.
Collapse
|
10
|
Wang L, Pang X, Zhao J, Jin H, Yang X, Fu S, Cheng S, Li H, Miao C, Man C, Jiang Y. Isolation and characteristics of new phage JK004 and application to control Cronobacter sakazakii on material surfaces and powdered infant formula. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Review controlling Listeria monocytogenes in ready-to-eat meat and poultry products: An overview of outbreaks, current legislations, challenges, and future prospects. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|