1
|
Asdullah HU, Chen F, Hassan MA, Abbas A, Sajad S, Rafiq M, Raza MA, Tahir A, Wang D, Chen Y. Recent advances and role of melatonin in post-harvest quality preservation of shiitake ( Lentinula edodes). Front Nutr 2024; 11:1348235. [PMID: 38571753 PMCID: PMC10987784 DOI: 10.3389/fnut.2024.1348235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Shiitake mushrooms are renowned for their popularity and robust nutritional value, are susceptible to spoilage due to their inherent biodegradability. Nevertheless, because of their lack of protection, these mushrooms have a short shelf life. Throughout the post-harvest phase, mushrooms experience a persistent decline in quality. This is evidenced by changes such as discoloration, reduced moisture content, texture changes, an increase in microbial count, and the depletion of nutrients and flavor. Ensuring postharvest quality preservation and prolonging mushroom shelf life necessitates the utilization of post-harvest preservation techniques, including physical, chemical, and thermal processes. This review provides a comprehensive overview of the deterioration processes affecting mushroom quality, covering elements such as moisture loss, discoloration, texture alterations, increased microbial count, and the depletion of nutrients and flavor. It also explores the key factors influencing these processes, such as temperature, relative humidity, water activity, and respiration rate. Furthermore, the review delves into recent progress in preserving mushrooms through techniques such as drying, cooling, packaging, irradiation, washing, and coating.
Collapse
Affiliation(s)
- Hafiz Umair Asdullah
- School of Horticulture, Anhui Agricultural University, Hefei, China
- Wandong Comprehensive Experimental Station, New Rural Development Institute, Anhui Agricultural University, Minguang, China
| | - Feng Chen
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | | | - Asad Abbas
- School of Science, Western Sydney University Hawkesbury, Sydney, NSW, Australia
| | - Shoukat Sajad
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Muhammad Rafiq
- Lushan Botanical Garden of Chinese Academy of Science, Jiujiang, China
| | | | - Arslan Tahir
- University College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Dongliang Wang
- School of Horticulture, Anhui Agricultural University, Hefei, China
- Wandong Comprehensive Experimental Station, New Rural Development Institute, Anhui Agricultural University, Minguang, China
| | - Yougen Chen
- School of Horticulture, Anhui Agricultural University, Hefei, China
- Wandong Comprehensive Experimental Station, New Rural Development Institute, Anhui Agricultural University, Minguang, China
| |
Collapse
|
2
|
Lu M, Wen T, Guo M, Li Q, Peng X, Zhang Y, Lu Z, Wang J, Xu Y, Zhang C. Regulation of Intracellular Reactive Oxygen Species Levels after the Development of Phallus rubrovolvatus Rot Disease Due to Trichoderma koningii Mycoparasitism. J Fungi (Basel) 2023; 9:jof9050525. [PMID: 37233236 DOI: 10.3390/jof9050525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023] Open
Abstract
Phallus rubrovolvatus is a unique mushroom used for medicinal and dietary purposes in China. In recent years, however, the rot disease of P. rubrovolvatus has seriously affected its yield and quality, becoming an economically important threat. In this study, samples of symptomatic tissues were collected, isolated, and identified from five major P. rubrovolvatus production regions in Guizhou Province, China. Based on combined analyses of phylogenies (ITS and EF1-α), morphological characteristics and Koch's postulates, Trichoderma koningiopsis and Trichoderma koningii were identified as the pathogenic fungal species. Among these, T. koningii exhibited stronger pathogenicity than the other strains; thus, T. koningii was used as the test strain in the follow-up experiments. Upon co-culturing T. koningii with P. rubrovolvatus, the hyphae of the two species were intertwined, and the color of the P. rubrovolvatus hyphae changed from white to red. Moreover, T. koningii hyphae were wrapped around P. rubrovolvatus hyphae, leading to their shortening and convolution and ultimately inhibiting their growth due to wrinkling; T. koningii penetrated the entire basidiocarp tissue of P. rubrovolvatus, causing serious damage to the host basidiocarp cells. Further analyses revealed that T. koningii infection resulted in the swelling of basidiocarps and significantly enhanced the activity of defense-related enzymes, such as malondialdehyde, manganese peroxidase, and polyphenol oxidase. These findings offer theoretical support for further research on the infection mechanisms of pathogenic fungi and the prevention of diseases caused by them.
Collapse
Affiliation(s)
- Meiling Lu
- School of Pharmacy, Guizhou University, Guiyang 550025, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, China
- The Mushroom Research Centre, Guizhou University, Guiyang 550025, China
| | - Tingchi Wen
- School of Pharmacy, Guizhou University, Guiyang 550025, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, China
- The Mushroom Research Centre, Guizhou University, Guiyang 550025, China
| | - Ming Guo
- Guizhou Jinchandashan Biotechnology Co., Ltd., Nayong 553300, China
| | - Qihua Li
- Guizhou Jinsun Biotechnology Co., Ltd., Zhijin 552100, China
| | - Xingcan Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, China
- The Mushroom Research Centre, Guizhou University, Guiyang 550025, China
- Center of Excellence in Fungal Research, and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Yan Zhang
- School of Pharmacy, Guizhou University, Guiyang 550025, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, China
- The Mushroom Research Centre, Guizhou University, Guiyang 550025, China
| | - Zhenghua Lu
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, China
- The Mushroom Research Centre, Guizhou University, Guiyang 550025, China
- Guizhou Jinsun Biotechnology Co., Ltd., Zhijin 552100, China
| | - Jian Wang
- The Key Laboratory of Agricultural Bioengineering, Guizhou University, Guiyang 550025, China
| | - Yanjun Xu
- The Mushroom Research Centre, Guizhou University, Guiyang 550025, China
| | - Chao Zhang
- School of Pharmacy, Guizhou University, Guiyang 550025, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, China
- The Mushroom Research Centre, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Xia R, Hou Z, Xu H, Li Y, Sun Y, Wang Y, Zhu J, Wang Z, Pan S, Xin G. Emerging technologies for preservation and quality evaluation of postharvest edible mushrooms: A review. Crit Rev Food Sci Nutr 2023; 64:8445-8463. [PMID: 37083462 DOI: 10.1080/10408398.2023.2200482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Edible mushrooms are the highly demanded foods of which production and consumption have been steadily increasing globally. Owing to the quality loss and short shelf-life in harvested mushrooms, it is necessary for the implementation of effective preservation and intelligent evaluation technologies to alleviate this issue. The aim of this review was to analyze the development and innovation thematic lines, topics, and trends by bibliometric analysis and review of the literature methods. The challenges faced in researching these topics were proposed and the mechanisms of quality loss in mushrooms during storage were updated. This review summarized the effects of chemical processing (antioxidants, ozone, and coatings), physical treatments (non-thermal plasma, packaging and latent thermal storage) and other emerging application on the quality of fresh mushrooms while discussing the efficiency in extending the shelf-life. It also discussed the emerging evaluation techniques based on the various chemometric methods and computer vision system in monitoring the freshness and predicting the shelf-life of mushrooms which have been developed. Preservation technology optimization and dynamic quality evaluation are vital for achieving mushroom quality control. This review can provide a comprehensive research reference for reducing mushroom quality loss and extending shelf-life, along with optimizing efficiency of storage and transportation operations.
Collapse
Affiliation(s)
- Rongrong Xia
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhenshan Hou
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Heran Xu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yunting Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yong Sun
- Beijing Academy of Food Sciences, Beijing, China
| | - Yafei Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jiayi Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zijian Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Song Pan
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Guang Xin
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
4
|
Pourbagher R, Abbaspour‐Fard MH, Sohbatzadeh F, Rohani A, Pourbagher M. Effect of plasma‐activated water generated by surface
DBD
on inactivation of pathogens
Pseudomonas tolaasii
and
Lecanicillium fungicola
and enhancement of storage quality of button mushroom. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Roghayeh Pourbagher
- Department of Biosystems Engineering, Faculty of Agriculture Ferdowsi University of Mashhad Mashhad Iran
| | | | - Farshad Sohbatzadeh
- Department of Atomic and Molecular Physics Faculty of Basic Sciences, University of Mazandaran Babolsar Iran
| | - Abbas Rohani
- Department of Biosystems Engineering, Faculty of Agriculture Ferdowsi University of Mashhad Mashhad Iran
| | - Maryam Pourbagher
- Department of Engineering Faculty of Computer Engineering, Golestan Institute of Higher Education Gorgan Iran
| |
Collapse
|
5
|
Advances in the Role and Mechanisms of Essential Oils and Plant Extracts as Natural Preservatives to Extend the Postharvest Shelf Life of Edible Mushrooms. Foods 2023; 12:foods12040801. [PMID: 36832876 PMCID: PMC9956186 DOI: 10.3390/foods12040801] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
China has a large variety of edible mushrooms and ranks first in the world in terms of production and variety. Nevertheless, due to their high moisture content and rapid respiration rate, they experience constant quality deterioration, browning of color, loss of moisture, changes in texture, increases in microbial populations, and loss of nutrition and flavor during postharvest storage. Therefore, this paper reviews the effects of essential oils and plant extracts on the preservation of edible mushrooms and summarizes their mechanisms of action to better understand their effects during the storage of mushrooms. The quality degradation process of edible mushrooms is complex and influenced by internal and external factors. Essential oils and plant extracts are considered environmentally friendly preservation methods for better postharvest quality. This review aims to provide a reference for the development of new green and safe preservation and provides research directions for the postharvest processing and product development of edible mushrooms.
Collapse
|
6
|
Pourbagher R, Abbaspour‐Fard MH, Khomeiri M, Sohbatzadeh F, Rohani A. Effects of gas type and cold plasma treatment time on
Lecanicillium fungicola
spores reduction and changes in qualitative, chemical and physiological characteristics of button mushroom during postharvest storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roghayeh Pourbagher
- Department of Biosystems Engineering, Faculty of Agriculture Ferdowsi University of Mashhad Mashhad Iran
| | | | - Morteza Khomeiri
- Department of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Farshad Sohbatzadeh
- Department of Atomic and Molecular Physics, Faculty of Basic Sciences University of Mazandaran Babolsar Iran
| | - Abbas Rohani
- Department of Biosystems Engineering, Faculty of Agriculture Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|