1
|
Li P, Mei J, Xie J. Antibacterial mechanism of CO 2 combined with low temperature against Shewanella putrefaciens by biochemical and metabolomics analysis. Food Chem 2024; 460:140555. [PMID: 39047490 DOI: 10.1016/j.foodchem.2024.140555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
To further reveal the inhibition mechanism of carbon dioxide (CO2) on Shewanella putrefaciens (S. putrefaciens), influence on metabolic function was studied by biochemical and metabolomics analysis. Accordingly, reduction of intracellular pH (pHi), depolarization of cell membrane and accumulation of reactive oxygen species (ROS) indicated that CO2 changed the membrane permeability of S. putrefaciens. Besides, adenosine triphosphate (ATP), ATPase, nicotinamide adenine dinucleotide (NAD+/NADH) and ratios of NADH/NAD+ were detected, indicating a role of CO2 in repressing respiratory pathway and electron transport. According to metabolomics results, CO2 induced differential expressions of metabolites, disordered respiratory chain and weakened energy metabolism of S. putrefaciens. Inhibition of respiratory rate-limiting enzymes also revealed that electron transfer of respiratory chain was blocked, cell respiration was weakened, and thus energy supply was insufficient under CO2 stress. These results revealed that CO2 caused disruption of metabolic function, which might be the main cause of growth inhibition for S. putrefaciens.
Collapse
Affiliation(s)
- Peiyun Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| |
Collapse
|
2
|
Rao W, Wu J, Fang Z, Chen Z, Wu J, Fang X. Antibacterial mechanism of metabolites of Lactobacillus plantarum against Pseudomonas lundensis and their application in dry-aged beef preservation. Food Chem 2024; 460:140463. [PMID: 39047473 DOI: 10.1016/j.foodchem.2024.140463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
In this study, the antibacterial mechanism of metabolites of Lactobacillus plantarum SCB2505 (MLp SCB2505) against Pseudomonas lundensis (P. lundensis) SCB2605 was investigated, along with evaluation of their preservative effects on dry-aged beef. The results demonstrated the effective inhibition of MLp SCB2505 on the growth and biofilm synthesis of P. lundensis. The treatment with MLp SCB2505 led to the compromised membrane integrity, as evidenced by reduced intracellular ATP content, increased extracellular AKPase, K+ and protein content, as well as disrupted cell morphology. Further metabolomics analysis revealed that MLp SCB2505 interfered amino acid metabolism, nucleotide metabolism, cofactor and vitamin metabolism, lipid metabolism and respiratory chain in P. lundensis, ultimately leading to the interrupted life activities and even death of the bacteria. Besides, MLp SCB2505 could effectively inhibit the growth of Pseudomonas in dry-aged beef and delay spoilage. These findings propose the potential application of MLp SCB2505 as an antibacterial agent in meat products.
Collapse
Affiliation(s)
- Wei Rao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinchong Wu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Ziying Fang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhaomin Chen
- Weyran Food Biotechnology (Shenzhen) Co., LTD., Shenzhen 518048, China
| | - Jianfeng Wu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Wu R, Li D, Chen Q, Luo Z, Zhou J, Mao J. Optimization of vanillin biosynthesis in Escherichia coli K12 MG1655 through metabolic engineering. BIORESOURCE TECHNOLOGY 2024; 411:131189. [PMID: 39127360 DOI: 10.1016/j.biortech.2024.131189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Vanillin is an important flavouring agent applied in food, spices, pharmaceutical industries and other fields. Microbial biosynthesis of vanillin is considered a sustainable and economically feasible alternative to traditional chemical synthesis. In this study, Escherichia coli K12 MG1655 was used for the de novo synthesis of VAN by screening highly active carboxylic acid reductases and catechol O-methyltransferases, optimising the protocatechuic acid pathway, and regulating competitive metabolic pathways. Additionally, major alcohol by-products were identified and decreased by deleting three endogenous aldo-keto reductases and three alcohol dehydrogenases. Finally, a highest VAN titer was achieved to 481.2 mg/L in a 5 L fermenter from glucose. This work provides a valuable example of pathway engineering and screens several enzyme variants for the first time in E. coli.
Collapse
Affiliation(s)
- Renga Wu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dong Li
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qihang Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengshan Luo
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Mao
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang 312000, China.
| |
Collapse
|
4
|
Li P, Wang J, Xie J. Excitation of Reactive Oxygen Species and Damage to the Cell Membrane, Protein, and DNA are Important Inhibition Mechanisms of CO 2 on Shewanella putrefaciens at 4 °C. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17559-17571. [PMID: 39054619 DOI: 10.1021/acs.jafc.4c04171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
To explore whether oxidative stress caused by 100% CO2 is an inhibitory mechanism against Shewanella putrefaciens, the oxidative stress reaction, antioxidant activity, and damage to the cell membrane, protein, and DNA of CO2-incubated S. putrefaciens at 4 °C were evaluated. Research demonstrated that CO2 caused more severe reactive oxygen species (ROS) accumulation. Simultaneously, weaker •OH/H2O2/O2•--scavenging activity and decreased T-VOC and GSH content were also observed. The activities of antioxidant enzymes (SOD, POD, CAT, and GPX) continuously declined, which might be attributed to the CO2-mediated decrease in the pH value. Correspondingly, the cell membrane was damaged with hyperpolarization, increased permeability, and more severe lipid peroxidation. The expression of total and membrane protein decreased, and the synthesis and activity of extracellular protease were inhibited. DNA was also subjected to oxidative damage and expressed at a lower level. All results collaboratively confirmed that ROS excitation and inhibition of antioxidant activity were important inhibition mechanisms of CO2 on S. putrefaciens.
Collapse
Affiliation(s)
- Peiyun Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jinfeng Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| |
Collapse
|
5
|
Jung HS, Park YJ, Gu BH, Han G, Ji W, Hwang SM, Kim M. Coumarin derivatives ameliorate the intestinal inflammation and pathogenic gut microbiome changes in the model of infectious colitis through antibacterial activity. Front Cell Infect Microbiol 2024; 14:1362773. [PMID: 39081865 PMCID: PMC11287663 DOI: 10.3389/fcimb.2024.1362773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Coumarin, a phenolic compound, is a secondary metabolite produced by plants such as Tanga and Lime. Coumarin derivatives were prepared via Pechmann condensation. In this study, we performed in vitro and in vivo experiments to determine the antimicrobial and gut immune-regulatory functions of coumarin derivatives. For the in vitro antimicrobial activity assay, coumarin derivatives C1 and C2 were selected based on their pathogen-killing activity against various pathogenic microbes. We further demonstrated that the selected coumarin derivatives disrupted bacterial cell membranes. Next, we examined the regulatory function of the coumarin derivatives in gut inflammation using an infectious colitis model. In an in vivo infectious colitis model, administration of selected C1 coumarin derivatives reduced pathogen loads, the number of inflammatory immune cells (Th1 cells and Th17 cells), and inflammatory cytokine levels (IL-6 and IL-1b) in the intestinal tissue after pathogen infection. In addition, we found that the administration of C1 coumarin derivatives minimized abnormal gut microbiome shift-driven pathogen infection. Potential pathogenic gut microbes, such as Enterobacteriaceae and Staphylococcaceae, were increased by pathogen infection. However, this pathogenic microbial expansion was minimized and beneficial bacteria, such as Ligilactobacillus and Limosilactobacillus, increased with C1 coumarin derivative treatment. Functional gene enrichment assessment revealed that the relative abundance of genes associated with lipid and nucleotide metabolism was reduced by pathogen infection; however, this phenomenon was not observed in C1 coumarin derivative-treated animals. Collectively, our data suggest that C1 coumarin derivative is effective antibacterial agents that minimize pathogen-induced gut inflammation and abnormal gut microbiome modulation through their antibacterial activity.
Collapse
Affiliation(s)
- Hui-su Jung
- Laboratory of Animal Immunology, Department of Animal Science, College of Natural Resource & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Yei Ju Park
- R & D Center, EyeGene, Goyang, Republic of Korea
| | - Bon-Hee Gu
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Goeun Han
- Laboratory of Animal Immunology, Department of Animal Science, College of Natural Resource & Life Science, Pusan National University, Miryang, Republic of Korea
- Future Earth Research Institute, PNU JYS Science Academy, Pusan National University, Busan, Republic of Korea
| | - Woonhak Ji
- Laboratory of Animal Immunology, Department of Animal Science, College of Natural Resource & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Su mi Hwang
- Department of Biomedical Laboratory Science, College of Health and Medical Science, Sangji University, Wonju, Republic of Korea
| | - Myunghoo Kim
- Laboratory of Animal Immunology, Department of Animal Science, College of Natural Resource & Life Science, Pusan National University, Miryang, Republic of Korea
- Future Earth Research Institute, PNU JYS Science Academy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
6
|
Dong Y, Su J, Guo X, Zhang Q, Zhu S, Zhang K, Zhu H. Multifunctional protocatechuic acid-polyacrylic acid hydrogel adhesives for wound dressings. J Mater Chem B 2024; 12:6617-6626. [PMID: 38896436 DOI: 10.1039/d4tb00425f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Multifunctional hydrogel adhesives are highly desirable in wound healing applications, yet their preparation often requires complex material system design to achieve. Herein, a straightforward one-pot two-step polymerization method is developed to prepare adhesive hydrogels for wound dressing based on protocatechuic acid (PCA), polyacrylic acid (PAA), and polyamidoamine-epichlorohydrin (PAE), where PCA provides the catechol groups for strong adhesion, PAA serves as the primary polymer matrix, and PAE acts as a bridge connecting PCA and PAA. This design results in a PAA-PAE-PCA hydrogel having a remarkable instant 90-degree peeling interfacial toughness of 431 J m-2 on porcine skin, which is further amplified to 615 J m-2 after 30 minutes. The hydrogel also possesses the desired features for wound dressing, such as self-healing, antioxidant, anti-UV and antibacterial properties, good cytocompatibility, strong adhesion in use and weak adhesion on removal, as well as reversible and wet adhesion. Finally, in vivo data reveal that the PAA-PAE-PCA hydrogels can significantly accelerate wound healing, as evidenced by a noticeable reduction in the wound area and a diminished inflammatory response. Collectively, these results endorse the obtained multifunctional hydrogel as a promising candidate for wound healing and related fields.
Collapse
Affiliation(s)
- Yue Dong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Jingjing Su
- School of Life Science, Zhengzhou University, Henan 450001, China.
| | - Xiwei Guo
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Henan 450001, China.
| | - He Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| |
Collapse
|
7
|
Mesias M, Morales FJ, Caleja C, Pires TCSP, Calhelha RC, Barros L, Pereira E. Nutritional profiling, fiber content and in vitro bioactivities of wheat-based biscuits formulated with novel ingredients. Food Funct 2024; 15:4051-4064. [PMID: 38535983 DOI: 10.1039/d4fo00204k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
This study evaluated the nutritional profile and fiber content of innovative formulations of wheat-based biscuits enriched with chia seeds, carob flour and coconut sugar. The in vitro antioxidant, cytotoxic, anti-inflammatory and antimicrobial activities were also investigated to understand the potential health advantages of the incorporation of these new ingredients. The novel biscuits demonstrated significant improvements in protein and mineral content, with increases of 50% and 100% in chia biscuits, and up to 20% and 40% in carob biscuits, respectively. Fiber also notably increased, particularly in samples containing 10% carob flour, which increased four times as compared to wheat-based samples. The new ingredients exhibited antibacterial and antifungal activity, particularly against Yersinia enterocolitica (minimum inhibitory concentration 1.25 mg mL-1 in coconut sugar) and Aspergillus fumigatus (minimum inhibitory concentration/minimum fungicidal concentrations 2.5/5 mg mL-1 in chia seeds). However, the final biscuits only displayed antifungal properties. Carob flour and chia seeds had a remarkably high capacity to inhibit the formation of TBARS and promoted greater antioxidant activity in biscuit formulations, with EC50 values decreasing from 23.25 mg mL-1 (control) to 4.54 mg mL-1 (15% defatted ground chia seeds) and 1.19 mg mL-1 (10% carob flour). Only chia seeds exhibited cellular antioxidant, anti-inflammatory and cytotoxic activity, attributes that were lost when seeds were added into the biscuits. These findings highlight the potential health benefits of these ingredients, particularly when incorporated in new wheat-based formulations.
Collapse
Affiliation(s)
- Marta Mesias
- Institute of Food Science, Technology and Nutrition, ICTAN-CSIC, José Antonio Novais 6, 28040-Madrid, Spain.
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n., 28040 Madrid, Spain
| | - Francisco J Morales
- Institute of Food Science, Technology and Nutrition, ICTAN-CSIC, José Antonio Novais 6, 28040-Madrid, Spain.
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Tânia C S P Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Eliana Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
8
|
Wang D, Zhao Y, Chen S, Wei Y, Yang X, Li C, Wang Y. Elucidating the potential of chlorogenic acid for controlling Morganella psychrotolerans growth and histamine formation. J Appl Microbiol 2024; 135:lxad308. [PMID: 38140945 DOI: 10.1093/jambio/lxad308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 12/21/2023] [Indexed: 12/24/2023]
Abstract
AIM To investigate the inhibitory impact of chlorogenic acid (CGA) on the growth of Morganella psychrotolerans and its ability to form histamine. METHODS AND RESULTS The antimicrobial effect of CGA on M. psychrotolerans was evaluated using the minimum inhibitory concentration (MIC) method, revealing an MIC value of 10 mg ml-1. The alkaline phosphatase (AKP) activity, cell membrane potential, and scanning electron microscopy images revealed that CGA treatment disrupted cell structure and cell membrane. Moreover, CGA treatment led to a dose-dependent decrease in crude histidine decarboxylase (HDC) activity and gene expression of histidine decarboxylase (hdc). Molecular docking analysis demonstrated that CGA interacted with HDC through hydrogen bonds. Furthermore, in situ investigation confirmed the efficacy of CGA in controlling the growth of M. psychrotolerans and significantly reducing histamine formation in raw tuna. CONCLUSION CGA had good activity in controlling the growth of M. psychrotolerans and histamine formation.
Collapse
Affiliation(s)
- Di Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Ya Wei
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| |
Collapse
|
9
|
Pius Bassey A, Pei Liu P, Chen J, Kabir Bako H, Frimpong Boateng E, Isaiah Ibeogu H, Ye K, Li C, Zhou G. Antibacterial efficacy of phenyllactic acid against Pseudomonas lundensis and Brochothrix thermosphacta and its synergistic application on modified atmosphere/air-packaged fresh pork loins. Food Chem 2024; 430:137002. [PMID: 37524609 DOI: 10.1016/j.foodchem.2023.137002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/24/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
Microbial contamination is a crucial problem that is difficult to solve for the meat industry. Therefore, this study explored the antibacterial efficacy of phenyllactic acid (PLA) against Pseudomonas lundensis (PL) and Brochothrix thermosphacta (BT) solely and in combination (PL + BT). It also provided insights into its synergistic preservation effect during inoculation in chilled (4 °C) fresh pork loins under air (AP) and modified atmosphere packaging (MAP). The minimum inhibitory concentration (MIC) of PLA was 10 mg/mL. Growth kinetics, scanning electron microscopy (SEM), zeta potential, and cell viability investigations showed that PLA treatment exhibited reduced bacterial growth, aided morphological alterations, and leakage in cell membrane integrity in vitro. Nonetheless, PLA and MAP (70 %N2/30 %CO2) showed an excellent synergistic antibacterial ability against spoilage indicators(total glucose, pH, TVB-N, and TBARS), bacterial counts than AP, without impairing organoleptic acceptability. These results demonstrate the broad antibacterial efficacy of PLA as a biopreservative for the meat industry.
Collapse
Affiliation(s)
- Anthony Pius Bassey
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Pei Pei Liu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Jiahui Chen
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Hadiza Kabir Bako
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Evans Frimpong Boateng
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Henry Isaiah Ibeogu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Keping Ye
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China.
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China.
| |
Collapse
|
10
|
Romero-Benavides JC, Guaraca-Pino E, Duarte-Casar R, Rojas-Le-Fort M, Bailon-Moscoso N. Chenopodium quinoa Willd. and Amaranthus hybridus L.: Ancestral Andean Food Security and Modern Anticancer and Antimicrobial Activity. Pharmaceuticals (Basel) 2023; 16:1728. [PMID: 38139854 PMCID: PMC10747716 DOI: 10.3390/ph16121728] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The species Chenopodium quinoa Willd. and Amaranthus hybridus L. are Andean staples, part of the traditional diet and gastronomy of the people of the highlands of Colombia, Ecuador, Peru, Bolivia, northern Argentina and Chile, with several ethnopharmacological uses, among them anticancer applications. This review aims to present updated information on the nutritional composition, phytochemistry, and antimicrobial and anticancer activity of Quinoa and Amaranth. Both species contribute to food security due to their essential amino acid contents, which are higher than those of most staples. It is highlighted that the biological activity, especially the antimicrobial activity in C. quinoa, and the anticancer activity in both species is related to the presence of phytochemicals present mostly in leaves and seeds. The biological activity of both species is consistent with their phytochemical composition, with phenolic acids, flavonoids, carotenoids, alkaloids, terpenoids, saponins and peptides being the main compound families of interest. Extracts of different plant organs of both species and peptide fractions have shown in vitro and, to a lesser degree, in vivo activity against a variety of bacteria and cancer cell lines. These findings confirm the antimicrobial and anticancer activity of both species, C. quinoa having more reported activity than A. hybridus through different compounds and mechanisms.
Collapse
Affiliation(s)
- Juan Carlos Romero-Benavides
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador;
| | - Evelyn Guaraca-Pino
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador;
- Maestría en Alimentos, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador
| | - Rodrigo Duarte-Casar
- Tecnología Superior en Gestión Culinaria, Pontificia Universidad Católica del Ecuador—Sede Manabí, Portoviejo 130103, Ecuador; (R.D.-C.); (M.R.-L.-F.)
| | - Marlene Rojas-Le-Fort
- Tecnología Superior en Gestión Culinaria, Pontificia Universidad Católica del Ecuador—Sede Manabí, Portoviejo 130103, Ecuador; (R.D.-C.); (M.R.-L.-F.)
| | - Natalia Bailon-Moscoso
- Facultad de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja 110108, Ecuador;
| |
Collapse
|
11
|
Wawoczny A, Gillner D. The Most Potent Natural Pharmaceuticals, Cosmetics, and Food Ingredients Isolated from Plants with Deep Eutectic Solvents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37433265 PMCID: PMC10375538 DOI: 10.1021/acs.jafc.3c01656] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
There is growing interest in reducing the number of synthetic products or additives and replacing them with natural ones. The pharmaceutical, cosmetic, and food industries are especially focused on natural and bioactive chemicals isolated from plants or microorganisms. The main challenge here is to develop efficient and ecological methods for their isolation. According to the strategies and rules of sustainable development and green chemistry, green solvents and environmentally friendly technologies must be used. The application of deep eutectic solvents as efficient and biodegradable solvents seems to be a promising alternative to traditional methods. They are classified as being green and ecological but, most importantly, very efficient extraction media compared to organic solvents. The aim of this review is to present the recent findings on green extraction, as well as the biological activities and the possible applications of natural plant ingredients, namely, phenolics, flavonoids, terpenes, saponins, and some others. This paper thoroughly reviews modern, ecological, and efficient extraction methods with the use of deep eutectic solvents (DESs). The newest findings, as well as the factors influencing the efficiency of extraction, such as water content, and hydrogen bond donor and acceptor types, as well as the extraction systems, are also discussed. New solutions to the major problem of separating DESs from the extract and for solvent recycling are also presented.
Collapse
Affiliation(s)
- Agata Wawoczny
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Danuta Gillner
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
12
|
Jadimurthy R, Jagadish S, Nayak SC, Kumar S, Mohan CD, Rangappa KS. Phytochemicals as Invaluable Sources of Potent Antimicrobial Agents to Combat Antibiotic Resistance. Life (Basel) 2023; 13:948. [PMID: 37109477 PMCID: PMC10145550 DOI: 10.3390/life13040948] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/04/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Plants have been used for therapeutic purposes against various human ailments for several centuries. Plant-derived natural compounds have been implemented in clinics against microbial diseases. Unfortunately, the emergence of antimicrobial resistance has significantly reduced the efficacy of existing standard antimicrobials. The World Health Organization (WHO) has declared antimicrobial resistance as one of the top 10 global public health threats facing humanity. Therefore, it is the need of the hour to discover new antimicrobial agents against drug-resistant pathogens. In the present article, we have discussed the importance of plant metabolites in the context of their medicinal applications and elaborated on their mechanism of antimicrobial action against human pathogens. The WHO has categorized some drug-resistant bacteria and fungi as critical and high priority based on the need to develope new drugs, and we have considered the plant metabolites that target these bacteria and fungi. We have also emphasized the role of phytochemicals that target deadly viruses such as COVID-19, Ebola, and dengue. Additionally, we have also elaborated on the synergetic effect of plant-derived compounds with standard antimicrobials against clinically important microbes. Overall, this article provides an overview of the importance of considering phytogenous compounds in the development of antimicrobial compounds as therapeutic agents against drug-resistant microbes.
Collapse
Affiliation(s)
- Ragi Jadimurthy
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | - Swamy Jagadish
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | - Siddaiah Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India;
| | - Sumana Kumar
- Department of Microbiology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Chakrabhavi Dhananjaya Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | | |
Collapse
|
13
|
Bai X, Chen T, Liu X, Liu Z, Ma R, Su R, Li X, Lü X, Xia X, Shi C. Antibacterial Activity and Possible Mechanism of Litsea cubeba Essential Oil Against Shigella sonnei and Its Application in Lettuce. Foodborne Pathog Dis 2023; 20:138-148. [PMID: 37010405 DOI: 10.1089/fpd.2022.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Shigella sonnei, the causative agents of bacillary dysentery, remains a significant threat to public health. Litsea cubeba essential oil (LC-EO), one of the natural essential oils, exhibited promising biological activities. In this study, the antibacterial effects and possible mechanisms of LC-EO on S. sonnei and its application in lettuce medium were investigated. The minimum inhibitory concentration (MIC) of LC-EO against S. sonnei ATCC 25931 and CMCC 51592 was 4 and 6 μL/mL, respectively. The LC-EO could inhibit the growth of S. sonnei, and decreased S. sonnei to undetectable levels with 4 μL/mL for 1 h in Luria-Bertani broth. The antibacterial mechanism indicated that after the treatment of LC-EO, the production of reactive oxygen species and the activity of superoxide dismutase were significantly elevated in S. sonnei cells, and eventually led to the lipid oxidation product, the malondialdehyde content that significantly increased. Moreover, LC-EO at 2 MIC could destroy 96.51% of bacterial cell membrane integrity, and made S. sonnei cells to appear wrinkled with a rough surface, so that the intracellular adenosine triphosphate leakage was about 0.352-0.030 μmol/L. Finally, the results of application evaluation indicated that the addition of LC-EO at 4 μL/mL in lettuce leaves and 6 μL/mL in lettuce juice could decrease the number of S. sonnei to undetectable levels without remarkable influence on the lettuce leaf sensory quality. In summary, LC-EO exerted strong antibacterial activity and has the potential to control S. sonnei in food industry.
Collapse
Affiliation(s)
- Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Tianxiao Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaoxiao Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Run Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xuejiao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
14
|
Antibacterial mechanism of lactobionic acid against Shewanella baltica and Shewanella putrefaciens and its application on refrigerated shrimp. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Deciphering the antibacterial mechanism of monocaprin against methicillin-resistant Staphylococcus aureus by integrated transcriptomic and metabolomic analyses and its application in pork preservation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
16
|
Characterization of the action of the lipid oxidation product 4-hydroxyhexenal on Lactiplantibacillus plantarum, the dominant bacterium in dry-cured fish. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Unraveling the antibacterial mechanism of Lactiplantibacillus plantarum MY2 cell-free supernatants against Aeromonas hydrophila ST3 and potential application in raw tuna. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Inhibitory effect of protocatechualdehyde on Yersinia enterocolitica and its critical virulence factors. Microb Pathog 2022; 173:105877. [DOI: 10.1016/j.micpath.2022.105877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/23/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
|
19
|
Li P, Mei J, Xie J. Carbon dioxide can inhibit biofilms formation and cellular properties of Shewanella putrefaciens at both 30 °C and 4 °C. Food Res Int 2022; 161:111781. [DOI: 10.1016/j.foodres.2022.111781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/11/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
|
20
|
Zhang Q, Jia S, Ding Y, Li D, Ding Y, Zhou X. Antibacterial activity and mechanism of malondialdehyde against Staphylococcus xylosus and Lactiplantibacillus plantarum isolated from a traditional Chinese dry-cured fish. Front Microbiol 2022; 13:979388. [DOI: 10.3389/fmicb.2022.979388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Malondialdehyde (MDA) is one of the most representative reactive carbonyl species (RCSs) produced by lipid oxidation in food. However, the inhibitory effect of MDA on microorganisms has received little attention. Thus, the aim of this study was to reveal the antibacterial mechanism of MDA on Staphylococcus xylosus and Lactiplantibacillus plantarum isolated from dry-cured fish. The results showed that the minimum inhibitory concentrations (MICs) of MDA on S. xylosus and L. plantarum were 90 μg/ml and 180 μg/ml, respectively. Time-kill curves indicated a concentration-dependent antibacterial activity of MDA. Moreover, cell wall damage, cell membrane depolarization, intracellular adenosine triphosphate (ATP) decline, Ca2+ and Mg2+ leakage, cell morphological destruction and alterations in intracellular biomolecules were observed, which indicated the negative influence of MDA on cell membrane and cellular homeostasis. This study demonstrated the potential antimicrobial properties of MDA and provided theoretical support for the scientific prevention and control of lipid oxidation and microbial contamination in food. This study demonstrated the potential antibacterial properties of MDA and further enriches theoretical studies on the effects of lipid oxidation on microorganisms.
Collapse
|
21
|
Xi M, Hou Y, Wang R, Ji M, Cai Y, Ao J, Shen H, Li M, Wang J, Luo A. Potential Application of Luteolin as an Active Antibacterial Composition in the Development of Hand Sanitizer Products. Molecules 2022; 27:7342. [PMID: 36364167 PMCID: PMC9657794 DOI: 10.3390/molecules27217342] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 08/26/2023] Open
Abstract
Antibacterial hand sanitizers could play a prominent role in slowing down the spread and infection of hand bacterial pathogens; luteolin (LUT) is potentially useful as an antibacterial component. Therefore, this study elucidated the antibacterial mechanism of LUT against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) and developed an antibacterial hand sanitizer. The results showed that LUT had excellent antibacterial activity against both E. coli (minimum inhibitory concentration (MIC) = 312.5 μg/mL, minimal bactericidal concentration (MBC) = 625 μg/mL), and S. aureus (MIC = 312.5 μg/mL, MBC = 625 μg/mL). Furthermore, LUT induced cell dysfunction in E. coli and S. aureus, changed membrane permeability, and promoted the leakage of cellular contents. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) analysis showed that LUT treatment affected cell structure and disrupted cell membrane integrity. The Fourier transform infrared analysis (FTIR) also confirmed that the LUT acted on the cell membranes of both E. coli and S. aureus. Overall, the application of LUT in hand sanitizer had better inhibition effects. Therefore, this study could provide insight into expanding the application of LUT in the hand sanitizer markets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Anwei Luo
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
22
|
Yang X, Lan W, Xie J. Antimicrobial and anti-biofilm activities of chlorogenic acid grafted chitosan against Staphylococcus aureus. Microb Pathog 2022; 173:105748. [PMID: 36064104 DOI: 10.1016/j.micpath.2022.105748] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/10/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
In this work, Chitosan-grafted-chlorogenic acid (CS-g-CA) was prepared by the carbodiimide method. The purpose of this study was to investigate the antibacterial and anti-biofilm activity of CS-g-CA against Staphylococcus aureus (S. aureus). The minimum inhibitory concentration (MIC) of CS-g-CA against S. aureus was identified as 0.625 mg/mL. S. aureus treated with 1/2×MIC of CS-g-CA had a longer logarithmic growth phase than that of the CK group, while 1×MIC and 2×MIC inhibited the growth of bacteria. The damaging effect of CS-g-CA on bacterial cells was analyzed by measuring the activity of cellular antioxidant enzymes (Catalase (CAT) and Glutathione peroxidase (GSH-Px)) and intracellular enzymes (alkaline phosphatase (AKPase) and adenosine triphosphatase (ATPase)). The results of DNA gel electrophoresis illustrated that CS-g-CA disrupted the normal metabolism of bacteria. Scanning electron microscopy (SEM) results showed that S. aureus shrank and died under CS-g-CA treatment. 1×MIC of CS-g-CA can significantly inhibit the formation of biofilms, and 1/2×MIC of CS-g-CA control the swimming speed of S. aureus. In addition, 77.53% mature biofilm and 60.62% extracellular polysaccharide (EPS) in the mature biofilm of S. aureus were eradicated by CS-g-CA at 2×MIC. Confocal laser scanning microscopy (CLSM) observation further confirmed these results. Therefore, CS-g-CA was an antimicrobial and antibiofilm agent to control S. aureus, which can effectively controlling the growth of S. aureus in food, thereby preventing the occurrence of food-borne diseases.
Collapse
Affiliation(s)
- Xin Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
23
|
Wang D, Li C, Pan C, Wang Y, Xiang H, Feng Y, Yang X, Chen S, Zhao Y, Wu Y, Li L, Kawai Y, Yamazaki K, Yamaki S. Antimicrobial activity and mechanism of action of oregano essential oil against Morganella psychrotolerans and potential application in tuna. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Wang F, Chen Y, Hu H, Liu X, Wang Y, Saleemi MK, He C, Haque MA. Protocatechuic acid: A novel detoxication agent of fumonisin B1 for poultry industry. Front Vet Sci 2022; 9:923238. [PMID: 35958305 PMCID: PMC9360745 DOI: 10.3389/fvets.2022.923238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
Fumonisin B1 (FB1) is a major fusarium mycotoxin that largely contaminates feedstuffs and foods, posing a health risk to both animals and humans. This mycotoxin can enter the human body directly through contaminated food consumption or indirectly by toxins and their metabolites. In a prior study, feed-borne FB1 is one of the leading mycotoxins in breeder eggs, leading to reduced hatchability and gizzard ulceration in chicken progenies. Currently, no effective way is available to remove FB1 from feeds and human-contaminated foods. We hypothesize that FB1 can be reduced to low risk by protocatechuic acid (PCA). To assess the ability of FB1 to be degraded in vivo, 1 ppm of FB1 was treated with PCA, or D-glucose, or silymarin, or anti-FB1 monoclonal antibody. Our study revealed that both D-glucose and PCA exhibited 53.4 and 71.43% degradation, respectively, at 80°C for 2 h, while 35.15% of FB1 detoxification was determined in the silymarin group at 60°C for 0.5 h. A dose-dependent manner was found after treatment with D-glucose or PCA at 80°C for 2 h. As for detoxification of anti-FB1 monoclonal antibody, the 1:3,000 dilution induced significant FB1 detoxification, accounting for 25.9% degradation at 25°C for 2 h. Furthermore, 50 SPF 11-day-old embryonated eggs were divided into 10 groups, with five eggs per group. Post treatment with PCA or D-glucose, or silymarin or anti-FB1 monoclonal antibody, the treated samples were inoculated into albumens and monitored daily until the hatching day. Consequently, 100% of the chickens survived in the D-glucose group and other control groups, except for the FB1 control group, while 80, 80, and 60% hatching rates were found in the PCA-treated group, the anti-FB1 monoclonal antibody-treated group, and the silymarin-treated group. Additionally, both the FB1 group and the silymarin-treated group yielded lower embryo growth than other groups did. Postmortem, lower gizzard ulceration index was determined in the PCA-treated group and the anti-FB1 monoclonal antibody-treated group compared to those of the silymarin-treated group and D-glucose-treated group. Based on the above evidence, PCA is a promising detoxification to reduce FB1 contamination in the poultry industry, contributing to the eradication of mycotoxin residuals in the food chain and maintaining food security for human beings.
Collapse
Affiliation(s)
- Fei Wang
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yi Chen
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huilong Hu
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinyi Liu
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yihui Wang
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | - Cheng He
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Md Atiqul Haque
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| |
Collapse
|
25
|
Antagonism of Cyanamide-3-O-glucoside and protocatechuic acid on Aflatoxin B 1-induced toxicity in zebrafish larva (Danio rerio). Toxicon 2022; 216:139-147. [PMID: 35817093 DOI: 10.1016/j.toxicon.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
The zebrafish model was used to evaluate the antioxidant properties of cyanidin-3-O-glucoside (C3G) and its metabolite protocatechuic acid (PCA) against aflatoxin B1 (AFB1)-induced hepatotoxicity and oxidative stress. In this study, zebrafish larvae were cultured for 3 days post fertilization (dpf) and then induced with AFB1. After induced 4 h, 8 h, 12 h, and 24 h, 5 μg/mL C3G/PCA was added and then co-cultured to 5 dpf, respectively. The experiments showed that C3G/PCA suppressed AFB1-induced zebrafish liver atrophy and delayed the absorption of the yolk sac. In addition, reactive oxygen species (ROS) and cell death were also significantly decreased by 5 μg/mL C3G/PCA (P ˂ 0.05). C3G/PCA significantly reduced hepatic biomarkers in the serum contents (P ˂ 0.05). Besides, glutathione (GSH) contents were significantly upregulated, and the activities of superoxide dismutase (SOD) and catalase (CAT) were significantly elevated in zebrafish (P ˂ 0.05). The addition of 5 μg/mL C3G/PCA was capable of reducing the apoptotic levels of caspase-9 and caspase-3 after 100 ng/mL AFB1 intoxication. In conclusion, these results suggested that C3G and its metabolite PCA might antagonize the hepatotoxicity of AFB1, reduce oxidative damage and inhibit cell death.
Collapse
|
26
|
Kang S, Li X, Xing Z, Liu X, Bai X, Yang Y, Guo D, Xia X, Zhang C, Shi C. Antibacterial effect of citral on yersinia enterocolitica and its mechanism. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|