1
|
Kong Y, Qian X, Mei X, Ma J, Wu K, Deng A, Li J. Electrochemiluminescence immunoassay system based on PCN-224-Mn and gold-platinum bimetallic nanoflowers for sensitive detection of ochratoxin A. Talanta 2025; 281:126937. [PMID: 39326117 DOI: 10.1016/j.talanta.2024.126937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/31/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
In this work, a novel Electrochemiluminescence Immunosensor was constructed using PCN-224-Mn and gold-platinum nanoflowers (AuPt NFs) for the ultrasensitive detection of ochratoxin A (OTA). PCN-224 modified with Mn (II) was synthesized as a probe material. The interaction efficiency of PCN-224 with S2O82- was also greatly improved. AuPt NFs were used as the substrate material for the electrodes. It has favorable biocompatibility, large specific surface area and can bind more antigen. Also greatly increased the electroactive surface area and conductivity of the electrode. OTA was detected using a competitive immunoassay strategy, in which OTA in the sample competes with the encapsulated antigen for a finite number of antibodies. ECLIA for the detection of OTA was designed to be highly sensitive, with a linear range from 0.0002 ng mL-1 to 1000 ng mL-1 and a LOD as low as 0.067 pg mL-1. In addition, it was evident from the electrochemical analyses that PCN-224-Mn had a stronger and more stable ECL signal compared to the plain PCN-224. The successful preparation of specific, sensitive and reproducible ECL immunosensors confirms the great promise for the detection of OTA or other small molecule mycotoxins.
Collapse
Affiliation(s)
- Yue Kong
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Xinyue Qian
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Xiao Mei
- Center of Self-Propelled Nanotechnologies, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215123, PR China
| | - Jun Ma
- Suzhou Shanding Honey Product Co., Ltd, Suzhou, 215101, PR China
| | - Kang Wu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, PR China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China; Center of Self-Propelled Nanotechnologies, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215123, PR China.
| |
Collapse
|
2
|
Zhao Z, Niu Z, Liang Z. Ochratoxin A Degradation and Stress Response Mechanism of Brevundimonas naejangsanensis ML17 Determined by Transcriptomic Analysis. Foods 2024; 13:3732. [PMID: 39682804 DOI: 10.3390/foods13233732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Ochratoxin A (OTA) is a naturally occurring mycotoxin mainly produced by certain species of Aspergillus and Penicillium and is a serious threat to human health and food safety. Previous studies showed that Brevundimonas naejangsanensis ML17 can completely degrade 1 μg/mL of OTA. The aim of this study was to investigate the degradation effect of ML17 at different concentrations of OTA, and specifically, to investigate the mechanism of OTA degradation by ML17. The growth of ML17 was not affected by exposure to 6 μg/mL OTA within 24 h. ML17 could almost completely degrade 12 μg/mL of OTA within 36 h, converting it into the non-toxic OTα and L-phenylalanine. Transcriptomic analysis showed that 275 genes were upregulated, whereas three genes were downregulated in ML17 under the stress of 1 μg/mL OTA. Functional enrichment analysis showed that exposure to OTA enhanced translation, amide and peptide biosynthesis and metabolism, promoted oxidative phosphorylation, and increased ATP production. Further analysis revealed that, when exposed to OTA, ML17 exerted a stress-protective effect by synthesizing large amounts of heat shock proteins, which contributed to the correct folding of proteins. Notably, genes related to antioxidant activity, such as peroxiredoxin, superoxide dismutase, and glutaredoxin 3, were significantly upregulated, indicating that ML17 can resist the toxic effects of OTA through adjusting its metabolic processes, and the enzyme-coding gene0095, having OTA degradation activity, was found to be upregulated. This suggests that ML17 can achieve OTA degradation by regulating its metabolism, upregulating its antioxidant system, and upregulating enzyme-encoding genes with OTA degradation activity. Our work provides a theoretical reference for clarifying the mechanism of OTA degradation by ML17.
Collapse
Affiliation(s)
- Zitong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zehui Niu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
3
|
Guo Y, Fu Y, Chen X, Wang Z, Wang Y, Zhao L. Identification and functional characterization of a novel amidohydrolase involved in ochratoxin A degradation by Acinetobacter baumannii HAU425. Int J Biol Macromol 2024; 282:137403. [PMID: 39521231 DOI: 10.1016/j.ijbiomac.2024.137403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Ochratoxin A (OTA) is a widespread mycotoxin calling for the development of effective strategies for its decontamination. In this study, a highly efficient OTA-degrading bacterium Acinetobacter baumannii HAU425 was isolated from soil with ochratoxin α (OTα) as the degradation product. The identification of OTA hydrolase from strain HAU425 was carried out by combining genome mining with gene cloning and heterologous expression technologies. A novel amidohydrolase Amse was found to show OTA hydrolase activity, which could achieve 93 % OTA degradation in 5 min. Amse shared low amino acid sequence identity (38-43 %) with other previously reported OTA hydrolases. More impressively, Amse retained 72 % of its maximum activity at 20 °C. The deletion of Amse gene did not affect the growth of strain HAU425, but led to 60 % reduction of OTA degradation by the strain. Moreover, the addition of Amse at 5 μg mL-1 could degrade 87 % of 5 ng mL-1 of OTA in grape juice at 20 °C within 3 h, while retaining the quality of grape juice. These findings shed new light on OTA biodegradation mechanism and the utilization of enzymes for detoxifying OTA in fruit products.
Collapse
Affiliation(s)
- Yongpeng Guo
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yutong Fu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoshuang Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhixiang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Mwabulili F, Li P, Shi J, Zhang H, Xie Y, Ma W, Sun S, Yang Y, Li Q, Li X, Jia H. Research diversity and advances in simultaneous removal of multi-mycotoxin. Toxicon 2024; 250:108106. [PMID: 39306098 DOI: 10.1016/j.toxicon.2024.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/14/2024]
Abstract
Mycotoxins are toxic secondary metabolites produced by different fungal species under specific environmental conditions. The common and regulated mycotoxins are such as deoxynivalenol (DON), zearalenone (ZEN), ochratoxin (OTA), aflatoxin B1 (AFB1), and fumonisins (FB). These mycotoxins are highly regulated in feed and food because their effects start to exert from their lowest exposures and are abundant in our common environment. However, there are other emerging mycotoxins such as apicidin, beauvericin, aurofusarin, and enniatins which are also harmful. Thus, making a total of around 500 forms of mycotoxins. The existence of mycotoxins in feed and food has a significant impact on animal and human health, which ultimately, slows down economic growth globally. According to this review, different approaches to removing multi-mycotoxin separately or simultaneously have been stated. Mostly, the review focused on the simultaneous removal of different multiple mycotoxins. This is because the current studies show a growing trend in reporting the co-existence of multiple mycotoxins in feed and food materials, however, most detoxifying approaches are for singular mycotoxins. Therefore, the physical, chemical, and biological approaches to remove multi-mycotoxin have been elucidated as well as their advantages and limitations. Furthermore, the authors give suggestions on the way forward to reduce exposure to mycotoxins and diminish their health effects in society. Lastly, the authors emphasized introducing more stringent limits for co-existing mycotoxins, especially those that have the same health effects by acting synergistically, such as AFB1 and OTA, which both act as carcinogenic agents.
Collapse
Affiliation(s)
- Fred Mwabulili
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China; Department of Food Science and Technology, College of Agricultural Sciences and Technology, Mbeya University of Science and Technology, P.O. Box 131, Mbeya, 53119, Tanzania
| | - Peng Li
- Centre for Complexity Science, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Jinghao Shi
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Hongxin Zhang
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Yanli Xie
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China.
| | - Weibin Ma
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Shumin Sun
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Qian Li
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Xiao Li
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Hang Jia
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| |
Collapse
|
5
|
Zhang X, Ma X, Dai G, Fu X, Zhou Y. Efficient Secretory Expression and Purification on Three Insoluble Amidohydrolases for Ochratoxin A Hydrolysis by Pichia pastoris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16403-16411. [PMID: 39004912 DOI: 10.1021/acs.jafc.4c03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
As a highly toxic mycotoxin, ochratoxin A (OTA) is widely contaminating agricultural products and has various toxicological effects. Bioenzymes for OTA degradation have shown promising potential for detoxification. Other than the efficient amidohydrolase ADH3 previously, two novel amidohydrolases ADH1 and AMD3 were obtained in this study. During Escherichia coli expression, the expressed protein solubility was very low and will limit future industrial application. Here, high copy number integrations were screened, and the amidohydrolases were efficiently secretory expressed by Pichia pastoris GS115. The protein yields from 1.0 L of fermentation supernatant were 53.5 mg for ADH1, 89.15 mg for ADH3, and 79.5 mg for AMD3. The catalytic efficiency (Kcat/Km) of secretory proteins was 124.95 s-1 mM-1 for ADH3, 123.21 s-1 mM-1 for ADH1, and 371.99 s-1 mM-1 for AMD3. In comparison to E. coli expression, the active protein yields substantially increased 15.78-51.53 times. Meanwhile, two novel amidohydrolases (ADH1 and AMD3) showed much higher activity than ADH3 that produced by secretory expression.
Collapse
Affiliation(s)
- Xuanjun Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Xue Ma
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Guangqing Dai
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Xiaojie Fu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Yu Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
- Joint Research Center for Food Nutrition and Health of lHM, Hefei, Anhui 230036, People's Republic of China
| |
Collapse
|
6
|
Liu M, Zhang X, Luan H, Zhang Y, Xu W, Feng W, Song P. Bioenzymatic detoxification of mycotoxins. Front Microbiol 2024; 15:1434987. [PMID: 39091297 PMCID: PMC11291262 DOI: 10.3389/fmicb.2024.1434987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Mycotoxins are secondary metabolites produced during the growth, storage, and transportation of crops contaminated by fungi and are physiologically toxic to humans and animals. Aflatoxin, zearalenone, deoxynivalenol, ochratoxin, patulin, and fumonisin are the most common mycotoxins and can cause liver and nervous system damage, immune system suppression, and produce carcinogenic effects in humans and animals that have consumed contaminated food. Physical, chemical, and biological methods are generally used to detoxify mycotoxins. Although physical methods, such as heat treatment, irradiation, and adsorption, are fast and simple, they have associated problems including incomplete detoxification, limited applicability, and cause changes in food characteristics (e.g., nutritive value, organoleptic properties, and palatability). Chemical detoxification methods, such as ammonification, ozonation, and peroxidation, pollute the environment and produce food safety risks. In contrast, bioenzymatic methods are advantageous as they achieve selective detoxification and are environmentally friendly and reusable; thus, these methods are the most promising options for the detoxification of mycotoxins. This paper reviews recent research progress on common mycotoxins and the enzymatic principles and mechanisms for their detoxification, analyzes the toxicity of the degradation products and describes the challenges faced by researchers in carrying out enzymatic detoxification. In addition, the application of enzymatic detoxification in food and feed is discussed and future directions for the development of enzymatic detoxification methods are proposed for future in-depth study of enzymatic detoxification methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
7
|
Zhang L, Zhang X, Chen X, Zhang W, Zhao L, Wang Z, Guo Y. Biodegradation of ochratoxin A by Brevundimonas diminuta HAU429: Characterized performance, toxicity evaluation and functional enzymes. Food Res Int 2024; 187:114409. [PMID: 38763660 DOI: 10.1016/j.foodres.2024.114409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Ochratoxin A (OTA) is a notorious mycotoxin commonly contaminating food products worldwide. In this study, an OTA-degrading strain Brevundimonas diminuta HAU429 was isolated by using hippuryl-L-phenylalanine as the sole carbon source. The biodegradation of OTA by strain HAU429 was a synergistic effect of intracellular and extracellular enzymes, which transformed OTA into ochratoxin α (OTα) through peptide bond cleavage. Cytotoxicity tests and cell metabolomics confirmed that the transformation of OTA into OTα resulted in the detoxification of its hepatotoxicity since OTA but not OTα disturbed redox homeostasis and induced oxidative damage to hepatocytes. Genome mining identified nine OTA hydrolase candidates in strain HAU429. They were heterologously expressed in Escherichia coli, and three novel amidohydrolase BT6, BT7 and BT9 were found to display OTA-hydrolyzing activity. BT6, BT7 and BT9 showed less than 45 % sequence identity with previously identified OTA-degrading amidohydrolases. BT6 and BT7 shared 60.9 % amino acid sequence identity, and exhibited much higher activity towards OTA than BT9. BT6 and BT7 could completely degrade 1 μg mL-1 of OTA within 1 h and 50 min, while BT9 hydrolyzed 100 % of OTA in the reaction mixture by 12 h. BT6 was the most thermostable retaining 38 % of activity after incubation at 70 °C for 10 min, while BT7 displayed the highest tolerance to ethanal remaining 76 % of activity in the presence of 6 % ethanol. This study could provide new insights towards microbial OTA degradation and promote the development of enzyme-catalyzed OTA detoxification during food processing.
Collapse
Affiliation(s)
- Liangyu Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xingke Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaoxue Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Wei Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lihong Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhixiang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yongpeng Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
8
|
Wang X, Zhao X, Song X, He J. Diazo-functionalised immunoelectrochemical sensor for the detection of ochratoxin a in foods. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:699-713. [PMID: 38598095 DOI: 10.1080/19440049.2024.2339322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Ochratoxin A (OTA) is a toxic fungal metabolite that is commonly found in cereals and animal feed. It is economically damaging and potentially hazardous to human health. Herein, we propose an electrochemical immunosensor for the rapid detection of OTA using anti-OTA antibodies and diazonium-functionalized, screen-printed electrodes. We attached 4-aminobenzoic acid to an electrode surface, activated the carboxyl groups on the surface with carbodiimide, and attached an antibody to the diazo layer. Subsequently, we used bovine serum protein as a blocker to prevent non-specific antigens from binding to the antibody. We evaluated the performance of the sensor by cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse voltammetry. The sensor is highly specific and sensitive, has good linear responses in the range 20-200 ng/mL, a limit of detection of 0.5 ng/mL, and good recoveries of 90.5%-100.9% in spiked samples. It can be stored at 4 °C for approximately 2 weeks, and is highly stable, with a current response variation of no more than 4.6%.
Collapse
Affiliation(s)
- Xin Wang
- School of Food Science and Engineering, Qilu University of Technology, Jinan, China
| | - Xiaolei Zhao
- School of Food Science and Engineering, Qilu University of Technology, Jinan, China
| | - Xinyi Song
- School of Food Science and Engineering, Qilu University of Technology, Jinan, China
| | - Jinxing He
- School of Food Science and Engineering, Qilu University of Technology, Jinan, China
| |
Collapse
|
9
|
Bonilla-Espadas M, Zafrilla B, Lifante-Martínez I, Camacho M, Orgilés-Calpena E, Arán-Aís F, Bertazzo M, Bonete MJ. Selective Isolation and Identification of Microorganisms with Dual Capabilities: Leather Biodegradation and Heavy Metal Resistance for Industrial Applications. Microorganisms 2024; 12:1029. [PMID: 38792858 PMCID: PMC11124520 DOI: 10.3390/microorganisms12051029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Tanning, crucial for leather production, relies heavily on chromium yet poses risks due to chromium's oxidative conversion, leading to significant wastewater and solid waste generation. Physico-chemical methods are typically used for heavy metal removal, but they have drawbacks, prompting interest in eco-friendly biological remediation techniques like biosorption, bioaccumulation, and biotransformation. The EU Directive (2018/850) mandates alternatives to landfilling or incineration for industrial textile waste management, highlighting the importance of environmentally conscious practices for leather products' end-of-life management, with composting being the most researched and viable option. This study aimed to isolate microorganisms from tannery wastewater and identify those responsible for different types of tanned leather biodegradation. Bacterial shifts during leather biodegradation were observed using a leather biodegradation assay (ISO 20136) with tannery and municipal wastewater as the inoculum. Over 10,000 bacterial species were identified in all analysed samples, with 7 bacterial strains isolated from tannery wastewaters. Identification of bacterial genera like Acinetobacter, Brevundimonas, and Mycolicibacterium provides insights into potential microbial candidates for enhancing leather biodegradability, wastewater treatment, and heavy metal bioremediation in industrial applications.
Collapse
Affiliation(s)
- Manuela Bonilla-Espadas
- INESCOP-Footwear Technological Centre, 03600 Alicante, Spain; (M.B.-E.); (I.L.-M.); (E.O.-C.); (F.A.-A.); (M.B.)
| | - Basilio Zafrilla
- Grupo Biotecnología de Extremófilos, Departamento de Bioquímica y Biología Molecular y Edafología y Química Agrícola, Universidad de Alicante, 03690 Alicante, Spain; (B.Z.); (M.C.)
| | - Irene Lifante-Martínez
- INESCOP-Footwear Technological Centre, 03600 Alicante, Spain; (M.B.-E.); (I.L.-M.); (E.O.-C.); (F.A.-A.); (M.B.)
| | - Mónica Camacho
- Grupo Biotecnología de Extremófilos, Departamento de Bioquímica y Biología Molecular y Edafología y Química Agrícola, Universidad de Alicante, 03690 Alicante, Spain; (B.Z.); (M.C.)
| | - Elena Orgilés-Calpena
- INESCOP-Footwear Technological Centre, 03600 Alicante, Spain; (M.B.-E.); (I.L.-M.); (E.O.-C.); (F.A.-A.); (M.B.)
| | - Francisca Arán-Aís
- INESCOP-Footwear Technological Centre, 03600 Alicante, Spain; (M.B.-E.); (I.L.-M.); (E.O.-C.); (F.A.-A.); (M.B.)
| | - Marcelo Bertazzo
- INESCOP-Footwear Technological Centre, 03600 Alicante, Spain; (M.B.-E.); (I.L.-M.); (E.O.-C.); (F.A.-A.); (M.B.)
| | - María-José Bonete
- Grupo Biotecnología de Extremófilos, Departamento de Bioquímica y Biología Molecular y Edafología y Química Agrícola, Universidad de Alicante, 03690 Alicante, Spain; (B.Z.); (M.C.)
| |
Collapse
|
10
|
Ding Y, Wang L, Wang H, Li H. Dynamic Succession of Natural Microbes during the Ecolly Grape Growth under Extremely Simplified Eco-Cultivation. Foods 2024; 13:1580. [PMID: 38790880 PMCID: PMC11120413 DOI: 10.3390/foods13101580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The composition and continuous succession of natural microbial communities during grape growth play important roles in grape health and flavor quality as well as in characterizing the regional wine terroir. This study explored the diversity and dynamics of fruit epidermal microbes at each growth and developmental stage of Ecolly grapes under an extremely simplified eco-cultivation model, analyzed microbial interactions and associations of weather parameters to specific communities, and emphasized metabolic functional characteristics of microecology. The results indicated that the natural microbial community changed significantly during the grape growth phase. The dominant fungal genera mainly included Gibberella, Alternaria, Filobasidium, Naganishia, Ascochyta, Apiotrichum, Comoclathris, and Aureobasidium, and the dominant bacterial genera mainly contained Sediminibacterium, Ralstonia, Pantoea, Bradyrhizobium, Brevundimonas, Mesorhizobium, Planococcus, and Planomicrobium. In summary, filamentous fungi gradually shifted to basidiomycetous yeasts along with fruit ripening, with a decline in the number of Gram-negative bacteria and a relative increase in Gram-positive bacteria. The community assembly process reflects the fact that microbial ecology may be influenced by a variety of factors, but the fungal community was more stable, and the bacterial community fluctuated more from year to year, which may reflect their response to weather conditions over the years. Overall, our study helps to comprehensively profile the ecological characteristics of the grape microbial system, highlights the natural ecological viticulture concept, and promotes the sustainable development of the grape and wine industry.
Collapse
Affiliation(s)
- Yinting Ding
- College of Enology, Northwest A&F University, Xianyang 712100, China; (Y.D.); (L.W.); (H.W.)
| | - Lin Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (Y.D.); (L.W.); (H.W.)
| | - Hua Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (Y.D.); (L.W.); (H.W.)
- China Wine Industry Technology Institute, Yinchuan 750021, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang 712100, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Xianyang 712100, China
| | - Hua Li
- College of Enology, Northwest A&F University, Xianyang 712100, China; (Y.D.); (L.W.); (H.W.)
- China Wine Industry Technology Institute, Yinchuan 750021, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang 712100, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Xianyang 712100, China
| |
Collapse
|
11
|
Yang Y, Zhong W, Wang Y, Yue Z, Zhang C, Sun M, Wang Z, Xue X, Gao Q, Wang D, Zhang Y, Zhang J. Isolation, identification, degradation mechanism and exploration of active enzymes in the ochratoxin A degrading strain Acinetobacter pittii AP19. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133351. [PMID: 38150759 DOI: 10.1016/j.jhazmat.2023.133351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Ochratoxin A (OTA) is a polyketide mycotoxin that commonly contaminates agricultural products and causes significant economic losses. In this study, the efficient OTA-degrading strain AP19 was isolated from vineyard soil and was identified as Acinetobacter pittii. Compared with growth in nutrient broth supplemented with OTA (OTA-NB), strain AP19 grew faster in nutrient broth (NB), but the ability of the resulting cell lysates to remove OTA was weaker. After cultivation in NB, the cell lysate of strain AP19 was able to remove 100% of 1 mg/L OTA within 18 h. The cell lysate fraction > 30 kDa degraded 100% of OTA within 12 h, while the fractions < 30 kDa were practically unable to degrade OTA. Further anion exchange chromatography of the > 30 kDa fraction yielded two peaks exhibiting significant OTA degradation activity. The degradation product was identified as OTα. Amino acid metabolism exhibited major transcriptional trends in the response of AP19 to OTA. The dacC gene encoding carboxypeptidase was identified as one of the contributors to OTA degradation. Soil samples inoculated with strain AP19 showed significant OTA degradation. These results provide significant insights into the discovery of novel functions in A. pittii, as well as its potential as an OTA decomposer.
Collapse
Affiliation(s)
- Yan Yang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Weitong Zhong
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanning Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhiwen Yue
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chen Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mi Sun
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhao Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xianli Xue
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiang Gao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Depei Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ying Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jian Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
12
|
Saini S, Sharma A, Kaur N, Singh N. Solvent directed morphogenesis of a peptidic-benzimidazolium dipodal receptor: ratiometric detection and catalytic degradation of ochratoxin A. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1111-1122. [PMID: 38293839 DOI: 10.1039/d3ay02045b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Ochratoxin A (OTA) is the most abundant and harmful toxin found in agriculture and processed food. The environment and human health are both harmed by this mycotoxin. As a result, in various scenarios, selective detection and biodegradation of ochratoxin A are essential. The current study reveals the morphogenesis of a peptidic-benzimidazolium dipodal receptor (SS4) and its application as a catalytic and sensing unit for the detection and degradation of OTA in an aqueous medium. Initially, a facile and scalable method was executed to synthesize SS4, and solvent-directed morphogenesis were examined under SEM analysis. Consequently, molecular recognition properties of self-assembled architectures were explored using UV-visible absorption, fluorescence spectroscopy, and atomic force microscopy (AFM). The designed probe showed a ratiometric response for OTA and served as a catalytic unit for the degradation of OTA at a short interval of 25 min. The biodegradation pathway for OTA was accomplished using LC-MS analysis. Furthermore, the reliability of the developed method was checked by determining the spiked concentrations of the OTA in cereals and wine samples. The results obtained are in good agreement with the % recovery and RSD values. The present work provides a robust, selective, and sensitive method of detection and degradation for OTA.
Collapse
Affiliation(s)
- Sanjeev Saini
- Department of Chemistry, Indian Institute of Technology Ropar, Punjab 140001, India.
- Department of Chemistry, School of Physical Sciences, DIT University, Dehradun 248009, India
| | - Arun Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, Punjab 140001, India.
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Punjab 140001, India.
| |
Collapse
|
13
|
Santos J, Castro T, Venâncio A, Silva C. Degradation of ochratoxins A and B by lipases: A kinetic study unraveled by molecular modeling. Heliyon 2023; 9:e19921. [PMID: 37809625 PMCID: PMC10559330 DOI: 10.1016/j.heliyon.2023.e19921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Mycotoxins are toxic substances produced by fungi and, frequently, different mycotoxins cooccur in food commodities. Ochratoxin A (OTA) and Ochratoxin B (OTB) may co-occur in a variety of foods, like red wines and wheat, presenting a significant risk of population exposure. In this study, we investigated the potential of five lipases (Candida rugosa Lipase, Candida antarctica B Lipase, Thermomyces lanuginosus Lipase, Amano Lipase A from Aspergillus niger (ANL) and Porcine Pancreas Lipase (PPL)) to hydrolyze OTA and OTB into non-hazardous products. Only ANL and PPL degraded both substrates, however, with varying degrees of efficiency. PPL completely degraded OTB (9 h), but only 43% of OTA (25 h). Molecular simulations indicated a high binding energy of OTA to PPL, that can be explained by the impact of the chlorine group, impairing hydrolysis. ANL was able to completely degrade both mycotoxins, OTA in 3 h and OTB in 10 h. The ANL enzyme showed also high specificity to OTA, however, the activity of this enzyme is not affected by chlorine and hydrolyzes OTA faster than OTB. These two enzymes were found to be able to detoxify co-occurring ochratoxins A and B, making isolated enzymes an alternative to the direct use of microorganisms for mycotoxin mitigation in food.
Collapse
Affiliation(s)
- Joana Santos
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Tarsila Castro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Armando Venâncio
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, 4800-058, Guimarães, Portugal
| | - Carla Silva
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, 4800-058, Guimarães, Portugal
| |
Collapse
|
14
|
Ming Y, Zhang H, Zhao Z, Zhang Z, Wang H, Liang Z. Enhancing the thermostability of carboxypeptidase A by a multiple computer-aided rational design based on amino acids preferences at β-turns. Int J Biol Macromol 2023; 245:125447. [PMID: 37330104 DOI: 10.1016/j.ijbiomac.2023.125447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/27/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Carboxypeptidase A (CPA) with efficient hydrolysis ability has shown vital potential in food and biological fields. In addition, it is also the earliest discovered enzyme with Ochratoxin A (OTA) degradation activity. Thermostability plays an imperative role to catalyze the reactions at high temperatures in industry, but the poor thermostability of CPA restricts its industrial application. In order to improve the thermostability of CPA, flexible loops were predicted through molecular dynamics (MD) simulation. Based on the amino acid preferences at β-turns, three ΔΔG-based computational programs (Rosetta, FoldX and PoPMuSiC) were employed to screen three variants from plentiful candidates and MD simulations were then used to verify two potential variants with enhanced thermostability (R124K and S134P). Results showed that compared to the wild-type CPA, the variants S134P and R124K exhibited rise of 4.2 min and 7.4 min in half-life (t1/2) at 45 °C, 3 °C and 4.1 °C in the half inactivation temperature (T5010), in addition to increase by 1.9 °C and 1.2 °C in the melting temperature (Tm), respectively. The mechanism responsible for the enhanced thermostability was elucidated through the comprehensive analysis of molecular structure. This study shows that the thermostability of CPA can be improved by the multiple computer-aided rational design based on amino acid preferences at β-turns, broadening its industrial applicability of OTA degradation and providing a valuable strategy for the protein engineering of mycotoxin degrading enzymes.
Collapse
Affiliation(s)
- Yue Ming
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haoxiang Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zitong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenzhen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Honglei Wang
- Yantai Institute of China Agricultural University, Yantai 264670, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
15
|
Nencioni A, Pastorelli R, Bigiotti G, Cucu MA, Sacchetti P. Diversity of the Bacterial Community Associated with Hindgut, Malpighian Tubules, and Foam of Nymphs of Two Spittlebug Species (Hemiptera: Aphrophoridae). Microorganisms 2023; 11:microorganisms11020466. [PMID: 36838431 PMCID: PMC9967529 DOI: 10.3390/microorganisms11020466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Spittlebugs are xylem-sap feeding insects that can exploit a nutrient-poor diet, thanks to mutualistic endosymbionts residing in various organs of their body. Although obligate symbioses in some spittlebug species have been quite well studied, little is known about their facultative endosymbionts, especially those inhabiting the gut. Recently, the role played by spittlebugs as vectors of the phytopathogenetic bacterium Xylella fastidiosa aroused attention to this insect group, boosting investigations aimed at developing effective yet sustainable control strategies. Since spittlebug nymphs are currently the main target of applied control, the composition of gut bacterial community of the juveniles of Philaenus spumarius and Lepyronia coleoptrata was investigated using molecular techniques. Moreover, bacteria associated with their froth, sampled from different host plants, were studied. Results revealed that Sodalis and Rickettsia bacteria are the predominant taxa in the gut of P. spumarius and L. coleoptrata nymphs, respectively, while Rhodococcus was found in both species. Our investigations also highlighted the presence of recurring bacteria in the froth. Furthermore, the foam hosted several bacterial species depending on the host plant, the insect species, or on soil contaminant. Overall, first findings showed that nymphs harbor a large and diverse bacterial community in their gut and froth, providing new accounts to the knowledge on facultative symbionts of spittlebugs.
Collapse
Affiliation(s)
- Anita Nencioni
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Roberta Pastorelli
- Research Center for Agriculture and Environment, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA-AA), Via di Lanciola 12/A, 50125 Florence, Italy
| | - Gaia Bigiotti
- Research Center for Agriculture and Environment, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA-AA), Via di Lanciola 12/A, 50125 Florence, Italy
| | - Maria Alexandra Cucu
- Research Center for Agriculture and Environment, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA-AA), Via di Lanciola 12/A, 50125 Florence, Italy
| | - Patrizia Sacchetti
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
- Correspondence: ; Tel.: +39-055-2755554
| |
Collapse
|
16
|
Zhao Z, Zhang Z, Zhang H, Liang Z. Small Peptides in the Detection of Mycotoxins and Their Potential Applications in Mycotoxin Removal. Toxins (Basel) 2022; 14:toxins14110795. [PMID: 36422969 PMCID: PMC9698726 DOI: 10.3390/toxins14110795] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Mycotoxins pose significant risks to humans and livestock. In addition, contaminated food- and feedstuffs can only be discarded, leading to increased economic losses and potential ecological pollution. Mycotoxin removal and real-time toxin level monitoring are effective approaches to solve this problem. As a hot research hotspot, small peptides derived from phage display peptide libraries, combinatorial peptide libraries, and rational design approaches can act as coating antigens, competitive antigens, and anti-immune complexes in immunoassays for the detection of mycotoxins. Furthermore, as a potential approach to mycotoxin degradation, small peptides can mimic the natural enzyme catalytic site to construct artificial enzymes containing oxidoreductases, hydrolase, and lyase activities. In summary, with the advantages of mature synthesis protocols, diverse structures, and excellent biocompatibility, also sharing their chemical structure with natural proteins, small peptides are widely used for mycotoxin detection and artificial enzyme construction, which have promising applications in mycotoxin degradation. This paper mainly reviews the advances of small peptides in the detection of mycotoxins, the construction of peptide-based artificial enzymes, and their potential applications in mycotoxin control.
Collapse
Affiliation(s)
- Zitong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenzhen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haoxiang Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-62737055
| |
Collapse
|
17
|
Yang Q, Dhanasekaran S, Ngea GLN, Tian S, Li B, Zhang H. Unveiling ochratoxin a controlling and biodetoxification molecular mechanisms: Opportunities to secure foodstuffs from OTA contamination. Food Chem Toxicol 2022; 169:113437. [PMID: 36165818 DOI: 10.1016/j.fct.2022.113437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/21/2022] [Accepted: 09/14/2022] [Indexed: 01/10/2023]
Abstract
Anarchic growth of ochratoxin A (OTA) producing fungi during crop production, prolonged storage, and processing results in OTA contamination in foodstuffs. OTA in food exacerbates the risk of health and economic problems for consumers and farmers worldwide. Although the toxic effects of OTA on human health have not been well established, comprehensive preventive and remedial measures will be essential to eliminate OTA from foodstuffs. Strict regulations, controlling OTA at pre- or post-harvest stage, and decontamination of OTA have been adopted to prevent human and animal OTA exposure. Biological control of OTA and bio-decontamination are the most promising strategies due to their safety, specificity and nutritional value. This review addresses the current understanding of OTA biodegradation mechanisms and recent developments in OTA control and bio-decontamination strategies. Additionally, this review analyses the strength and weaknesses of different OTA control methods and the contemporary approaches to enhance the efficiency of biocontrol agents. Overall, this review will support the implementation of new strategies to effectively control OTA in food sectors. Further studies on efficacy-related issues, production issues and cost-effectiveness of OTA biocontrol are to be carried out to improve the knowledge, develop improved delivery technologies and safeguard the durability of OTA biocontrol approaches.
Collapse
Affiliation(s)
- Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Guillaume Legrand Ngolong Ngea
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Département de Transformation et Contrôle de qualité des Produits Halieutiques, Institut des Sciences Halieutiques, Université de Douala à Yabassi, PO. Box. 7236, Douala-Bassa, Cameroon
| | - Shiping Tian
- Institute of Botany, Chinese Academy of Sciences, Xiangshan Nanxincun 20, Haidian District, Beijing, 100093, China
| | - Boqiang Li
- Institute of Botany, Chinese Academy of Sciences, Xiangshan Nanxincun 20, Haidian District, Beijing, 100093, China.
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
18
|
Wang L, Wang Q, Wang S, Cai R, Yuan Y, Yue T, Wang Z. Bio-control on the contamination of Ochratoxin A in food: Current research and future prospects. Curr Res Food Sci 2022; 5:1539-1549. [PMID: 36161229 PMCID: PMC9489538 DOI: 10.1016/j.crfs.2022.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/11/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Ochratoxin A (OTA) is a secondary metabolite of several fungi and widely exists in various species of foods. The establishment of effective methods for OTA reduction is a key measure to ensure food processing and human health. This article reviews the current research of OTA reduction by biological approaches, summarizes the characteristics and efficiency of them, and evaluates the transformation pathways and metabolites safety of each degradation technology. The shortcomings of various methods are pointed out and future prospects are also proposed. Biological methods are the most promising approaches for OTA control. The defect of them is the long processing time and the growth of microbial cells may affect the product quality. Therefore, the control of OTA contamination should be conducted according to the food processing and their product types. Besides, it is significant for the exploitation of new strains, enzyme and novel adsorbents.
Collapse
Affiliation(s)
- Leran Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Qi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Saiqun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| |
Collapse
|