1
|
Peng S, Li Q, Wei H, Li P, Liu S, Nie L, Leng Y, Huang X. Highly Efficient AIE-Active palmatine photosensitizer for photodynamic inactivation of Listeria monocytogenes in apple juice preservation. Food Res Int 2024; 197:115253. [PMID: 39593335 DOI: 10.1016/j.foodres.2024.115253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/06/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Photodynamic sterilization is a promising alternative to conventional antibacterial approaches with merits of high efficiency and safety. The exploration of aggregation-induced emission (AIE)-type photosensitizers from natural sources is highly valued by researchers and food industry. Herein, the use of palmatine (PA), an aggregation-induced emission-active natural product from traditional Chinese medicine, as photosensitizers for photodynamic inactivation of a tenacious foodborne pathogen of Listeria monocytogenes is investigated. Antibacterial and antibiofilm activity against L. monocytogenes of PA-mediated photodynamic process were first assessed. The results showed that PA-mediated photodynamic process could inhibit the growth of L. monocytogenes, and the minimum bactericidal concentration was determined as 80 μM. At this PA dosing level, well-established biofilms of L. monocytogenes can be effectively destroyed under light irritation. Afterward, cell- and gene-level investigations were conducted to explore the antibacterial mechanism. It is concluded that the exceptional photodynamic antibacterial activity of PA against L. monocytogenes is attributed to the disruption of the cell wall and membrane, increased cell permeability, leakage of functional proteins, and damage to DNA structure. Subsequently, PA-mediated photodynamic process was applied to reduce bacterial activity in apple juice while preserving its quality. Overall, this work highlights the significant potential of PA-mediated photodynamic strategy for controlling foodborne pathogens in food systems.
Collapse
Affiliation(s)
- Shiyu Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Qianying Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Hui Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Ping Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Shuyuan Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Lijuan Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, PR China.
| | - Yuankui Leng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, PR China.
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, PR China.
| |
Collapse
|
2
|
Zhu W, Liu J, Zhang Y, Zhao D, Li S, Dou H, Wang H, Xia X. The role of rcpA gene in regulating biofilm formation and virulence in Vibrio parahaemolyticus. Int J Food Microbiol 2024; 418:110714. [PMID: 38677238 DOI: 10.1016/j.ijfoodmicro.2024.110714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a common seafood-borne pathogen that can colonize the intestine of host and cause gastroenteritis. Biofilm formation by V. parahaemolyticus enhances its persistence in various environments, which poses a series of threats to food safety. This work aims to investigate the function of rcpA gene in biofilm formation and virulence of V. parahaemolyticus. Deletion of rcpA significantly reduced motility, biofilm biomass, and extracellular polymeric substances, and inhibited biofilm formation on a variety of food and food contact surfaces. In mice infection model, mice infected with ∆rcpA strain exhibited a decreased rate of pathogen colonization, a lower level of inflammatory cytokines, and less tissue damage when compared to mice infected with wild type strain. RNA-seq analysis revealed that 374 genes were differentially expressed in the rcpA deletion mutant, which include genes related to quorum sensing, flagellar system, ribosome, type VI secretion system, biotin metabolism and transcriptional regulation. In conclusion, rcpA plays a role in determining biofilm formation and virulence of V. parahaemolyticus and further research is necessitated to fully understand its function in V. parahaemolyticus.
Collapse
Affiliation(s)
- Wenxiu Zhu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jiaxiu Liu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yingying Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dongyun Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Shugang Li
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Hanzheng Dou
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
3
|
Liu Y, Yan Y, Yang K, Yang X, Dong P, Wu H, Luo X, Zhang Y, Zhu L. Inhibitory mechanism of Salmonella Derby biofilm formation by sub-inhibitory concentrations of clove and oregano essential oil: A global transcriptomic study. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
4
|
Liu X, Pang X, Wu Y, Wu Y, Xu L, Chen Q, Niu J, Zhang X. New Insights into the Lactic Acid Resistance Determinants of Listeria monocytogenes Based on Transposon Sequencing and Transcriptome Sequencing Analyses. Microbiol Spectr 2023; 11:e0275022. [PMID: 36541787 PMCID: PMC9927151 DOI: 10.1128/spectrum.02750-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that can tolerate a variety of extreme environments. In particular, its acid resistance (AR) capability is considered one of the key factors threating food safety. Here, we employed a microbial functional genomic technology termed transposon sequencing (Tn-seq), leading to the identification of two genes involved in cell wall peptidoglycan biosynthesis (murF) and phosphate transport (lmo2248) that play key roles in lactic acid resistance (LAR) of L. monocytogenes. Deletion of lmo2248 significantly impaired the ability of LAR in L. monocytogenes, demonstrating the accuracy of the Tn-seq results. Transcriptome analysis revealed that 31.7% of the L. monocytogenes genes on the genome were differentially expressed under lactic acid (LA) treatment, in which genes involved in phosphate transport were influenced most significantly. These findings shed light on the LAR mechanisms of L. monocytogenes, which may contribute to the development of novel strategies against foodborne pathogens. IMPORTANCE Listeria monocytogenes is a Gram-positive foodborne pathogen with high lethality and strong stress resistance, and its strong acid tolerance leads to many foodborne illnesses occurring in low-pH foods. Lactic acid is a generally recognized as safe (GRAS) food additive approved for use by the FDA. However, the genetic determinants of lactic acid resistance in L. monocytogenes have not been fully identified. In this study, the lactic acid resistance determinants of L. monocytogenes were comprehensively identified by Tn-seq on a genome-wide scale. Two genes, murF (cell wall peptidoglycan biosynthesis) and lmo2248 (phosphate transport), were identified to play an important role in the lactic acid resistance. Moreover, genome-wide transcriptomic analysis showed that phosphotransferase system (PTS)-related genes play a key role at the transcriptional level. These findings contribute to a better understanding of the lactic acid resistance mechanism of L. monocytogenes and may provide unique targets for the development of other novel antimicrobial agents.
Collapse
Affiliation(s)
- Xiayu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Xinxin Pang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yansha Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yajing Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Linan Xu
- College of Agriculture and Forestry, Linyi University, Linyi, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jianrui Niu
- College of Agriculture and Forestry, Linyi University, Linyi, China
| | - Xinglin Zhang
- College of Agriculture and Forestry, Linyi University, Linyi, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Enhanced antimicrobial and antioxidant capacity of Thymus vulgaris, Lippia sidoides, and Cymbopogon citratus emulsions when combined with mannosylerythritol a lipid biosurfactant. Food Res Int 2023; 163:112213. [PMID: 36596143 DOI: 10.1016/j.foodres.2022.112213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
Essential oils (EOs) are natural and effective agents for controlling microorganisms which cause biodeterioration and disease. However, their application is hampered/restricted due to hydrophobicity and rapid vaporization of these compounds. Encapsulation technology provides an effective approach to maintain EO stabilization and prevent the loss of volatile ingredients. Meanwhile, using a synthetic surfactant is seen as counter-productive; therefore, a natural biosurfactant is more reasonable and can potentially increase activity due to its other biological proprieties. This work aims to evaluate the mannosylerythritol lipid (MEL) biosurfactant combined with Thymus vulgaris, Lippia sidoides, and Cymbopogon citratus essential oil emulsions (O/W) and evaluate its antimicrobial and antioxidant capacity. The biosurfactant MEL demonstrated activity against Bacillus subtilis and Penicillium sp. After emulsification, the antimicrobial activity of Thymus vulgaris and Lippia sidoides was increased against Escherichia coli (500 µg/mL), Staphylococcus aureus (600 µg/mL), Bacillus subtilis (120 µg/mL), Pseudomonas aeruginosa (1500 µg/mL), Penicillium sp. (62.25 µg/mL), Aspergillus flavus (250 µg/mL), Fusarium oxysporum (100 and 250 µg/mL), and Candida albicans (125 and 250 µg/mL). We report that emulsions prepared with MEL have high inhibitory activity, maintain the active concentration, and increase antioxidant capacity by 7.33% (Thymus vulgaris), 13.71% (Lippia sidoides), and 3.15% (Cymbopogon citratus).
Collapse
|
6
|
Liu X, Pang X, Wu Y, Wu Y, Shi Y, Zhang X, Chen Q. Synergistic Antibacterial Mechanism of Mannosylerythritol Lipid-A and Lactic Acid on Listeria monocytogenes Based on Transcriptomic Analysis. Foods 2022; 11:foods11172660. [PMID: 36076848 PMCID: PMC9455235 DOI: 10.3390/foods11172660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/21/2022] Open
Abstract
Mannosylerythritol lipids-A (MEL-A) is a novel biosurfactant with multiple biological effects. The synergistic antibacterial activity and mechanism of MEL-A and lactic acid (LA) against Listeria monocytogenes were investigated. The synergistic effect resulted in a significant increase in the antibacterial rate compared to LA treatment alone. Genome-wide transcriptomic analysis was applied to deeply investigate the synergistic antibacterial mechanism. Gene Ontology (GO) enrichment analysis showed that the synergy between MEL-A and LA affected many potential cellular responses, including the sugar phosphotransferase system, carbohydrate transport, and ribosomes. KEGG enrichment analysis showed that the PTS system and ribosome-related pathways were significantly enriched. In addition, synergistic treatment affected locomotion and membrane-related cellular responses in GO enrichment analysis and carbohydrate metabolism and amino acid metabolism pathways in KEGG enrichment analysis compared to LA treatment alone. The accuracy of the transcriptome analysis results was verified by qPCR (R2 = 0.9903). This study will provide new insights for the prevention and control of L. monocytogenes.
Collapse
Affiliation(s)
- Xiayu Liu
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Xinxin Pang
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Yansha Wu
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Yajing Wu
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Ying Shi
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Xinglin Zhang
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
- College of Agriculture and Forestry, Linyi University, Linyi 276005, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-86984316
| |
Collapse
|
7
|
Zhang J, Wang Z, Qu M, Cheng F. Research on physicochemical properties, microscopic characterization and detection of different freezing-damaged corn seeds. Food Chem X 2022; 14:100338. [PMID: 35634222 PMCID: PMC9133772 DOI: 10.1016/j.fochx.2022.100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/19/2022] [Accepted: 05/18/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
| | | | | | - Fang Cheng
- Corresponding author at: Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|