1
|
Malhat F, Saber AN, Hegazy A, Saber ES, Heikal S, Elgammal H, Hussien M. Decline pattern and dietary risk assessment of spinetoram in grapes under Egyptian field conditions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:873. [PMID: 39218961 DOI: 10.1007/s10661-024-12989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Spinetoram is one of the most extensively used insecticides globally and is a new spinosyn-based insecticide registered for direct treatment of Egyptian grapes. This work established and validated a developed method for determining spinetoram in grape berries and leaves using the QuEChERS coupled LC-MS/MS technique. The average recoveries ranged between 98.52-101.19% and 100.53-104.93%, with RSDs of 2.74-6.21% and 2.79-7.26% for grape berries and leaves, respectively. Spinetoram residues degraded in grape berries and leaves through a first-order kinetic, with an estimated half-life (t1/2) of 4.3 and 2.8 days in grape berries and leaves, respectively, and significant degradation (91.4-97.5%, respectively) after 14 days. Besides, the terminal residues of spinetoram detected in grape berries and leaves samples ranged between 0.017-0.077 mg‧kg-1 and 0.79-0.023 mg·kg-1, respectively, when applied two to three times at a single recommended rate, while it was varied between 0.026-0.44mg‧kg-1 and 0.79-0.023mg‧kg-1 when applied two to three times at a double recommended rate, respectively. A dietary risk assessment was conducted using scientific data from field trials, acceptable daily intake (ADI), and food consumption. It was determined that no noteworthy health hazards were connected to eating grape berries and leaves that had been treated with spinetoram since the risk quotients (RQs) were ≤ 0.4.
Collapse
Affiliation(s)
- Farag Malhat
- Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza, 12618, Egypt.
| | - Ayman N Saber
- Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza, 12618, Egypt.
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, University of Córdoba, 14071, Cordoba, Andalusia, Spain.
| | - Anwar Hegazy
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - El-Sayed Saber
- Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza, 12618, Egypt
| | - Sara Heikal
- Pesticide Department, Faculty of Agriculture, Menoufiya University, Shebien El-Kom, Menofia, 32514, Egypt
| | - Hassan Elgammal
- Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Foods, Agricultural Research Center, Dokki, Giza, 12311, Egypt
| | - Mohamed Hussien
- Department of Chemistry, Faculty of Science, King Khalid University, 61413, Abha, Saudi Arabia
- Department of Pesticide Formulation, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, 12618, Giza, Egypt
| |
Collapse
|
2
|
Li X, Song S, Wei F, Huang X, Guo Y, Zhang T. Occurrence, distribution, and translocation of legacy and current-use pesticides in pomelo orchards in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169674. [PMID: 38160827 DOI: 10.1016/j.scitotenv.2023.169674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Pomelo (Citrus grandis) is a highly popular and juicy member of the citrus family. However, little is known regarding the occurrence and distribution of pesticides in pomelo. In this study, we determined the levels of legacy (n = 25) and current-use pesticides (n = 2) in all parts of pomelo (i.e., epicarp, mesocarp, endocarp, pulp, and seed) and paired soil and leaf samples collected from two pomelo orchards in South China. At least one target pesticide was detected in the pomelo fruit, soil, and leaf samples, indicating that these pesticides were ubiquitous. The spatial distribution of the total concentration of pesticides in the pomelo parts was in the order of epicarp (216 ng/g) > mesocarp (9.50 ng/g) > endocarp (4.40 ng/g) > seed (3.80 ng/g) > pulp (1.10 ng/g), revealing different spatial distributions in pomelo. Principal component analysis was performed based on the concentrations of the target pesticides in the pulp and paired samples of epicarp, leaf, topsoil, and deep soil to examine the translocation pathway of the pesticides in pomelo. Close correlations were found among the target pesticides, and the pesticides in the pulp were mainly transferred from the epicarp, topsoil, or deep soil. We also explored the factors that affected such transport and found that the main translocation pathway of the non-systemic pesticide (i.e., buprofezin) into the pulp was the epicarp, whereas the systemic pesticide (i.e., pyriproxyfen) was mainly derived from the soil. The cumulative chronic dietary risks of all the pesticides resulting from pomelo consumption were much lower than the acceptable daily intake values for the general population. However, the prolonged risk of exposure to these pesticides should not be underestimated. The potential health risks posed by legacy and current-use pesticides, which are widely and frequently utilized, should be given increased attention.
Collapse
Affiliation(s)
- Xu Li
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Shiming Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Fenghua Wei
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Xiongfei Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuankai Guo
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, China.
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
3
|
Yuan H, Li Y, Lv J, An Y, Guan D, Liu J, Tu C, Wang X, Zhou H. Recent Advances in Fluorescent Nanoprobes for Food Safety Detection. Molecules 2023; 28:5604. [PMID: 37513475 PMCID: PMC10385937 DOI: 10.3390/molecules28145604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Fluorescent nanoprobes show similar fluorescence properties to traditional organic dyes, but the addition of nanotechnology accurately controls the size, shape, chemical composition, and surface chemistry of the nanoprobes with unique characteristics and properties, such as bright luminescence, high photostability, and strong biocompatibility. For example, modifying aptamers or antibodies on a fluorescent nanoprobe provides high selectivity and specificity for different objects to be tested. Fluorescence intensity, life, and other parameters of targets can be changed by different sensing mechanisms based on the unique structural and optical characteristics of fluorescent nanoprobes. What's more, the detection of fluorescent nanoprobes is cost-saving, simple, and offers great advantages in rapid food detection. Sensing mechanisms of fluorescent nanoprobes were introduced in this paper, focusing on the application progress in pesticide residues, veterinary drug residues, heavy metals, microbes, mycotoxins, and other substances in food safety detection in recent years. A brief outlook for future development was provided as well.
Collapse
Affiliation(s)
- Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yutong Li
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Jiaqi Lv
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis), Beijing 100089, China
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
| | - Yunhe An
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis), Beijing 100089, China
| | - Di Guan
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis), Beijing 100089, China
| | - Jia Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis), Beijing 100089, China
| | - Chenxiao Tu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis), Beijing 100089, China
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huijuan Zhou
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis), Beijing 100089, China
| |
Collapse
|
4
|
Liang H, Hou Q, Zhou Y, Zhang L, Yang M, Zhao X. Centrifugation-Assisted Solid-Phase Extraction Coupled with UPLC-MS/MS for the Determination of Mycotoxins in ARECAE Semen and Its Processed Products. Toxins (Basel) 2022; 14:toxins14110742. [PMID: 36355992 PMCID: PMC9697234 DOI: 10.3390/toxins14110742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 01/26/2023] Open
Abstract
Mycotoxins can occur naturally in a variety of agriculture products, including cereals, feeds, and Chinese herbal medicines (TCMs), via pre- and post-harvest contamination and are regulated worldwide. However, risk mitigation by monitoring for multiple mycotoxins remains a challenge using existing methods due to their complex matrices. A multi-toxin method for 22 mycotoxins (aflatoxin B1, B2, G1, G2, M1, M2; ochratoxin A, B, C; Fumonisin B1, B2, B3; 15-acetyldeoxynivalenol, 3-acetyldeoxynivalenol, diace-toxyscirpenol, HT-2, T-2, deepoxy-deoxynivalenol, deoxynivalenol, neosolaniol, zearalenone, and sterigmatocystin) using centrifugation-assisted solid-phase extraction (SPE) clean-up prior to ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis for Arecae Semen and its processed products was developed and validated. Several experimental parameters affecting the extraction and clean-up efficiency were systematically optimized. The results indicated good linearity in the range of 0.1-1000 μg/kg (r2 > 0.99), low limits of detection (ranging from 0.04 μg/kg to 1.5 μg/kg), acceptable precisions, and satisfactory recoveries for the selected mycotoxins. The validated method was then applied to investigate mycotoxin contamination levels in Areca catechu and its processed products. The mycotoxins frequently contaminating Areca catechu were aflatoxins (AFs), and the average contamination level and number of co-occurring mycotoxins in the Arecae Semen slices (Binlangpian) were higher than those in commercially whole Arecae Semen and Arecae Semen Tostum (Jiaobinlang). Sterigmatocystin was detected in 5 out of 30 Arecae Semen slices. None of the investigated mycotoxins were detected in Arecae pericarpium (Dafupi). The results demonstrated that centrifugation-assisted SPE coupled with UHPLC-MS/MS can be a useful tool for the analysis of multiple mycotoxins in Areca catechu and its processed products.
Collapse
Affiliation(s)
- Huanyan Liang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Qianyu Hou
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China
| | - Yakui Zhou
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China
| | - Lei Zhang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Meihua Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence: (M.Y.); (X.Z.); Tel.: +86-898-3158-9013 (X.Z.)
| | - Xiangsheng Zhao
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China
- Correspondence: (M.Y.); (X.Z.); Tel.: +86-898-3158-9013 (X.Z.)
| |
Collapse
|