Hu W, Martin F, Jeantet R, Chen XD, Mercadé-Prieto R. Micromechanical Characterization of Hydrogels Undergoing Swelling and Dissolution at Alkaline pH.
Gels 2017;
3:gels3040044. [PMID:
30920539 PMCID:
PMC6318615 DOI:
10.3390/gels3040044]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 02/03/2023] Open
Abstract
The swelling of polyelectrolyte hydrogels usually depends on the pH, and if the pH is high enough degradation can occur. A microindentation device was developed to dynamically test these processes in whey protein isolate hydrogels at alkaline pH 7–14. At low alkaline pH the shear modulus decreases during swelling, consistent with rubber elasticity theory, yet when chemical degradation occurs at pH ≥ 11.5 the modulus decreases quickly and extensively. The apparent modulus was constant with the indentation depth when swelling predominates, but gradients were observed when fast chemical degradation occurs at 0.05–0.1 M NaOH. In addition, these profiles were constant with time when dissolution rates are also constant, the first evidence that a swollen layer with steady state mechanical properties is achieved despite extensive dissolution. At >0.5 M NaOH, we provide mechanical evidence showing that most interactions inside the gels are destroyed, gels were very weak and hardly swell, yet they still dissolve very slowly. Microindentation can provide complementary valuable information to study the degradation of hydrogels.
Collapse