1
|
Francisco Rincón-Romero J, Ríos F, Reyes Requena A, Luzón-González G, Isabel García-López A. Surface and Thermodynamics Properties of Commercial Fatty-Alcohol Ethoxylate Surfactants. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
2
|
Li Y, Sun Y, Zhou J, Di Serio M, Zhang Y, Sun J, Liang H, Liu Y. Physicochemical and application properties of C13-branched alcohol ethoxylates (BAEO) with different ethylene oxide addition numbers. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Role of aliphatic alcohol polyoxyethylene ether phosphate in 25 wt% tebuconazole suspension concentrate: Dispersion and wetting. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Avila-Sierra A, Vicaria JM, Lechuga M, Martínez-Gallegos JF, Olivares-Arias V, Medina-Rodríguez AC, Jiménez-Robles R, Jurado-Alameda E. Insights into the optimisation of the Clean-In-Place technique: Cleaning, disinfection, and reduced environmental impact using ozone-based formulations. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Tandem micellar catalysis and cloud point extraction process for C-S coupling reaction in water. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Zhang R, Belwal T, Li L, Lin X, Xu Y, Luo Z. Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: A review. Carbohydr Polym 2020; 242:116388. [PMID: 32564856 DOI: 10.1016/j.carbpol.2020.116388] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Many bioactive food ingredients were encapsulated in different forms to improve their stability and bioavailability. Emulsions have showed excellent properties in encapsulation, controlled release, and targeted delivery of bioactives. Polysaccharides are widely available and have different structures with different advantages including non-toxic, easily digested, biocompatible and can keep stable over a wide range of pH and temperatures. In this review, the most common polysaccharides and polysaccharide based complexes as emulsifiers to stabilize emulsions in recent ten years are described. The close relationships between the types and structures of polysaccharides and their emulsifying capacities are discussed. In addition, the absorption and bioavailability of bioactive food components loaded in polysaccharide stabilized emulsions are summarized. The main goal of the review is to emphasize the important roles of polysaccharides in stabilizing emulsions. Moreover, speculations regarded to some issues for the further exploration and possible onward developments of polysaccharides stabilized emulsions are also discussed.
Collapse
Affiliation(s)
- Ruyuan Zhang
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Li Li
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Xingyu Lin
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Yanqun Xu
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China; Fuli Institute of Food Science, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
7
|
Herrera‐Márquez O, Vicaria JM, Jurado‐Alameda E. Experimental Design for Optimizing the Cleaning of Starch Adhering to Stainless‐Steel Surfaces Using Nonionic Surfactants and Silica Microparticles. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Otilia Herrera‐Márquez
- Chemical Engineering Department, Faculty of SciencesUniversity of Granada, Avda. Fuentenueva, s/n 18071, Granada Spain
| | - José M. Vicaria
- Chemical Engineering Department, Faculty of SciencesUniversity of Granada, Avda. Fuentenueva, s/n 18071, Granada Spain
| | - Encarnación Jurado‐Alameda
- Chemical Engineering Department, Faculty of SciencesUniversity of Granada, Avda. Fuentenueva, s/n 18071, Granada Spain
| |
Collapse
|
8
|
Vicaria JM, Herrera-Márquez O, Fernández-Casillas C, Jurado E. Cleaning protocols using surfactants and electrocleaning to remove food deposits on stainless steel surfaces. J APPL ELECTROCHEM 2018. [DOI: 10.1007/s10800-018-1209-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
9
|
Jurado-Alameda E, Herrera-Márquez O, Martínez-Gallegos JF, Vicaria JM. Starch-soiled stainless steel cleaning using surfactants and α-amylase. J FOOD ENG 2015. [DOI: 10.1016/j.jfoodeng.2015.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|