1
|
Saroglu O, Karakas CY, Yildirim RM, Erdem O, Karasu S, Sagdic O, Karadag A. Liposomal propolis loaded xanthan gum-salep hydrogels: Preparation, characterization, and in vitro bioaccessibility of phenolics. Int J Biol Macromol 2025; 300:140323. [PMID: 39864705 DOI: 10.1016/j.ijbiomac.2025.140323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Liposomes are gaining interest in food and pharmaceutical applications due to their biocompatibility and non-toxicity. However, they suffer from low colloidal stability, leakage of encapsulated substances, and poor resistance to intestinal digestive conditions. To address these issues, propolis extract (PE) was encapsulated within a hybrid system combining liposomes and hydrogels. PE encapsulated in phosphatidylcholine liposome formulations incorporated with two different food additives: polyethylene sorbitan monooleate (T80) and ammonium phosphatide (AMP) was embedded in xanthan gum-salep hydrogels. The embedded liposomes protected their structure and did not change the flow behaviour of the hydrogels. AMP-liposomal gels exhibited a stronger solid character. The mucoadhesiveness of liposomal gels was mostly governed by the higher xanthan gum ratio, while PE loading also yielded higher mucoadhesiveness. The bioaccessibility (BI%) of the phenolic compounds ranged from 10.13 to 582.75 % in the liposomal gel. The proposed hybrid encapsulation method not only provided enhanced solubility to hydrophobic PE but also protected its phenolic compounds against simulated digestion conditions. Moreover, converting aqueous liposomes into gel structures would also expand their application range in various functional food formulations.
Collapse
Affiliation(s)
- Oznur Saroglu
- Food Eng. Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210 Istanbul, Turkiye
| | - Canan Yagmur Karakas
- Food Eng. Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210 Istanbul, Turkiye
| | - Rusen Metin Yildirim
- Food Eng. Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210 Istanbul, Turkiye
| | - Ozge Erdem
- Altiparmak Gıda San, ve Tic. A.S. Balparmak R&D Center, Istanbul, Turkiye
| | - Salih Karasu
- Food Eng. Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210 Istanbul, Turkiye
| | - Osman Sagdic
- Food Eng. Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210 Istanbul, Turkiye
| | - Ayse Karadag
- Food Eng. Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210 Istanbul, Turkiye.
| |
Collapse
|
2
|
Samak ME, Solyman SM, Hanora A, Zakeer S. Metagenomic mining of two Egyptian Red Sea sponges associated microbial community. BMC Microbiol 2024; 24:315. [PMID: 39192220 DOI: 10.1186/s12866-024-03299-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/09/2024] [Indexed: 08/29/2024] Open
Abstract
The Red Sea is a promising habitat for the discovery of new bioactive marine natural products. Sponges associated microorganisms represent a wealthy source of compounds with unique chemical structures and diverse biological activities. Metagenomics is an important omics-based culture-independent technique that is used as an effective tool to get genomic and functional information on sponge symbionts. In this study, we used metagenomic analysis of two Egyptian Red Sea sponges Hyrtios erectus and Phorbas topsenti microbiomes to study the biodiversity and the biosynthetic potential of the Red Sea sponges to produce bioactive compounds. Our data revealed high biodiversity of the two sponges' microbiota with phylum Proteobacteria as the most dominant phylum in the associated microbial community with an average of 31% and 70% respectively. The analysis also revealed high biosynthetic potential of sponge Hyrtios erectus microbiome through detecting diverse types of biosynthetic gene clusters (BGCs) with predicted cytotoxic, antibacterial and inhibitory action. Most of these BGCs were predicted to be novel as they did not show any similarity with any MIBiG database known cluster. This study highlights the importance of the microbiome of the collected Red Sea sponge Hyrtios erectus as a valuable source of new bioactive natural products.
Collapse
Affiliation(s)
- Manar El Samak
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Samar M Solyman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai Unvirsity Elkantra Branch, Ismailia, Egypt
| | - Amro Hanora
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Samira Zakeer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
3
|
Park S, Shin Y, Jung S. Structural, rheological properties and antioxidant activities analysis of the exopolysaccharide produced by Rhizobium leguminosarum bv. viciae VF39. Int J Biol Macromol 2024; 257:128811. [PMID: 38101683 DOI: 10.1016/j.ijbiomac.2023.128811] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Microbial exopolysaccharide is an eco-friendly and non-toxic biopolymeric materials widely used in various industrial fields such as pharmaceutical, food and cosmetics based on its structural, rheological and physiochemical properties. A microbial exopolysaccharide (VF39-EPS) was directly isolated from Rhizobium leguminosarum bv. viciae VF39. Structural analysis using FTIR and 2D NMR spectroscopy confirmed the complete chemical structures of VF39-EPS as 3-hydroxybutanoylglycan with octasaccharide repeating units containing two pyruvyl, two acetyl, and one 3-hydroxybutanoyl group. VF39-EPS exhibited thermal stability up to 275 °C and showed characteristic rheological behaviors of structural fluid with weak gel-like properties above 4 % the aqueous solution, suggesting VF39-EPS as a potential effective thickener or hydrogel scaffolder. Flow behavior tests validated broad stability at a wide range of both pHs from 2 to 12 and temperatures from 25 to 75 °C, and even in the presence of various salts. Furthermore, VF39-EPS showed excellent antioxidant effects of 78.5 and 62.4 % (n = 3, p < 0.001) in DPPH scavenging activity and hydroxyl radical scavenging activity, respectively. Therefore, those structural, rheological and antioxidant properties suggest that VF39-EPS could be one of the excellent biomaterial candidates for cosmetic, food and pharmaceutical industries based on its characteristic rheological behaviors in various condition and excellent antioxidant activity.
Collapse
Affiliation(s)
- Sohyun Park
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Younghyun Shin
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea; Department of System Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea.
| |
Collapse
|
4
|
Liu H, Li K, Guo B, Yuan Y, Ruan Z, Long H, Zhu J, Zhu Y, Chen C. Engineering an injectable gellan gum-based hydrogel with osteogenesis and angiogenesis for bone regeneration. Tissue Cell 2024; 86:102279. [PMID: 38007880 DOI: 10.1016/j.tice.2023.102279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Injectable hydrogels are currently a topic of great interest in bone tissue engineering, which could fill irregular bone defects in a short time and avoid traditional major surgery. Herein, we developed an injectable gellan gum (GG)-based hydrogel for bone defect repair by blending nano-hydroxyapatite (nHA) and magnesium sulfate (MgSO4). In order to acquire an injectable GG-based hydrogel with superior osteogenesis, nHA were blended into GG solution with an optimized proportion. For the aim of endowing this hydrogel capable of angiogenesis, MgSO4 was also incorporated. Physicochemical evaluation revealed that GG-based hydrogel containing 5% nHA (w/v) and 2.5 mM MgSO4 (GG/5%nHA/MgSO4) had appropriate sol-gel transition time, showed a porosity-like structure, and could release magnesium ions for at least 14 days. Rheological studies showed that the GG/5%nHA/MgSO4 hydrogel had a stable structure and repeatable self-healing properties. In-vitro results determined that GG/5%nHA/MgSO4 hydrogel presented superior ability on stimulating bone marrow mesenchymal stem cells (BMSCs) to differentiate into osteogenic linage and human umbilical vein endothelial cells (HUVECs) to generate vascularization. In-vivo, GG/5%nHA/MgSO4 hydrogel was evaluated via a rat cranial defect model, as shown by better new bone formation and more neovascularization invasion. Therefore, the study demonstrated that the new injectable hydrogel, is a favorable bioactive GG-based hydrogel, and provides potential strategies for robust therapeutic interventions to improve the repair of bone defect.
Collapse
Affiliation(s)
- Hongbin Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Kaihu Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan, China
| | - Bin Guo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Yuhao Yuan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Zhe Ruan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Haitao Long
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Jianxi Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Yong Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China.
| | - Can Chen
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China.
| |
Collapse
|
5
|
Qiao D, Luo M, Li Y, Jiang F, Zhang B, Xie F. Evolutions of synergistic binding between konjac glucomannan and xanthan with high pyruvate group content induced by monovalent and divalent cation concentration. Food Chem 2024; 432:137237. [PMID: 37657338 DOI: 10.1016/j.foodchem.2023.137237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/06/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
Synergistic interaction gels could be formed by synergistic type-A and type-B bindings between konjac glucomannan (KGM) and xanthan during cooling. Adding salt ions significantly altered those bindings and thus the gel-related properties. The results showed that adding NaCl or CaCl2 eliminated type-B binding due to an electrostatic shielding effect. Adding NaCl or CaCl2 (3 and 6 mM) enhanced type-A binding by neutralizing the negative charge of COOH and reducing the electrostatic repulsion among xanthan chains, as evidenced by an increase in the onset temperature of exotherm peak, the formation of more parallel multiple filaments, and an increase in aggregation structures (>1.0 nm) and gel hardness. When CaCl2 concentration was higher, Ca2+ bridged side-chain clusters into more complex structures, which would hardly participate in the formation of helical structures and weaken type-A binding. The results obtained are beneficial for the rational design and preparation of KGM/xanthan gels with synergistic interaction.
Collapse
Affiliation(s)
- Dongling Qiao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China; Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Man Luo
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yishen Li
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Fatang Jiang
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Binjia Zhang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China.
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
6
|
Wang Z, Zhou X, Shu Z, Zheng Y, Hu X, Zhang P, Huang H, Sheng L, Zhang P, Wang Q, Wang X, Li N. Regulation strategy, bioactivity, and physical property of plant and microbial polysaccharides based on molecular weight. Int J Biol Macromol 2023; 244:125360. [PMID: 37321440 DOI: 10.1016/j.ijbiomac.2023.125360] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
Structural features affect the bioactivity, physical property, and application of plant and microbial polysaccharides. However, an indistinct structure-function relationship limits the production, preparation, and utilization of plant and microbial polysaccharides. Molecular weight is an easily regulated structural feature that affects the bioactivity and physical property of plant and microbial polysaccharides, and plant and microbial polysaccharides with a specific molecular weight are important for exerting their bioactivity and physical property. Therefore, this review summarized the regulation strategies of molecular weight via metabolic regulation; physical, chemical, and enzymic degradations; and the influence of molecular weight on the bioactivity and physical property of plant and microbial polysaccharides. Moreover, further problems and suggestions must be paid attention to during regulation, and the molecular weight of plant and microbial polysaccharides must be analyzed. The present work will promote the production, preparation, utilization, and investigation of the structure-function relationship of plant and microbial polysaccharides based on their molecular weight.
Collapse
Affiliation(s)
- Zichao Wang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueyan Zhou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhihan Shu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yi Zheng
- School of International Education, Henan University of Technology, Zhengzhou 450001,China
| | - Xilei Hu
- School of International Education, Henan University of Technology, Zhengzhou 450001,China
| | - Peiyao Zhang
- School of International Education, Henan University of Technology, Zhengzhou 450001,China
| | - Hongtao Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lili Sheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Pengshuai Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Xueqin Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Na Li
- Henan Provincial Key Laboratory of Ultrasound Imaging and Artificial Intelligence, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Novel Green Crosslinked Salecan Hydrogels and Preliminary Investigation of Their Use in 3D Printing. Pharmaceutics 2023; 15:pharmaceutics15020373. [PMID: 36839693 PMCID: PMC9963019 DOI: 10.3390/pharmaceutics15020373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Salecan, a kind of polysaccharide, is produced by the Agrobacterium ZX09 salt tolerant strain. In this study, green crosslinked citric acid-salecan hydrogels are explored as novel materials with a high potential for use in regenerative medicine. The impact of salecan and citric acid on the final crosslinked hydrogels was intensively studied and estimated in terms of the whole physicochemical properties and antimicrobial activity. FTIR spectra demonstrated the successful green crosslinking of salecan through its esterification with citric acid where the formation of strong covalent bonds collaboratively helped to stabilize the entire hydrogel systems in a wet state. Hydrogels presented a microporous morphology, good swelling capacity, pH responsiveness, great mechanical stability under stress conditions and good antibacterial activity, all related to the concentration of the biopolymers used in the synthesis step. Additionally, salecan hydrogels were preliminary investigated as printing inks. Thanks to their excellent rheological behavior, we optimized the citrate-salecan hydrogel inks and printing parameters to render 3D constructs with great printing fidelity and integrity. The novel synthesized salecan green crosslinked hydrogels enriches the family of salecan-derived hydrogels. Moreover, this work not only expands the application of salecan hydrogels in various fields, but also provides a new potential option of designing salecan-based 3D printed scaffolds for customized regenerative medicine.
Collapse
|
8
|
Janahar JJ, Balasubramaniam V, Jiménez-Flores R, Campanella OH, Patel B, Ortega-Anaya J. Impact of ultra-shear technology on quality attributes of model dairy-pea protein dispersions with different fat levels. Curr Res Food Sci 2023; 6:100439. [PMID: 36691593 PMCID: PMC9860273 DOI: 10.1016/j.crfs.2023.100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/21/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
This study investigated the impact of ultra-shear technology (UST) processing on dairy-pea protein dispersions with different fat levels. Raw milk, skim milk, and cream, as well as model dispersions with combinations of dairy products and pea protein (i.e., raw milk with pea protein, skim milk with pea protein, and cream with pea protein) were employed as test samples. UST experiments were conducted at a pressure of 400 MPa and 70 °C shear valve exit temperature. The UST treatment increased the viscosity of the dispersions and the increases depended on the fat level. Dairy-pea protein dispersions from raw milk and skim milk were shear thinning and mathematically described by the power-law model defined by the consistency coefficient, K (Pa·sn) and the flow behavior index, n. UST treated cream + pea protein dispersions produced structures with gel-like characteristics. Microstructure and particle size analysis determined by laser scanning microscope revealed a reduction in particle size after UST treatment in raw milk + pea protein and skim milk + pea protein dispersions up to 7.55 and 8.30 μm, respectively. In contrast, the particle mean diameter of cream + pea protein dispersions increased up to 77.20 μm after the UST treatment. Thus, the effect of UST on the particle size and rheological behavior of the dispersions depended on the fat level. UST-treated dispersions were stable with no visible phase separation or sedimentation upon centrifugation at 4000×g for 30 min (4 °C). Heat treatment and freeze-thaw treatment of UST-treated samples showed stable blends immediately after the treatments, but subsequent centrifugation showed solid separation. Results from the study suggest that UST is a potential technology to produce stable dairy + pea protein liquids foods with different rheological characteristics for diverse applications.
Collapse
Affiliation(s)
- Jerish Joyner Janahar
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, 43210, USA
| | - V.M. Balasubramaniam
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, 43210, USA,Department of Food Agricultural and Biological Engineering, The Ohio State University, Columbus, OH, 43210, USA,Corresponding author. Department of Food Science and Technology, The Ohio State University, Columbus, OH, 43210, USA.
| | - Rafael Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, 43210, USA
| | - Osvaldo H. Campanella
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, 43210, USA
| | - Bhavesh Patel
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, 43210, USA
| | - Joana Ortega-Anaya
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
9
|
Qiao D, Shi W, Luo M, Hu W, Huang Y, Jiang F, Xie F, Zhang B. Increasing xanthan gum content could enhance the performance of agar/konjac glucomannan-based system. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Zein inclusion changes the rheological, hydrophobic and mechanical properties of agar/konjac glucomannan based system. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Exploring the Rheological and Structural Characteristics of Novel Pectin-Salecan Gels. Polymers (Basel) 2022; 14:polym14214619. [PMID: 36365613 PMCID: PMC9659178 DOI: 10.3390/polym14214619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
The hydrogels based on natural polysaccharide offers high hydrophilicity and excellent biocompatibility while exhibiting soft physical properties related to texture and tissues, making them ideal candidates for food and biomedical applications. Herein, a new gel system composed of pectin and salecan (PS) was designed and prepared, and its structural and functional characteristics were further explored by scanning electron microscopy and rheological testing. Data fitting based on Herschel–Bulkley (HB) and Power-Law models enable in-depth comparisons and elucidations of the PS gels’ flow behavior. The cyclic strain time scanning test gave an interesting maximum strain recovery rate of about 70%; meanwhile, the creep data reported an adjustable creep compliance of 0.0146 to 0.1802. The comprehensive analysis of the structure and rheological exploration of the novel pectin-salecan hydrogels demonstrated their potential advantages over pectin and broader applicability in different food or biomedical fields.
Collapse
|
12
|
Janahar JJ, Balasubramaniam V, Jimenez-Flores R, Campanella OH, García-Cano I, Chen D. Pressure, shear, thermal, and interaction effects on quality attributes of pea–dairy protein colloidal dispersions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Gan J, Sun L, Guan C, Ren T, Zhang Q, Pan S, Zhang Q, Chen H. Preparation and Properties of Salecan-Soy Protein Isolate Composite Hydrogel Induced by Thermal Treatment and Transglutaminase. Int J Mol Sci 2022; 23:9383. [PMID: 36012648 PMCID: PMC9409434 DOI: 10.3390/ijms23169383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/18/2022] Open
Abstract
Salecan (Sal) is a novel marine microbial polysaccharide. In the present research, Sal and soy protein isolate (SPI) were adopted to fabricate Sal-SPI composite hydrogel based on a stepwise process (thermal treatment and transglutaminase induction). The effect of Sal concentration on morphology, texture properties, and the microstructure of the hydrogel was evaluated. As Sal concentration varied from 0.4 to 0.6 wt%, hydrogel elasticity increased from 0.49 to 0.85 mm. Furthermore, the internal network structure of Sal-SPI composite hydrogel also became denser and more uniform as Sal concentration increased. Rheological studies showed that Sal-SPI elastic hydrogel formed under the gelation process. Additionally, FTIR and XRD results demonstrated that hydrogen bonds formed between Sal and SPI molecules, inferring the formation of the interpenetrating network structure. This research supplied a green and simple method to fabricate Sal-SPI double network hydrogels.
Collapse
Affiliation(s)
- Jing Gan
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan Strict, Yantai 264000, China
| | - Lirong Sun
- Marine College, Shandong University, No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| | - Chenxia Guan
- Marine College, Shandong University, No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| | - Teng Ren
- Marine College, Shandong University, No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| | - Qinling Zhang
- Marine College, Shandong University, No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| | - Shihui Pan
- Marine College, Shandong University, No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| | - Qian Zhang
- Marine College, Shandong University, No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| | - Hao Chen
- Marine College, Shandong University, No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| |
Collapse
|
14
|
Zhang Q, Ren T, Gan J, Sun L, Guan C, Zhang Q, Pan S, Chen H. Synthesis and Rheological Characterization of a Novel Salecan Hydrogel. Pharmaceutics 2022; 14:pharmaceutics14071492. [PMID: 35890387 PMCID: PMC9323046 DOI: 10.3390/pharmaceutics14071492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Salecan (Sal) is a novel microbial polysaccharide. In the present research, thermal treatment was performed to fabricate Sal hydrogel. The effect of Sal concentration on water holding capacity, swelling properties, texture properties, and microstructure of the hydrogels was discussed. It was found that the equilibrium degree of swelling (EDS) of Sal hydrogels was above 1500%, inferred Sal was a highly hydrophilic polysaccharide. As Sal concentration increased from 3.5 to 8.0 wt%, the hardness increased from 0.88 to 2.07 N and the water hold capability (WHC) increased from 91.3% to 98.2%. Furthermore, the internal network structure of Sal hydrogel also became denser and more uniform. Rheological studies suggested that elastic hydrogel formed under the gelation process. All these results demonstrated that Sal hydrogel prepared by thermal treatment had good gelling properties, which opened up a new safe way for the preparation of Sal hydrogel and broadened the application range of Sal.
Collapse
Affiliation(s)
- Qinling Zhang
- Marine College, Shandong University (Weihai), No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (Q.Z.); (T.R.); (L.S.); (C.G.); (Q.Z.); (S.P.)
| | - Teng Ren
- Marine College, Shandong University (Weihai), No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (Q.Z.); (T.R.); (L.S.); (C.G.); (Q.Z.); (S.P.)
| | - Jing Gan
- College of Life Sciences, Yantai University, No. 30 Qingquan Road, Laishan Strict, Yantai 264000, China;
| | - Lirong Sun
- Marine College, Shandong University (Weihai), No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (Q.Z.); (T.R.); (L.S.); (C.G.); (Q.Z.); (S.P.)
| | - Chenxia Guan
- Marine College, Shandong University (Weihai), No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (Q.Z.); (T.R.); (L.S.); (C.G.); (Q.Z.); (S.P.)
| | - Qian Zhang
- Marine College, Shandong University (Weihai), No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (Q.Z.); (T.R.); (L.S.); (C.G.); (Q.Z.); (S.P.)
| | - Shihui Pan
- Marine College, Shandong University (Weihai), No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (Q.Z.); (T.R.); (L.S.); (C.G.); (Q.Z.); (S.P.)
| | - Hao Chen
- Marine College, Shandong University (Weihai), No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (Q.Z.); (T.R.); (L.S.); (C.G.); (Q.Z.); (S.P.)
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, No. 1800 Lihu Road, Wuxi 214122, China
- Correspondence: ; Tel.: +86-0631-568-8079
| |
Collapse
|
15
|
Tao Y, Ma J, Huang C, Lai C, Ling Z, Yong Q. Rheological properties of Sesbania cannabina galactomannan as a new source of thickening agent. J Food Sci 2022; 87:1527-1539. [PMID: 35275400 DOI: 10.1111/1750-3841.16094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
Abstract
The present study evaluated the rheological properties of galactomannan from Sesbania cannabina. The intrinsic viscosity of galactomannan was determined to be 8.63 ± 0.06 dl/g. Moreover, the onset of galactomannan coil overlap occurred at 5.12 ± 0.13 g/L. With increasing concentration, galactomannan showed a more distinct shear-thinning behavior, which was well characterized by the Cross model. Notably, the viscosity of polysaccharide showed a negative relationship with the temperature, while the activation energy decreased with increasing polysaccharide concentration. Furthermore, at high concentrations, the galactomannan solution showed stability after heating or freezing, as well as over the wide pH range of 5.0-9.0. Dynamic viscoelasticity measurements reveal a gradual transition from viscous to elastic behavior of galactomannans with an increasing frequency. It is anticipated that S. cannabina galactomannan will find interesting applications as a natural thickener due to the comprehensive description of its rheological properties presented herein. PRACTICAL APPLICATION: The investigated S. cannabina galactomannan has shown a higher viscosity and heat stability at high concentration, as well as a good stability at the pH range of 5-9. The S. cannabina galactomannan may be employed as stabilizers in the food field.
Collapse
Affiliation(s)
- Yuheng Tao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Junmei Ma
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
16
|
Himashree P, Sengar AS, Sunil CK. Food thickening agents: Sources, chemistry, properties and applications - A review. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Rheological investigation of a versatile salecan/curdlan gel matrix. Int J Biol Macromol 2021; 193:2202-2209. [PMID: 34780896 DOI: 10.1016/j.ijbiomac.2021.11.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 11/21/2022]
Abstract
Hydrogel, as a three-dimensional material with high water content, has unique physicochemical and variable mechanical properties. Natural polysaccharide-based composite hydrogels are very popular within medical industry as these viscoelastic materials are non-toxic, biodegradable, bioabsorbable, and biocompatible. This research investigates the engineering of novel composite hydrogels from natural polysaccharides salecan and curdlan without any structural modification and chemical crosslinking. The scanning electron microscopy, Fourier transform infrared spectroscopy and various rheological methods were employed to investigate the morphology, molecular interaction, and flow behavior of the samples respectively. The key rheological parameters were compared using the Power Law, Herschel-Bulkley and Arrhenius models. This is the first study reporting a novel composite hydrogel made from Salecan and Curdlan with ideal elasticity, enhanced thermostability, good injectability, self-recovery and other rheological properties that will pave the way for application in different fields.
Collapse
|
18
|
Tao Y, Ma J, Huang C, Lai C, Ling Z, Yong Q. Effects of the Hofmeister anion series salts on the rheological properties of Sesbania cannabina galactomannan. Int J Biol Macromol 2021; 188:350-358. [PMID: 34389383 DOI: 10.1016/j.ijbiomac.2021.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022]
Abstract
Sesbania cannabina galactomannan (2%) solutions added with strongly hydrated ions (Na2CO3, NaH2PO4, NaCl) and weakly hydrated ions (NaNO3) at different ionic strengths were rheologically characterized. The four selected salts dramatically decreased the intrinsic viscosity of galactomannan solution in the following order of effectiveness: Na2CO3 < NaH2PO4 < NaCl < NaNO3. This conforms effectively to the Hofmeister anion series. Moreover, salt addition increased the viscosity of galactomannan solution when the ionic strength was 1 mmol/kg, which related to an increased occurrence of intermolecular interactions. As increasing ionic strength, galactomannan chains may tend to contract or expand due to the presence of strongly or weakly hydrated ions, thereby decreasing the viscosity. These phenomena were demonstrated by zeta potential measurement and again observed in dynamic viscoelasticity measurement. Overall, this property can be used to manipulate the rheological properties of galactomannan in food gums to obtain gums of high quality for enhancing consumer goods.
Collapse
Affiliation(s)
- Yuheng Tao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Junmei Ma
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
19
|
Extraction of bioactive compounds from Psidium guajava leaves and its utilization in preparation of jellies. AMB Express 2021; 11:36. [PMID: 33646462 PMCID: PMC7921237 DOI: 10.1186/s13568-021-01194-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/15/2021] [Indexed: 12/22/2022] Open
Abstract
Psidium guajava L. (guava) is predominantly grown throughout the world and known for its medicinal properties in treating various diseases and disorders. The present work focuses on aqueous extraction of bioactive compounds from the guava leaf and its utilization in the formulation of jelly to improve the public health. The guava leaf extract has been used in the preparation of jelly with pectin (1.5 g), sugar (28 g) and lemon juice (2 mL). The prepared guava leaf extract jelly (GJ) and the control jelly (CJ, without extract) were subjected to proximate, nutritional and textural analyses besides determination of antioxidant and antimicrobial activities. GJ was found to contain carbohydrate (45.78 g/100 g), protein (3.0 g/100 g), vitamin C (6.15 mg/100 g), vitamin B3 (2.90 mg/100 g) and energy (120.6 kcal). Further, the texture analysis of CJ and GJ indicated that both the jellies showed similar properties emphasizing that the addition of guava leaf extract does not bring any change in the texture properties of jelly. GJ exhibited antimicrobial activity against various bacteria ranging from 11.4 to 13.6 mm. Similarly, GJ showed antioxidant activity of 42.38% against DPPH radical and 33.45% against hydroxyl radical. Mass spectroscopic analysis of aqueous extract confirmed the presence of esculin, quercetin, gallocatechin, 3-sinapoylquinic acid, gallic acid, citric acid and ellagic acid which are responsible for antioxidant and antimicrobial properties.![]()
Collapse
|
20
|
Sun X, Zhang J. Bacterial exopolysaccharides: Chemical structures, gene clusters and genetic engineering. Int J Biol Macromol 2021; 173:481-490. [PMID: 33493567 DOI: 10.1016/j.ijbiomac.2021.01.139] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/25/2022]
Abstract
In recent decades, the composition, structure, biosynthesis, and function of bacterial extracellular polysaccharides (EPS) have been extensively studied. EPS are synthesized through different biosynthetic pathways. The genes responsible for EPS synthesis are usually clustered on the genome or large plasmids of bacteria. Generally, different EPS synthesis gene clusters direct the synthesis of EPS with different chemical structures and biological activities. A better understanding of the gene functions involved in EPS biosynthesis is critical for the production of EPS with special biological activities. Genetic engineering methods are usually used to study EPS synthesis related genes. This review organizes the available information on EPS, including their structures, synthesis of related genes, and highlights the research progress of modifying EPS gene clusters through gene-editing methods.
Collapse
Affiliation(s)
- Xiaqing Sun
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China.
| |
Collapse
|
21
|
Effect of particle size, concentration, temperature and pH on rheological properties of shallots flour. Journal of Food Science and Technology 2020; 57:3601-3610. [PMID: 32903912 DOI: 10.1007/s13197-020-04392-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/04/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
Shallot flour was prepared and sieved into three different particle sizes of < 180 μm (sample A), 180 μm (sample B) and 250 μm (sample C). Effect of concentration [0.5%, 1.0%, 1.5% and 2.0% (w/w)], temperature (20, 30, 40, 60 and 80 °C), pH (4, 7 and 10) and freezing (- 20 °C) on rheological properties of shallot flour were studied at increasing shear of 0.1-100 s-1. Effect of dynamic change in temperature (15-95 °C) was also measured at constant shear rate of 50 s-1. Power law (Eq. 2) model with coefficient of determination (R2) above 0.90, well described the rheological behavior of the shallot flour as a shear thinning, non-Newtonian fluid at different concentration, temperature and pH. All the samples had n values below 1 and increase in viscosity or consistency index (k) value with increase in concentration of the sample was observed, while inverse relation was observed when temperature was increased. All samples showed increase in k value when the pH of the dispersion was varied from acidic to alkaline condition. Viscosity of samples were found unaffected even after freezing in freeze-thaw cycle. These data show sample A to be most suitable for their application as thickener, having highest k value. The obtained research provides information for utilization of shallot as a thickener in various food industries.
Collapse
|
22
|
Venkatachalam G, Arumugam S, Doble M. Industrial production and applications of α/β linear and branched glucans. Chem Ind 2020. [DOI: 10.1080/00194506.2020.1798820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Geetha Venkatachalam
- Bioengineering and Drug Design Lab, Department of Biotechnology, IIT Madras, Chennai, India
| | - Senthilkumar Arumugam
- Bioengineering and Drug Design Lab, Department of Biotechnology, IIT Madras, Chennai, India
| | - Mukesh Doble
- Bioengineering and Drug Design Lab, Department of Biotechnology, IIT Madras, Chennai, India
| |
Collapse
|
23
|
Redox response, antibacterial and drug package capacities of chitosan-α-lipoic acid conjugates. Int J Biol Macromol 2020; 154:1166-1174. [DOI: 10.1016/j.ijbiomac.2019.10.271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022]
|
24
|
Formation of self-assembled polyelectrolyte complex hydrogel derived from salecan and chitosan for sustained release of Vitamin C. Carbohydr Polym 2020; 234:115920. [DOI: 10.1016/j.carbpol.2020.115920] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 01/12/2023]
|
25
|
Khushbu S, Sunil CK, Chidanand DV, Jaganmohan R. Effect of particle size on compositional, structural, rheological, and thermal properties of shallot flour as a source of thickening agent. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- S. Khushbu
- Indian Institute of Food Processing Technology Thanjavur Tamil Nadu India
| | | | | | | |
Collapse
|
26
|
Construction of self-assembled polyelectrolyte complex hydrogel based on oppositely charged polysaccharides for sustained delivery of green tea polyphenols. Food Chem 2020; 306:125632. [DOI: 10.1016/j.foodchem.2019.125632] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/07/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022]
|
27
|
Effects of tea polyphenol and Ca(OH)2 on the intermolecular forces and mechanical, rheological, and microstructural characteristics of duck egg white gel. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Kalia S, Roy Choudhury A. Synthesis and rheological studies of a novel composite hydrogel of xanthan, gellan and pullulan. Int J Biol Macromol 2019; 137:475-482. [DOI: 10.1016/j.ijbiomac.2019.06.212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
|
29
|
Purification, characterization and functional properties of exopolysaccharide from a novel halophilic Natronotalea sambharensis sp. nov. Int J Biol Macromol 2019; 136:547-558. [DOI: 10.1016/j.ijbiomac.2019.06.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
|
30
|
Hu X, Wang Y, Xu M. Study of the cell responses in tantalum carbide nanoparticles-enriched polysaccharide composite hydrogel. Int J Biol Macromol 2019; 135:501-511. [DOI: 10.1016/j.ijbiomac.2019.05.191] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/19/2019] [Accepted: 05/26/2019] [Indexed: 12/15/2022]
|
31
|
Sran KS, Bisht B, Mayilraj S, Roy Choudhury A. Structural characterization and antioxidant potential of a novel anionic exopolysaccharide produced by marine Microbacterium aurantiacum FSW-25. Int J Biol Macromol 2019; 131:343-352. [DOI: 10.1016/j.ijbiomac.2019.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/16/2019] [Accepted: 03/02/2019] [Indexed: 11/30/2022]
|
32
|
Gao Y, Sun Q, Yang X, Lu W, Zhao Y, Ge W, Yang Y, Xu X, Zhang J. Orally administered salecan ameliorates methotrexate-induced intestinal mucositis in mice. Cancer Chemother Pharmacol 2019; 84:105-116. [DOI: 10.1007/s00280-019-03854-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/02/2019] [Indexed: 01/21/2023]
|
33
|
Structural characterization and rheological properties of dextran produced by native strains isolated of Agave salmiana. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Hu X, Wang Y, Zhang L, Xu M. Design of a novel polysaccharide-based cryogel using triallyl cyanurate as crosslinker for cell adhesion and proliferation. Int J Biol Macromol 2019; 126:221-228. [DOI: 10.1016/j.ijbiomac.2018.12.226] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 11/26/2022]
|
35
|
Richa, Roy Choudhury A. Synthesis and rheological characterization of a novel thermostable quick setting composite hydrogel of gellan and pullulan. Int J Biol Macromol 2019; 125:979-988. [DOI: 10.1016/j.ijbiomac.2018.12.147] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/10/2018] [Accepted: 12/16/2018] [Indexed: 01/02/2023]
|
36
|
Hu X, Wang Y, Xu M, Zhang L, Zhang J, Dong W. Development of photocrosslinked salecan composite hydrogel embedding titanium carbide nanoparticles as cell scaffold. Int J Biol Macromol 2019; 123:549-557. [DOI: 10.1016/j.ijbiomac.2018.11.125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022]
|
37
|
Qi X, Wei W, Shen J, Dong W. Salecan polysaccharide-based hydrogels and their applications: a review. J Mater Chem B 2019; 7:2577-2587. [PMID: 32254990 DOI: 10.1039/c8tb03312a] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review systematically summarizes for the first time the recent progress on hydrogels containing salecan polysaccharides.
Collapse
Affiliation(s)
- Xiaoliang Qi
- School of Ophthalmology & Optometry
- Eye Hospital
- Wenzhou Medical University
- Wenzhou
- China
| | - Wei Wei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine
- and Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province
- First Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou
| | - Jianliang Shen
- School of Ophthalmology & Optometry
- Eye Hospital
- Wenzhou Medical University
- Wenzhou
- China
| | - Wei Dong
- Center for Molecular Metabolism
- Nanjing University of Science & Technology
- Nanjing 210094
- China
| |
Collapse
|
38
|
Brütsch L, Stringer FJ, Kuster S, Windhab EJ, Fischer P. Chia seed mucilage – a vegan thickener: isolation, tailoring viscoelasticity and rehydration. Food Funct 2019; 10:4854-4860. [DOI: 10.1039/c8fo00173a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chia seeds and their mucilage gels provide a nutritionally and functionally promising ingredient for the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Linda Brütsch
- Laboratory of Food Process Engineering
- ETH Zürich
- 8092 Zurich
- Switzerland
| | - Fiona J. Stringer
- Laboratory of Food Process Engineering
- ETH Zürich
- 8092 Zurich
- Switzerland
| | - Simon Kuster
- Laboratory of Food Process Engineering
- ETH Zürich
- 8092 Zurich
- Switzerland
| | - Erich J. Windhab
- Laboratory of Food Process Engineering
- ETH Zürich
- 8092 Zurich
- Switzerland
| | - Peter Fischer
- Laboratory of Food Process Engineering
- ETH Zürich
- 8092 Zurich
- Switzerland
| |
Collapse
|
39
|
Characterization of an extracellular polysaccharide produced by a Saharan bacterium Paenibacillus tarimensis REG 0201M. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1406-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
40
|
Quinzio C, Ayunta C, López de Mishima B, Iturriaga L. Stability and rheology properties of oil-in-water emulsions prepared with mucilage extracted from Opuntia ficus-indica (L). Miller. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Hu X, Wang Y, Zhang L, Xu M, Zhang J, Dong W. Photopatterned salecan composite hydrogel reinforced with α-Mo2C nanoparticles for cell adhesion. Carbohydr Polym 2018; 199:119-128. [DOI: 10.1016/j.carbpol.2018.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/19/2018] [Accepted: 07/03/2018] [Indexed: 11/25/2022]
|
42
|
Salehi M, Tabarsa M, Amraie M, Anvari M, Rezaei M, Smith BM. Characterization of rheological and structural properties of a gum from Balangu seeds. Int J Biol Macromol 2018; 117:294-300. [DOI: 10.1016/j.ijbiomac.2018.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 01/31/2023]
|
43
|
Fu R, Li J, Zhang T, Zhu T, Cheng R, Wang S, Zhang J. Salecan stabilizes the microstructure and improves the rheological performance of yogurt. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.03.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
Gao J, Li K, Xu J, Zhang W, Ma J, Liu L, Sun Y, Zhang H, Li K. Unexpected Rheological Behavior of a Hydrophobic Associative Shellac-Based Oligomeric Food Thickener. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6799-6805. [PMID: 29878772 DOI: 10.1021/acs.jafc.8b01148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sodium shellac constituted of a "surfactant" monomer, which is sensitive to shear stress, exhibits shear-thickening behavior at a low concentration (5 wt %), and reacts with H+ to retain transient high viscosity under shear, is introduced in this study. The steady shear flow test proved that, under a high shear rate, sodium shellac suspension could change from Newtonian fluid to continuous shear-thickening non-Newtonian fluid. The dynamic oscillation test suggested that the sodium shellac solution at low concentrations (0.1 and 1 wt %) under a low shear rate behaved as the viscous fluid ( G″ > G'), and the solution at high concentrations (5, 10, and 15 wt %) behaved as the elastic fluid ( G″ < G'). Moreover, a high shear rate caused a cross-linking point between the G″ and G' curve. At a low concentration, it could be the sol-gel point. At a high concentration, it could be the gel-sol point. All of these transforming points were related to the interaction between the sodium clusters. This interaction should be the hydrophobic association between the particles. To prove the assumption, hydrophilic polymer poly(ethylene oxide) (PEO) was employed as the disrupting factor to the hydrophobic association. As expected, the shear-thickening behavior vanished after mixing with PEO, which verified our assumption. On the other hand, the high viscosity of the suspension under shear could be retained by reaction with H+ to solidify the transient hydroclusters under shear. Meanwhile, sodium shellac had great potential as the functional shear thickener, which could modify the rheological property of the polymer with carboxyl groups, e.g., pectin, alginate, or poly(acrylic acid). Thus, this natural and green thicker has great potential in food, medical gel, green adhesive, or cosmetic products.
Collapse
Affiliation(s)
- Jianan Gao
- Research Institute of Resources Insects , Chinese Academy of Forestry , Kunming , Yunnan 650224 , People's Republic of China
- Faculty of Chemical Engineering and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650224 , People's Republic of China
| | - Kun Li
- Research Institute of Resources Insects , Chinese Academy of Forestry , Kunming , Yunnan 650224 , People's Republic of China
| | - Juan Xu
- Research Institute of Resources Insects , Chinese Academy of Forestry , Kunming , Yunnan 650224 , People's Republic of China
| | - Wenwen Zhang
- Research Institute of Resources Insects , Chinese Academy of Forestry , Kunming , Yunnan 650224 , People's Republic of China
| | - Jinju Ma
- Research Institute of Resources Insects , Chinese Academy of Forestry , Kunming , Yunnan 650224 , People's Republic of China
| | - Lanxiang Liu
- Research Institute of Resources Insects , Chinese Academy of Forestry , Kunming , Yunnan 650224 , People's Republic of China
| | - Yanlin Sun
- Faculty of Chemical Engineering and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650224 , People's Republic of China
| | - Hong Zhang
- Research Institute of Resources Insects , Chinese Academy of Forestry , Kunming , Yunnan 650224 , People's Republic of China
| | - Kai Li
- Research Institute of Resources Insects , Chinese Academy of Forestry , Kunming , Yunnan 650224 , People's Republic of China
| |
Collapse
|
45
|
Xu X, Ding Y, Yang Y, Gao Y, Sun Q, Liu J, Yang X, Wang J, Zhang J. β-glucan Salecan Improves Exercise Performance and Displays Anti-Fatigue Effects through Regulating Energy Metabolism and Oxidative Stress in Mice. Nutrients 2018; 10:nu10070858. [PMID: 29970808 PMCID: PMC6073659 DOI: 10.3390/nu10070858] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 12/31/2022] Open
Abstract
Fatigue induced by prolonged exercise not only leads to the decrease of exercise capacity, but also might be the cause of many diseases. In consideration of the side effects of pharmacological drugs, dietary supplements seem to be a better choice to ameliorate exercise-induced fatigue. The present study aimed to investigate the anti-fatigue effect of Salecan, a novel water-soluble β-glucan, during exercise and explore the underlying mechanisms. Male Institute of Cancer Research (ICR) mice were divided into five groups, including the Rest group and the other four Swim-groups treated with Salecan at 0, 25, 50, and 100 mg/kg/day for four weeks. Salecan treatment markedly increased the exhaustive swimming time of mice in the forced swimming test. Exercise fatigue and injury-related biochemical biomarkers including lactate, blood urea nitrogen (BUN), creatinine kinase (CK), alanine transaminase (ALT), and aspartate transaminase (AST) were ameliorated by Salecan. Salecan reversed the decreased serum glucose levels and glycogen contents caused by exercise. In addition, Salecan improved oxidative stress induced by exercise through regulating Nrf2/HO–1/Trx signaling pathway. Thus, the beneficial effects of Salecan against fatigue may be due to its positive effects on energy metabolism and antioxidation defence. Our results suggest that Salecan could be a novel potential candidate for anti-fatigue dietary supplements.
Collapse
Affiliation(s)
- Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Yijian Ding
- Department of Physical Education, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Yan Gao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Qi Sun
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Junhao Liu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Xiao Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Junsong Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| |
Collapse
|
46
|
Physicochemical properties of a high molecular weight levan from Brenneria sp. EniD312. Int J Biol Macromol 2018; 109:810-818. [DOI: 10.1016/j.ijbiomac.2017.11.056] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/24/2017] [Accepted: 11/09/2017] [Indexed: 01/12/2023]
|
47
|
A systematical rheological study of polysaccharide from Sophora alopecuroides L. seeds. Carbohydr Polym 2018; 180:63-71. [DOI: 10.1016/j.carbpol.2017.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/16/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023]
|
48
|
Mohd Rasidek NA, Mad Nordin MF, Iwamoto K, Abd Rahman N, Nagatsu Y, Tokuyama H. Rheological flow models of banana peel pectin jellies as affected by sugar concentration. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1514505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Noor Azwani Mohd Rasidek
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Mariam Firdhaus Mad Nordin
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Koji Iwamoto
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Norazah Abd Rahman
- Faculty of Chemical Engineering, Universiti Teknologi Mara, Shah Alam, Malaysia
| | - Yuichiro Nagatsu
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Hideaki Tokuyama
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| |
Collapse
|
49
|
Synthesis and characterization of a multi-sensitive polysaccharide hydrogel for drug delivery. Carbohydr Polym 2017; 177:275-283. [DOI: 10.1016/j.carbpol.2017.08.133] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023]
|
50
|
Liu H, Li Y, Shi A, Hu H, Sheng X, Liu L, Wang Q, Adhikari B. Rheological characteristics and chain conformation of mannans obtained from Saccharomyces cerevisiae. Int J Biol Macromol 2017; 107:2404-2411. [PMID: 29107748 DOI: 10.1016/j.ijbiomac.2017.10.126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 09/05/2017] [Accepted: 10/18/2017] [Indexed: 11/18/2022]
Abstract
Mannans were extracted from S. cerevisiae, the rheological properties of mannan solutions were important in many industrial applications. In this paper, effects of mannans concentration, solution temperature, pH, salts and their concentrations on apparent viscosity were investigated. The conformational parameters of yeast mannans were determined by SEC-MALS-RI-DP. The Higiro's 1 and Higiro's 2 plots were obtained by capillary viscometry gave an intrinsic viscosity of 0.166 and 0.131dl/g. The yeast mannans solution showed Newtonian flow behavior at all the tested concentrations. The apparent viscosity of yeast mannans solution decreased continuously with the temperature increase (25°C-85°C) at a given shear rate. The viscosity did not change within the pH values of 4.0-10.0, however, it increased when the pH decreased from 4.0 to 2.0. The viscosity decreased with addition of CaCl2 up to 10mM and remained constant above this concentration. The conformational parameters (derived from [η] vs Mw and Rg vs Mw) showed yeast mannans existed as a sphere-like shape with many shorter branches. The special flow behavior and conformation of yeast mannans may make it preferable polysaccharide in food industry.
Collapse
Affiliation(s)
- Hongzhi Liu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Yanan Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Xiaojing Sheng
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Li Liu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193, China.
| | - Benu Adhikari
- School of Applied Sciences, RMIT University, City Campus, Melbourne, VIC 3001, Australia
| |
Collapse
|