1
|
Guo ZW, Li HJ, Peng N, Li YQ, Liang Y, Zhao YR, Wang CY, Wang ZY, Wang C, Ren X. Characterization of astaxanthin-loaded Pickering emulsions stabilized by conjugates of pea protein isolate and dextran with different molecular weights. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39483104 DOI: 10.1002/jsfa.14010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Pea protein isolate (PPI) is gaining increasing popularity in the food industry. It provides a diverse range of health benefits, such as hypoallergenic and gluten-free characteristics. However, the functional performance of PPI is hindered by its low solubility and poor stability. Therefore, in this article, PPI and dextran (DX) of different molecular weights were grafted to investigate the effects of grafting DX with different molecular weights on the interface properties and antioxidant properties of PPI. Additionally, the stability and digestive properties of the glycated PPI nanoemulsion system were explored. RESULTS The result showed that the grafting degree of PPI-DX conjugates (PPI-DC) decreased with an increase in the molecular weight of DX. Surface hydrophobicity, antioxidant activity and solubility of PPI-DC were significantly improved after grafting compared with PPI and PPI-DX mixtures (PPI-DM). Astaxanthin-loaded emulsions stabilized by grafted conjugates had smaller droplets and higher astaxanthin encapsulation rate compared to PPI emulsions. In vitro digestion demonstrated that the bioavailability of PPI-DC emulsions was higher than of PPI emulsion. Furthermore, after 24 days of storage, retention rate of astaxanthin-loaded emulsions prepared by conjugates remained above 70%, surpassing that of PPI emulsion. CONCLUSION These results indicated that DX grafting can improve the emulsion properties of PPI. In addition, the DX with a molecular weight of 5 kDa showed the most significant improvement. This study contributes to the advancement of natural emulsifiers by modifying PPI through glycation, and furnishes a valuable reference for its utilization in functional foods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhi-Wei Guo
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Heng-Juan Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ning Peng
- School of Agriculture and Forestry Science, Weifang Engineering Vocational College, Weifang, China
| | - Ying-Qiu Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yan Liang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yu-Ru Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Cai-Yue Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zi-Yue Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chenying Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xidong Ren
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
2
|
Hou K, Fu X, Chen H, Niu H. Characterization and emulsifying ability evaluation of whey protein-pectin conjugates formed by glycosylation. Carbohydr Polym 2024; 329:121790. [PMID: 38286557 DOI: 10.1016/j.carbpol.2024.121790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024]
Abstract
Glycosylation is a method that enhances the functional properties of proteins by covalently attaching sugars to them. This study aimed at preparing three conjugates (WP-HG, WP-SBP, and WP-RGI) by dry heating method to research the influence of different pectin structures on the functional properties of WP and characterize properties and structures of these conjugates. The research results manifested that the degree of glycosylation (DG) of HG, SBP and RGI were 13.13 % ± 0.07 %, 23.27 % ± 0.3 % and 36.39 % ± 0.3 % respectively, suggesting that the increase of the number of branch chains promoted the glycosylation reaction. The formation of the conjugate was identified by the FT-IR spectroscopy technique. And SEM showed that WP could covalently bind to pectin, resulting in a smoother and denser surface of the conjugates. The circular dichroism analysis exhibited that the glycosylation reaction altered the secondary structure of WP and decreased the α-Helix content. This structural change in the protein spatial conformation led to a decrease in the hydrophobicity of protein surface. But the addition of pectin further regulated the hydrophilic-hydrophobic ratio on the surface of the protein, thus improving the emulsification properties of WP. In addition, the glycosylation could improve the stability of the emulsion, giving it a smaller droplet size, higher Zeta-potential and more stable properties. In a word, this study pointed out the direction for the application of different pectin structures in the development of functional properties of glycosylation products in food ingredients.
Collapse
Affiliation(s)
- Keke Hou
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China.
| | - Hui Niu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China.
| |
Collapse
|
3
|
Chen K, Zhang M, Wang D, Mujumdar AS, Deng D. Development of quinoa (Chenopodium quinoa Willd) protein isolate-gum Arabic conjugates via ultrasound-assisted wet heating for spice essential oils emulsification: Effects on water solubility, bioactivity, and sensory stimulation. Food Chem 2024; 431:137001. [PMID: 37562335 DOI: 10.1016/j.foodchem.2023.137001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/25/2023] [Accepted: 07/23/2023] [Indexed: 08/12/2023]
Abstract
Quinoa protein isolate-gum Arabic (QPI-GA) conjugates were developed by ultrasound-assisted wet heating to improve the water solubility and bioactivity of spice essential oils (EOs) in this study. The optimal conditions for QPI-GA conjugates preparation were found to be: heating temperature of 72 ℃, ultrasound power of 450 W, and reaction time of 46 min. QPI-GA conjugates displayed significantly higher emulsifying efficiency and stronger tolerance to pH variation, high salt concentration, and storage than raw materials. The emulsifying efficiency of emulsions was also influenced by the pH and viscosity of EOs, zeta potential of the emulsion as well as the relative density and lipid/water partition coefficient (P) of EOs were the possible factors impacting the stability of EO emulsions. The water solubility, antioxidant ability, and antibacterial ability of tested EOs were improved after emulsification. Meanwhile, encapsulation with QPI-GA conjugates played a good effect on reducing the sensory stimulation of EOs.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Dayuan Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald College, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Dewei Deng
- Zhengzhou Xuemailong Food Flavor Co., Zhengzhou, Henan, China
| |
Collapse
|
4
|
Zhang Z, Holden G, Wang B, Adhikari B. Maillard reaction-based conjugation of Spirulina protein with maltodextrin using wet-heating route and characterisation of conjugates. Food Chem 2023; 406:134931. [PMID: 36529088 DOI: 10.1016/j.foodchem.2022.134931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Spirulina protein concentrate (SPC) was extracted from Spirulina biomass and its structure and technofunctional properties were modified through Maillard reaction with maltodextrin (MD). Wet-heating route was adapted and Maillard reaction was controlled within initial to intermediate stage by avoiding or minimising the formation of melanoidins. A glycation degree of up to 29.1 % was achieved after reaction between SPC and MD, and molecular weight of the SPC increased accordingly. The solubility of SPC was improved only in the pH range around its isoelectric point after conjugation. The antioxidative property of the SPC-MD conjugate was also improved as the DPPH radical scavenging activity increased 19.7 to 30.2 %. Oil-in-water emulsion stabilised by SPC-MD conjugate produced at 6 h had significantly reduced droplet size, increased surface charge, and higher physical stability in temperature range 25-60 °C. The outcome of this research will help broaden the application of SPC in food as emulsifier and encapsulating shell material.
Collapse
Affiliation(s)
- Zijia Zhang
- School of Science, RMIT University, Melbourne, VIC 3083, Australia.
| | - Greg Holden
- Bega Corporate Centre, Melbourne, VIC 3008, Australia
| | - Bo Wang
- School of Behavioural and Health Science, Australian Catholic University, Sydney, NSW 2060, Australia
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, VIC 3083, Australia.
| |
Collapse
|
5
|
Effect of sono-pre-texturization on β-lactoglobulin-anthocyanins energy appetizers. Int J Biol Macromol 2022; 222:1908-1917. [DOI: 10.1016/j.ijbiomac.2022.09.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
|
6
|
Lajoie C, Doyen A, Feutry P, Gagnon D, Brisson G. Impact of emulsifiers for the nanoencapsulation with maltodextrin of cannabis oil by spray drying on the physicochemical properties and bioaccessibility of cannabinoids. Food Funct 2022; 13:10320-10332. [PMID: 36125367 DOI: 10.1039/d2fo01591a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our study aimed to investigate the impact of various emulsifiers, namely whey protein isolate (WPI), soy protein isolate (SPI), and Tween 80 (Tw), on their ability to encapsulate cannabis oil with maltodextrin as the wall material. The physicochemical properties of the powder, the stability of the cannabinoids, and their bioaccessibility during static in vitro digestion were examined. The average diameter of fat globules in liquid nanoemulsions was 170, 259, and 95 nm for WPI, SPI, and Tw, respectively. The encapsulation efficiency was high for protein emulsifiers (>95%) compared to Tw (∼16%). Upon powder reconstitution in water, the emulsified fat droplets remained stable for WPI (176 nm); however, higher fat globule size (diameters of 346 nm and 210 nm) was observed for SPI and Tw powders, respectively. All oil powders had high solubility (>97%). The peroxide value (PV) showed nearly a fourfold increase for the oil extracted from the powder than the initial PV of bulk oil (5.2 mEq). However, UPLC-TUV analysis of the main cannabinoids (CBD, THC, and CBN) indicated that there is no significant difference between the various formulations and the bulk oil, except for lower Tw. The in vitro digestion model results showed higher bioaccessibility of the cannabinoids for Tw (∼53%) than for proteins (WPI ∼ 7% and SPI ∼ 10%). These findings suggest that the emulsifiers used for spray drying nanoencapsulation of cannabis oil have an impact on the encapsulation efficiency and cannabinoid bioaccessibility, highlighting the importance of choosing adequate emulsifiying agents for their optimal oral delivery.
Collapse
Affiliation(s)
- Camille Lajoie
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Université Laval, Québec (QC) G1V 0A6, Canada.
| | - Alain Doyen
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Université Laval, Québec (QC) G1V 0A6, Canada.
| | - Perrine Feutry
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Université Laval, Québec (QC) G1V 0A6, Canada.
| | - Diane Gagnon
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Université Laval, Québec (QC) G1V 0A6, Canada.
| | - Guillaume Brisson
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Université Laval, Québec (QC) G1V 0A6, Canada.
| |
Collapse
|
7
|
Enhancing the Dispersion Stability and Sustained Release of S/O/W Emulsions by Encapsulation of CaCO3 Droplets in Sodium Caseinate/Xanthan Gum Microparticles. Foods 2022; 11:foods11182854. [PMID: 36140982 PMCID: PMC9498002 DOI: 10.3390/foods11182854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/05/2022] Open
Abstract
In this study, solid/oil/water (S/O/W) emulsions were prepared by sodium caseinate (NaCas) and Xanthan gum (XG) binary composite to improve the dispersion stability of calcium carbonate (CaCO3) and achieve a targeted slow-release effect. CaCO3 S/O/W emulsions were determined by particle size, Zeta potential, physical stability, and microstructure. X-ray diffraction (XRD), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR) were used to characterize the molecular interactions among components. Molecular docking technology was used to predict the possible binding mode between NaCas-XG. The percentage of free Ca2+ released in the gastrointestinal tract (GIT) model was also studied. It was found that when the concentration of XG was 0.5 wt% and pH was 7, the particle size was smaller, the distribution was uniform, and the physical stability was improved. The microstructure results showed that the embedding effect of S/O/W emulsions was better, the particle size distribution was more uniform when XG concentration increased and formed a filament-like connector with a relatively more stereoscopic structure. XRD results confirmed that the CaCO3 was partially covered due to physical embedding. Infrared and Raman analysis and molecular docking results showed electrostatic and hydrophobic interaction between NaCas and XG. In the GIT digestion model, S/O/W emulsion released Ca2+ slowly in the gastric digestion stage, which proved the targeted slow-release effect of the S/O/W emulsions delivery vector. The results showed that the S/O/W emulsions delivery system is an effective way to promote the application of CaCO3.
Collapse
|
8
|
Guo Q, Li S, Du G, Chen H, Yan X, Chang S, Yue T, Yuan Y. Formulation and characterization of microcapsules encapsulating carvacrol using complex coacervation crosslinked with tannic acid. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
|
10
|
Zhao M, He H, Ma A, Hou T. Sources, chemical synthesis, functional improvement and applications of food-derived protein/peptide-saccharide covalent conjugates: a review. Crit Rev Food Sci Nutr 2022; 63:5985-6004. [PMID: 35089848 DOI: 10.1080/10408398.2022.2026872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Proteins/peptides and saccharides are two kinds of bioactive substances in nature. Recently, increasing attention has been paid in understanding and utilizing covalent interactions between proteins/peptides and saccharides. The products obtained through covalent conjugation of proteins/peptides to saccharides are shown to have enhanced functional attributes, such as better gelling property, thermostability, and water-holding capacity. Additionally, food-derived protein/peptide-saccharide covalent conjugates (PSCCs) also have biological activities, such as antibacterial, antidiabetic, anti-osteoporosis, anti-inflammatory, anti-cancer, immune regulatory, and other activities that are widely used in the functional food industry. Moreover, PSCCs can be used as packaging or delivery materials to improve the bioavailability of bioactive substances, which expands the development of food-derived protein and saccharide resources. Thus, this review was aimed to first summarize the current status of sources, classification structures of natural PSCCs. Second, the methods of chemical synthesis, reaction conditions, characterization and reagent formulations that improve the desired functional characteristics of food-derived PSCCs were introduced. Third, functional properties such as emulsion, edible films/coatings, and delivery of active substance, bio-activities such as antioxidant, anti-osteoporosis, antidiabetic, antimicrobial of food-derived PSCCs were extensively discussed.
Collapse
Affiliation(s)
- Mengge Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| |
Collapse
|
11
|
Improved heat stability of recombined filled evaporated milk emulsions by wet heat pre-treatment of skim milk powder dispersions at different pH values. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Majidzadeh Heravi R, Ghiasvand M, Rezaei E, Kargar F. Assessing the viability of three Lactobacillus bacterial species protected in the cryoprotectants containing whey and maltodextrin during freeze-drying process. Lett Appl Microbiol 2021; 74:505-512. [PMID: 34904273 DOI: 10.1111/lam.13631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022]
Abstract
Freeze-drying of bacteria associates with different stresses such as osmotic pressure, temperature and oxidation, and decreases bacterial viability, which seem to reduce by applying cryoprotectants. The present study evaluated the effect of four cryoprotectants on decreasing the stress caused by freeze-drying process among three Lactobacillus species. Additionally, it highlighted the use of whey and maltodextrin as a substitute for peptone and sucrose in cryoprotectants respectively. The viability of lactobacilli was measured after freeze-drying, 1 month of storage at 25 and 4°C. Based on the results, the viability rate of bacteria in protectants during freeze-drying stage was dependent on their strains. The best viability of Lacticaseibacillus rhamnosus GG and Ligilactobacillus salivarius 20687 was, respectively, observed in the protectants containing sucrose and whey, while Lactiplantibacillus plantarum NRRL B-14768 viability was equal in all protectants. The number of live bacteria reduced significantly by storing bacteria for 1 month at 25°C compared to the 4°C storage. During the storage period, the viability of L. salivarius improved by adding sucrose in protectant. Due to the positive effect of whey and sucrose in the drying and storage stage, on bacterial viability, the protectant consisting of whey and sucrose is suggested for all of the species under study.
Collapse
Affiliation(s)
- R Majidzadeh Heravi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - M Ghiasvand
- Department of Microbiology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - E Rezaei
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - F Kargar
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
13
|
Yu F, Chen L, Zhang X, Ma L, Wang R, Lu T, Xue C. Influence of diacetyl tartaric acid ester of monoglycerides on the properties of whey powder–maltodextrin emulsion. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fanqianhui Yu
- College of Food Science and Engineering Ocean University of China Qingdao P.R. China
| | - Lipin Chen
- College of Food Science and Engineering Ocean University of China Qingdao P.R. China
| | - Xiaotong Zhang
- School of Chemical Engineering University of Birmingham Birmingham UK
| | - Lei Ma
- College of Food Science and Engineering Ocean University of China Qingdao P.R. China
| | - Ruo Wang
- Culinary Teaching and Research Office Shanghai P.R. China
| | - Tao Lu
- School of Mechanical Engineering Qingdao University of Technology Qingdao P.R. China
| | - Changhu Xue
- College of Food Science and Engineering Ocean University of China Qingdao P.R. China
- Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology Qingdao P.R. China
| |
Collapse
|
14
|
Abstract
Glycation between proteins and sugars via the Maillard reaction has been shown to improve the heat stability of proteins. In this study, inulin, a healthy dietary fiber, was glycated with whey protein isolate (WPI), and the effects of reaction conditions were investigated. Conjugates were prepared by freeze-drying mixed WPI and inulin solutions at 1:1 to 6:1 WPI-to-inulin weight ratios followed by dry heating at 70, 75, or 80 °C for 12 to 72 h under uncontrolled, 44%, or 80% relative humidity. Heat stability was evaluated by turbidity, particle size, and rheological measurements. Degree of glycation was assessed by quantifying the loss of amino groups and the formation of the Amadori compounds. Results showed that conjugation led to improved heat stability, as shown by decreased turbidity and particle size as well as the ability to maintain the viscosity compared to control samples. Based on the loss of amino groups, the optimum glycation conditions were achieved with WPI–inulin mixtures at 2:1, 4:1, and 6:1 weight ratios and 80 °C temperature for 12 to 72 h without controlling the relative humidity. The improved heat stability could be due to an increase in negative charge as well as increased structural stabilization of the proteins. Under a limited degree of glycation, glycated WPI–inulin conjugates have great potential to be utilized as food ingredients, especially in the beverage industry.
Collapse
|
15
|
Wu J, Chen S, Sedaghat Doost A, A’yun Q, Van der Meeren P. Dry heat treatment of skim milk powder greatly improves the heat stability of recombined evaporated milk emulsions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Glycation of Plant Proteins Via Maillard Reaction: Reaction Chemistry, Technofunctional Properties, and Potential Food Application. Foods 2021; 10:foods10020376. [PMID: 33572281 PMCID: PMC7915956 DOI: 10.3390/foods10020376] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
Plant proteins are being considered to become the most important protein source of the future, and to do so, they must be able to replace the animal-derived proteins currently in use as techno-functional food ingredients. This poses challenges because plant proteins are oftentimes storage proteins with a high molecular weight and low water solubility. One promising approach to overcome these limitations is the glycation of plant proteins. The covalent bonding between the proteins and different carbohydrates created via the initial stage of the Maillard reaction can improve the techno-functional characteristics of these proteins without the involvement of potentially toxic chemicals. However, compared to studies with animal-derived proteins, glycation studies on plant proteins are currently still underrepresented in literature. This review provides an overview of the existing studies on the glycation of the major groups of plant proteins with different carbohydrates using different preparation methods. Emphasis is put on the reaction conditions used for glycation as well as the modifications to physicochemical properties and techno-functionality. Different applications of these glycated plant proteins in emulsions, foams, films, and encapsulation systems are introduced. Another focus lies on the reaction chemistry of the Maillard reaction and ways to harness it for controlled glycation and to limit the formation of undesired advanced glycation products. Finally, challenges related to the controlled glycation of plant proteins to improve their properties are discussed.
Collapse
|
17
|
Novel lysozyme–mannooligosaccharide conjugate with improved antimicrobial activity: preparation and characterization. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00499-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Effect of glycation on the structural modification of β-conglycinin and the formation of advanced glycation end products during the thermal processing of food. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03570-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
19
|
Huang S, He J, Cao L, Lin H, Zhang W, Zhong Q. Improved Physicochemical Properties of Curcumin-Loaded Solid Lipid Nanoparticles Stabilized by Sodium Caseinate-Lactose Maillard Conjugate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7072-7081. [PMID: 32511914 DOI: 10.1021/acs.jafc.0c01171] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To improve the water solubility, antioxidant activity, and chemical stability of curcumin, solid lipid nanoparticles (SLNs) were fabricated using equal masses of propylene glycol monopalmitate and glyceryl monostearate as the lipid matrix and sodium caseinate-lactose (NaCas-Lac) Maillard conjugate as the emulsifier. The entrapment efficiency was more than 90% when curcumin was 2.5% and 5.0% of lipid mass, and the SLNs were stable during 30-day storage. SLNs stabilized by NaCas-Lac showed better physicochemical properties than those prepared with NaCas, including higher sphericity and homogeneity; higher entrapment efficiency; better stability against pH, ionic strength, and simulated gastrointestinal digestions; and more controlled release. SLNs also greatly enhanced the antioxidant activity of encapsulated curcumin and the retention of curcumin during storage. Therefore, the present SLNs may find applications to deliver lipophilic compounds in functional foods and beverages.
Collapse
Affiliation(s)
- Shuangshuang Huang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Junbo He
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lei Cao
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hong Lin
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Weinong Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qixin Zhong
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
20
|
Low pH-shifting treatment would improve functional properties of black turtle bean (Phaseolus vulgaris L.) protein isolate with immunoreactivity reduction. Food Chem 2020; 330:127217. [PMID: 32521404 DOI: 10.1016/j.foodchem.2020.127217] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 01/10/2023]
Abstract
Low pH-shifting was firstly applied in the black turtle bean (Phaseolus vulgaris L.) protein isolate treatment by acidic (pH 1.0-3.0) buffer incubation for 8 h, then was adjusted to pH 7.2 and kept 3 h for protein stabilizing. Mild loss of secondary structure was confirmed in the protein isolate after low pH-shifting treatment by CD and FT-IR analyses. Intrinsic fluorescence, UV spectra, surface hydrophobicity, SH content and SDS-PAGE analyses indicated the protein conformation was unfolded with the exposure of much more buried hydrophobic residues, which would result in the enhancement of emulsifying properties, foaming properties and fat holding capacity, and lead to the reduction of solubility and water holding capacity. Furthermore, lower immunoreactivity was observed by the ELISA, and improved digestibility was found in in vitro digestion assay. Our results suggested the low pH-shifting treatments would broaden the application of bean protein isolate with better hydrophobic processing functions and safety.
Collapse
|
21
|
Kumar SMH, Sabikhi L, Lamba H. Emulsification properties of sodium caseinate‐based conjugates with selected polysaccharides. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sathish M H Kumar
- Dairy Technology Section SRS ICAR‐National Dairy Research Institute Adugodi Bengaluru Karnataka 560030 India
| | - Latha Sabikhi
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal Haryana 132001 India
| | - Heena Lamba
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal Haryana 132001 India
| |
Collapse
|
22
|
Jia C, Cao D, Ji S, Lin W, Zhang X, Muhoza B. Whey protein isolate conjugated with xylo-oligosaccharides via maillard reaction: Characterization, antioxidant capacity, and application for lycopene microencapsulation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108837] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
23
|
Effect of Maltodextrin Dextrose Equivalent on Electrospinnability and Glycation Reaction of Blends with Pea Protein Isolate. FOOD BIOPHYS 2019. [DOI: 10.1007/s11483-019-09619-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Mellado-Carretero J, Kaade W, Ferrando M, Güell C, de Lamo-Castellví S. Attenuated Total Reflectance Fourier Transform Midinfrared Spectroscopy Combined with Multivariate Analysis, a Novel Approach to Monitor Maillard Reaction. J Food Sci 2019; 84:2777-2784. [PMID: 31524956 DOI: 10.1111/1750-3841.14782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 01/03/2023]
Abstract
The aim of this work was to study the potential of using infrared spectroscopy and chemometrics to monitor Maillard reaction. Sodium caseinate (NaCAS) and gum Arabic (GA) or sodium carboxymethyl cellulose (CMC) powders were mixed at 1:1, spray-dried, and incubated at 60 °C and 76% of relative humidity from 0 to 72 hr. Sample infrared spectra were collected, and browning degree, conjugation efficiency, and stabilization properties of the conjugates were analyzed by spectrophotometry, fluorescence spectroscopy, turbidity, and zeta potential measurements. Pairwise soft independent modeling of class analogy (SIMCA) models showed significant chemical differences among NaCAS-GA mixtures incubated for 0 (Control) and 16 hr, attributed to functional groups linked to different Maillard reaction products such as Schiff's base and pyridine compounds. Infrared spectroscopy combined with SIMCA is a powerful tool to monitor the formation of protein-polysaccharide conjugates by Maillard reaction. PRACTICAL APPLICATION: Protein-polysaccharide conjugates obtained by Maillard reaction are currently used as novel food emulsifiers. However, conventional methods to study this chemical reaction are time consuming or involve the use of toxic and harmful reactants. Infrared spectroscopy combined with multivariate analysis is evaluated to be used as a rapid tool to monitor Maillard reaction.
Collapse
Affiliation(s)
- Jorge Mellado-Carretero
- Dept. d'Enginyeria Química, Univ. Rovira i Virgili, Avinguda dels Països Catalans 26, Campus Sescelades, 43007, Tarragona, Spain
| | - Wael Kaade
- Dept. d'Enginyeria Química, Univ. Rovira i Virgili, Avinguda dels Països Catalans 26, Campus Sescelades, 43007, Tarragona, Spain
| | - Montserrat Ferrando
- Dept. d'Enginyeria Química, Univ. Rovira i Virgili, Avinguda dels Països Catalans 26, Campus Sescelades, 43007, Tarragona, Spain
| | - Carme Güell
- Dept. d'Enginyeria Química, Univ. Rovira i Virgili, Avinguda dels Països Catalans 26, Campus Sescelades, 43007, Tarragona, Spain
| | - Sílvia de Lamo-Castellví
- Dept. d'Enginyeria Química, Univ. Rovira i Virgili, Avinguda dels Països Catalans 26, Campus Sescelades, 43007, Tarragona, Spain
| |
Collapse
|
25
|
Lv D, Chen F, Yin L, Liu C. Emulsifying properties of wheat bran arabinoxylan modified with whey protein isolate using the Maillard reaction. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1650757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dingyang Lv
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Lijun Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian, Beijing, China
| | - Chenglong Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
26
|
Emulsifying properties of conjugates formed between whey protein isolate and subcritical-water hydrolyzed pectin. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Anti-glycation and anti-hardening effects of microencapsulated mulberry polyphenols in high-protein-sugar ball models through binding with some glycation sites of whey proteins. Int J Biol Macromol 2019; 123:10-19. [DOI: 10.1016/j.ijbiomac.2018.11.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 11/18/2022]
|
28
|
Zhang Q, Li L, Lan Q, Li M, Wu D, Chen H, Liu Y, Lin D, Qin W, Zhang Z, Liu J, Yang W. Protein glycosylation: a promising way to modify the functional properties and extend the application in food system. Crit Rev Food Sci Nutr 2018; 59:2506-2533. [DOI: 10.1080/10408398.2018.1507995] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
| | - Lin Li
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Qiuyu Lan
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Meili Li
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Dingtao Wu
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Derong Lin
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Jiang Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenyu Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Du YL, Huang GQ, Wang HO, Xiao JX. Effect of high coacervation temperature on the physicochemical properties of resultant microcapsules through induction of Maillard reaction between soybean protein isolate and chitosan. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.04.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Preparation and characterization of casein-carrageenan conjugates and self-assembled microcapsules for encapsulation of red pigment from paprika. Carbohydr Polym 2018; 196:322-331. [DOI: 10.1016/j.carbpol.2018.05.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 11/19/2022]
|
31
|
Guo X, Guo X, Yu S, Kong F. Influences of the different chemical components of sugar beet pectin on the emulsifying performance of conjugates formed between sugar beet pectin and whey protein isolate. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.03.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Covalent conjugation of bovine serum album and sugar beet pectin through Maillard reaction/laccase catalysis to improve the emulsifying properties. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2016.12.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Glycation of whey proteins: Technological and nutritional implications. Int J Biol Macromol 2018; 112:83-92. [PMID: 29366894 DOI: 10.1016/j.ijbiomac.2018.01.114] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 01/02/2023]
Abstract
Whey proteins are globular proteins that have received much attention due to their high nutritional value and characteristic functional properties. In addition to being part of the protein system in milk, they constitute the main proteins in whey and whey protein products. Interaction of whey proteins with reducing sugars and carbohydrates via Maillard reaction have been extensively studied in milk and in model systems. Glycation of individual whey proteins results in variable increases in their solubility, thermal stability, antioxidant activity, and emulsion and foam stabilization. Limited glycation of whey protein products particularly whey protein isolates (WPI) using polysaccharides has been studied with the aim to produce conjugates with modified functional properties and acceptable sensory properties. An overview is presented here on the effect of glycation on individual whey proteins and whey protein products and the potential uses of the glycated whey proteins.
Collapse
|
34
|
Cheng YH, Tang WJ, Xu Z, Wen L, Chen ML. Structure and functional properties of rice protein-dextran conjugates prepared by the Maillard reaction. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13594] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yun-Hui Cheng
- College of Chemistry and Biological Engineering; Changsha University of Science & Technology; Changsha 410114 China
| | - Wen-Juan Tang
- College of Chemistry and Biological Engineering; Changsha University of Science & Technology; Changsha 410114 China
| | - Zhou Xu
- College of Chemistry and Biological Engineering; Changsha University of Science & Technology; Changsha 410114 China
| | - Li Wen
- College of Chemistry and Biological Engineering; Changsha University of Science & Technology; Changsha 410114 China
| | - Mao-Long Chen
- College of Chemistry and Biological Engineering; Changsha University of Science & Technology; Changsha 410114 China
| |
Collapse
|
35
|
Casein-maltodextrin conjugate as an emulsifier for fabrication of structured calcium carbonate particles as dispersible fat globule mimetics. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
O'Mahony JA, Drapala KP, Mulcahy EM, Mulvihill DM. Controlled glycation of milk proteins and peptides: Functional properties. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2016.09.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
37
|
Mengíbar M, Miralles B, Heras Á. Use of soluble chitosans in Maillard reaction products with β-lactoglobulin. Emulsifying and antioxidant properties. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Akbas E, Kilercioglu M, Onder ON, Koker A, Soyler B, Oztop MH. Wheatgrass juice to wheat grass powder: Encapsulation, physical and chemical characterization. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
39
|
Liu F, Ma C, Gao Y, McClements DJ. Food-Grade Covalent Complexes and Their Application as Nutraceutical Delivery Systems: A Review. Compr Rev Food Sci Food Saf 2016; 16:76-95. [DOI: 10.1111/1541-4337.12229] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/29/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Fuguo Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering; China Agricultural Univ; Beijing 100083 People's Republic of China
- Dept. of Food Science; Univ. of Massachusetts Amherst; Amherst MA 01003 USA
| | - Cuicui Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering; China Agricultural Univ; Beijing 100083 People's Republic of China
| | - Yanxiang Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering; China Agricultural Univ; Beijing 100083 People's Republic of China
| | | |
Collapse
|
40
|
Drapala KP, Auty MA, Mulvihill DM, O'Mahony JA. Improving thermal stability of hydrolysed whey protein-based infant formula emulsions by protein–carbohydrate conjugation. Food Res Int 2016; 88:42-51. [DOI: 10.1016/j.foodres.2016.01.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/27/2016] [Accepted: 01/30/2016] [Indexed: 10/22/2022]
|
41
|
New insights into the functionality of protein to the emulsifying properties of sugar beet pectin. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.02.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Microwave-assisted isomerisation of lactose to lactulose and Maillard conjugation of lactulose and lactose with whey proteins and peptides. Food Chem 2016; 200:1-9. [DOI: 10.1016/j.foodchem.2015.12.094] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/06/2015] [Accepted: 12/30/2015] [Indexed: 01/10/2023]
|
43
|
Weng J, Qi J, Yin S, Wang J, Guo J, Feng J, Liu Q, Zhu J, Yang X. Fractionation and characterization of soy β-conglycinin–dextran conjugates via macromolecular crowding environment and dry heating. Food Chem 2016; 196:1264-71. [DOI: 10.1016/j.foodchem.2015.10.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 11/26/2022]
|
44
|
Bu G, Zhang N, Chen F. The influence of glycosylation on the antigenicity, allergenicity, and structural properties of 11S-lactose conjugates. Food Res Int 2015; 76:511-517. [DOI: 10.1016/j.foodres.2015.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 07/23/2015] [Accepted: 08/01/2015] [Indexed: 11/24/2022]
|
45
|
Casein/pectin nanocomplexes as potential oral delivery vehicles. Int J Pharm 2015; 486:59-68. [DOI: 10.1016/j.ijpharm.2015.03.043] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 11/18/2022]
|
46
|
Improved thermal stability of whey protein–maltodextrin conjugates at pH 5.0 by d-Glucose, sucrose, d-cellobiose, and lactose. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2014.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Chen H, Davidson PM, Zhong Q. Antimicrobial properties of nisin after glycation with lactose, maltodextrin and dextran and the thyme oil emulsions prepared thereof. Int J Food Microbiol 2014; 191:75-81. [PMID: 25240139 DOI: 10.1016/j.ijfoodmicro.2014.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/27/2014] [Accepted: 09/06/2014] [Indexed: 11/17/2022]
Abstract
To clarify the reported conflicting antimicrobial activities of nisin after glycation, nisin was glycated with lactose, maltodextrin, and dextran at 70 °C and 50% relative humidity for 1-24 h. Nisin before and after glycation was studied for the first time to prepare thyme oil emulsions. The activity of glycated nisin and the thyme oil emulsions was tested in both tryptic soy broth (TSB) and 2% reduced fat milk. Results showed that nisin glycated with a smaller saccharide for a longer duration had a higher degree of glycation and the reduced number of positive charges lowered its antibacterial activity. The emulsified thyme oil had an additive effect with either glycated or native nisin against Listeria monocytogenes Scott A and Bacillus subtilis in TSB and 2% reduced fat milk. However, emulsions were less effective against L. monocytogenes Scott A in milk than same units of native nisin and same concentration of free thyme oil, likely due to the reduced availability of thymol and carvacrol, the main components of thyme oil. These results showed that glycation of nisin cannot broaden its antimicrobial activity and nisin is not a good compound to prepare emulsions of essential oils.
Collapse
Affiliation(s)
- Huaiqiong Chen
- Department of Food Science and Technology, University of Tennessee, Knoxville, United States
| | - P Michael Davidson
- Department of Food Science and Technology, University of Tennessee, Knoxville, United States
| | - Qixin Zhong
- Department of Food Science and Technology, University of Tennessee, Knoxville, United States.
| |
Collapse
|
48
|
Yi J, Lam TI, Yokoyama W, Cheng LW, Zhong F. Controlled release of β-carotene in β-lactoglobulin-dextran-conjugated nanoparticles' in vitro digestion and transport with Caco-2 monolayers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8900-8907. [PMID: 25131216 DOI: 10.1021/jf502639k] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Undesirable aggregation of nanoparticles stabilized by proteins may occur at the protein's isoelectric point when the particle has zero net charge. Stability against aggregation of nanoparticles may be improved by reacting free amino groups with reducing sugars by the Maillard reaction. β-Lactoglobulin (BLG)-dextran conjugates were characterized by SDS-PAGE and CD. Nanoparticles (60-70 nm diameter) of β-carotene (BC) encapsulated by BLG or BLG-dextran were prepared by the homogenization-evaporation method. Both BLG and BLG-dextran nanoparticles appeared to be spherically shaped and uniformly dispersed by TEM. The stability and release of BC from the nanoparticles under simulated gastrointestinal conditions were evaluated. Dextran conjugation prevented the flocculation or aggregation of BLG-dextran particles at pH ∼4-5 compared to very large sized aggregates of BLG nanoparticles. The released contents of BC from BLG and BLG-dextran nanoparticles under acidic gastric conditions were 6.2 ± 0.9 and 5.4 ± 0.3%, respectively. The release of BC from BLG-dextran nanoparticles by trypsin digestion was 51.8 ± 4.3% of total encapsulated BC, and that from BLG nanoparticles was 60.9 ± 2.9%. Neither BLG-BC nanoparticles nor the Maillard-reacted BLG-dextran conjugates were cytotoxic to Caco-2 cells, even at 10 mg/mL. The apparent permeability coefficient (Papp) of Caco-2 cells to BC was improved by nanoencapsulation, compared to free BC suspension. The results indicate that BC-encapsulated β-lactoglobulin-dextran-conjugated nanoparticles are more stable to aggregation under gastric pH conditions with good release and permeability properties.
Collapse
Affiliation(s)
- Jiang Yi
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Food Science and Technology, Jiangnan University , Wuxi 214122, People's Republic of China
| | | | | | | | | |
Collapse
|