1
|
Plankensteiner L, Hennebelle M, Vincken JP, Nikiforidis CV. Insights into the emulsification mechanism of the surfactant-like protein oleosin. J Colloid Interface Sci 2024; 657:352-362. [PMID: 38043237 DOI: 10.1016/j.jcis.2023.11.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/23/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Oleosins are proteins with a unique central hydrophobic hairpin designed to stabilize lipid droplets (oleosomes) in plant seeds. For efficient droplet stabilization, the hydrophobic hairpin with a strong affinity for the apolar droplet core is flanked by hydrophilic arms on each side. This gives oleosins a unique surfactant-like shape making them a very interesting protein. In this study, we tested if isolated oleosins retain their ability to stabilize oil-in-water emulsions, and investigated the underlying stabilization mechanism. Due to their surfactant-like shape, oleosins when dispersed in aqueous buffers associated to micelle-like nanoparticles with a size of ∼33 nm. These micelles, in turn, clustered into larger aggregates of up to 20 µm. Micelle aggregation was more extensive when oleosins lacked charge. During emulsification, oleosin micelles and micelle aggregates dissociated and mostly individual oleosins adsorbed on the oil droplet interface. Oleosins prevented the coalescence of the oil droplets and if sufficiently charged, droplet flocculation as well.
Collapse
Affiliation(s)
- Lorenz Plankensteiner
- Laboratory of Biobased Chemistry and Technology, Wageningen University, the Netherlands; Laboratory of Food Chemistry, Wageningen University, the Netherlands
| | - Marie Hennebelle
- Laboratory of Food Chemistry, Wageningen University, the Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, the Netherlands
| | | |
Collapse
|
2
|
Interdisciplinary Overview of Lipopeptide and Protein-Containing Biosurfactants. Genes (Basel) 2022; 14:genes14010076. [PMID: 36672817 PMCID: PMC9859011 DOI: 10.3390/genes14010076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Biosurfactants are amphipathic molecules capable of lowering interfacial and superficial tensions. Produced by living organisms, these compounds act the same as chemical surfactants but with a series of improvements, the most notable being biodegradability. Biosurfactants have a wide diversity of categories. Within these, lipopeptides are some of the more abundant and widely known. Protein-containing biosurfactants are much less studied and could be an interesting and valuable alternative. The harsh temperature, pH, and salinity conditions that target organisms can sustain need to be understood for better implementation. Here, we will explore biotechnological applications via lipopeptide and protein-containing biosurfactants. Also, we discuss their natural role and the organisms that produce them, taking a glimpse into the possibilities of research via meta-omics and machine learning.
Collapse
|
3
|
Kurapati R, Natarajan U. Tacticity and Ionization Effects on Adsorption Behavior of Poly(acrylic acid) and Poly(methacrylic acid) at the CCl 4–H 2O Interface Revealed by MD Simulations. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Raviteja Kurapati
- Macromolecular Modeling and Simulation Laboratory, Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai600036, India
| | - Upendra Natarajan
- Macromolecular Modeling and Simulation Laboratory, Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai600036, India
| |
Collapse
|
4
|
Yu H, Yang S, Chen Z, Xu Z, Quan X, Zhou J. Orientation and Conformation of Hydrophobin at the Oil-Water Interface: Insights from Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6191-6200. [PMID: 35508911 DOI: 10.1021/acs.langmuir.2c00614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrophobins, a new class of potential protein emulsifiers, have been extensively employed in the food, pharmaceutical, and chemical industries. However, the knowledge of the underlying molecular mechanism of protein adsorption at the oil-water interface remains elusive. In this study, all-atom molecular dynamics simulations were performed to probe the adsorption orientation and conformation change of class II hydrophobin HFBI at the cyclohexane-water interface. It was proposed that a hydrophobic dipole of the protein could be used to quantitatively predict the orientation of the adsorbed HFBI. Simulation results revealed that HFBI adsorbed at the interface with the patch-up orientation toward the oil phase, regardless of its initial orientations. HFBI's secondary structure was maintained to be intact in the course of simulations despite relatively significant variations in the tertiary structure observed, which could well preserve the bioactivity of HFBI. From the energy analysis, the driving force for interface adsorption was primarily determined by van der Waals interactions between HFBI and cyclohexane. Further analysis indicated that the adsorption orientation and conformation of HFBI at the oil-water interface were typically regulated by the hydrophobic patch and some key residues. This study provides some insights into the orientation, conformation, and adsorption mechanism of proteins at the oil-water interface and theoretical guidelines for the design and development of novel biological emulsifiers involved in the food, pharmaceutical, and chemical industries.
Collapse
Affiliation(s)
- Hai Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shengjiang Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zheng Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhiyong Xu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xuebo Quan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
5
|
Vodopivec AA, Chen Y, Russo PS, Hung FR. Molecular Dynamics Simulations of Nanostructures Formed by Hydrophobins and Oil in Seawater. J Phys Chem B 2021; 125:7886-7899. [PMID: 34236182 DOI: 10.1021/acs.jpcb.1c02040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Classical molecular dynamics simulations using the Martini coarse-grained force field were performed to study oil nanodroplets surrounded by fungal hydrophobin (HP) proteins in seawater. The class I EAS and the class II HFBII HPs were studied along with two model oils, namely, benzene and n-decane. Both HPs exhibit free energy minima at the oil-seawater interface, which is deeper in benzene compared to the n-decane systems. Larger constraint forces are required to keep both HPs within the n-decane phase compared to inside benzene, with HFBII being more affine to benzene compared to EAS. Smaller surface tensions are observed at benzene-seawater interfaces coated with HPs compared to their n-decane counterparts. In the latter the surface tension remains unchanged upon increases in the concentration of HPs, whereas in benzene systems adding more HPs lead to decreases in surface tension. EAS has a larger tendency to cluster together in the interface compared to HFBII, with both HPs having larger coordination numbers when surrounding benzene droplets compared to when they are around n-decane nanoblobs. The HP-oil nanostructures in seawater examined have radii of gyration ranging between 2 and 12 nm, where the n-decane structures are larger and have more irregular shapes compared to the benzene systems. The n-decane molecules within the nanostructures form a compact spherical core, with the HPs partially covering its surface and clustering together, conferring irregular shapes to the nanostructures. The EAS with n-decane structures are larger and have more irregular shapes compared to their HFBII counterparts. In contrast, in the HP-benzene structures both HPs tend to penetrate the oil part of the droplet. The HFBII-benzene structures having the larger oil/HP ratios examined tend to be more compact and spherical compared to their EAS counterparts; however, some of the HFBII-benzene systems that have smaller oil/HP ratios have a more elongated structure compared to their EAS counterparts. This simulation study provides insights into HP-oil nanostructures that are smaller than the oil droplets and gas bubbles recently studied in experiments and, thus, might be challenging to examine with experimental techniques.
Collapse
Affiliation(s)
- Andrés A Vodopivec
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yuwu Chen
- Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Paul S Russo
- School of Materials Science and Engineering and School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Francisco R Hung
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Alghamdi HA, Campbell LJ, Euston SR. Molecular dynamics simulation of the adsorption of mung bean defensin VrD1 to a phospholipid bilayer. FOOD STRUCTURE 2019. [DOI: 10.1016/j.foostr.2019.100117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Molecular simulation of protein adsorption and conformation at gas-liquid, liquid–liquid and solid–liquid interfaces. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2018.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Chen G, Huang K, Miao M, Feng B, Campanella OH. Molecular Dynamics Simulation for Mechanism Elucidation of Food Processing and Safety: State of the Art. Compr Rev Food Sci Food Saf 2018; 18:243-263. [PMID: 33337012 DOI: 10.1111/1541-4337.12406] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
Molecular dynamics (MD) simulation is a useful technique to study the interaction between molecules and how they are affected by various processes and processing conditions. This review summarizes the application of MD simulations in food processing and safety, with an emphasis on the effects that emerging nonthermal technologies (for example, high hydrostatic pressure, pulsed electric field) have on the molecular and structural characteristics of foods and biomaterials. The advances and potential projection of MD simulations in the science and engineering aspects of food materials are discussed and focused on research work conducted to study the effects of emerging technologies on food components. It is expected by showing key case studies that it will stir novel developments as a valuable tool to study the effects of emerging food technologies on biomaterials. This review is useful to food researchers and the food industry, as well as researchers and practitioners working on flavor and nutraceutical encapsulations, dietary carbohydrate product developments, modified starches, protein engineering, and other novel food applications.
Collapse
Affiliation(s)
- Gang Chen
- School of Food Science and Technology, Henan Univ. of Technology, 100 Lianhua St., Zhengzhou 450001, Henan, P. R. China.,State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Kai Huang
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Biao Feng
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Osvaldo H Campanella
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China.,Agricultural and Biological Engineering, and Dept. of Food Science, Whistler Center for Carbohydrate Research, Purdue Univ., 745 Agriculture Mall Dr., West Lafayette, IN, 47906, U.S.A
| |
Collapse
|
9
|
Abstract
Surfaces and interfaces are ubiquitous in nature and are involved in many biological processes. Due to this, natural organisms have evolved a number of methods to control interfacial and surface properties. Many of these methods involve the use of specialised protein biosurfactants, which due to the competing demands of high surface activity, biocompatibility, and low solution aggregation may take structures that differ from the traditional head–tail structure of small molecule surfactants. As well as their biological functions, these proteins have also attracted interest for industrial applications, in areas including food technology, surface modification, and drug delivery. To understand the biological functions and technological applications of protein biosurfactants, it is necessary to have a molecular level description of their behaviour, in particular at surfaces and interfaces, for which molecular simulation is well suited to investigate. In this review, we will give an overview of simulation studies of a number of examples of protein biosurfactants (hydrophobins, surfactin, and ranaspumin). We will also outline some of the key challenges and future directions for molecular simulation in the investigation of protein biosurfactants and how this can help guide future developments.
Collapse
|
10
|
Hähl H, Vargas JN, Jung M, Griffo A, Laaksonen P, Lienemann M, Jacobs K, Seemann R, Fleury JB. Adhesion Properties of Freestanding Hydrophobin Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8542-8549. [PMID: 29886739 DOI: 10.1021/acs.langmuir.8b00575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrophobins are a family of small-sized proteins featuring a distinct hydrophobic patch on the protein's surface, rendering them amphiphilic. This particularity allows hydrophobins to self-assemble into monolayers at any hydrophilic/hydrophobic interface. Moreover, stable pure protein bilayers can be created from two interfacial hydrophobin monolayers by contacting either their hydrophobic or their hydrophilic sides. In this study, this is achieved via a microfluidic approach, in which also the bilayers' adhesion energy can be determined. This enables us to study the origin of the adhesion of hydrophobic and hydrophilic core bilayers made from the class II hydrophobins HFBI and HFBII. Using different fluid media in this setup and introducing genetically modified variants of the HFBI molecule, the different force contributions to the adhesion of the bilayer sheets are studied. It was found that in the hydrophilic contact situation, the adhesive interaction was higher than that in the hydrophobic contact situation and could be even enhanced by reducing the contributions of electrostatic interactions. This effect indicates that the van der Waals interaction is the dominant contribution that explains the stability of the observed bilayers.
Collapse
Affiliation(s)
- Hendrik Hähl
- Department of Experimental Physics and Center for Biophysics , Saarland University , D-66123 Saarbrücken , Germany
| | - Jose Nabor Vargas
- Department of Experimental Physics and Center for Biophysics , Saarland University , D-66123 Saarbrücken , Germany
| | - Michael Jung
- Department of Experimental Physics and Center for Biophysics , Saarland University , D-66123 Saarbrücken , Germany
| | - Alessandra Griffo
- Department of Bioproducts and Biosystems BIO2 , Aalto University , P.O. Box 16100, 00076 Aalto , Finland
| | - Päivi Laaksonen
- Department of Bioproducts and Biosystems BIO2 , Aalto University , P.O. Box 16100, 00076 Aalto , Finland
| | - Michael Lienemann
- VTT Technical Research Centre of Finland Ltd. , Tietotie 2 , 02150 Espoo , Finland
| | - Karin Jacobs
- Department of Experimental Physics and Center for Biophysics , Saarland University , D-66123 Saarbrücken , Germany
| | - Ralf Seemann
- Department of Experimental Physics and Center for Biophysics , Saarland University , D-66123 Saarbrücken , Germany
| | - Jean-Baptiste Fleury
- Department of Experimental Physics and Center for Biophysics , Saarland University , D-66123 Saarbrücken , Germany
| |
Collapse
|
11
|
Cheung DL. Adsorption and conformations of lysozyme and α-lactalbumin at a water-octane interface. J Chem Phys 2018; 147:195101. [PMID: 29166117 DOI: 10.1063/1.4994561] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
As proteins contain both hydrophobic and hydrophilic amino acids, they will readily adsorb onto interfaces between water and hydrophobic fluids such as oil. This adsorption normally causes changes in the protein structure, which can result in loss of protein function and irreversible adsorption, leading to the formation of protein interfacial films. While this can be advantageous in some applications (e.g., food technology), in most cases it limits our ability to exploit protein functionality at interfaces. To understand and control protein interfacial adsorption and function, it is necessary to understand the microscopic conformation of proteins at liquid interfaces. In this paper, molecular dynamics simulations are used to investigate the adsorption and conformation of two similar proteins, lysozyme and α-lactalbumin, at a water-octane interface. While they both adsorb onto the interface, α-lactalbumin does so in a specific orientation, mediated by two amphipathic helices, while lysozyme adsorbs in a non-specific manner. Using replica exchange simulations, both proteins are found to possess a number of distinct interfacial conformations, with compact states similar to the solution conformation being most common for both proteins. Decomposing the different contributions to the protein energy at oil-water interfaces suggests that conformational change for α-lactalbumin, unlike lysozyme, is driven by favourable protein-oil interactions. Revealing these differences between the factors that govern the conformational change at interfaces in otherwise similar proteins can give insight into the control of protein interfacial adsorption, aggregation, and function.
Collapse
Affiliation(s)
- David L Cheung
- School of Chemistry, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
12
|
Brandani GB, Vance SJ, Schor M, Cooper A, Kennedy MW, Smith BO, MacPhee CE, Cheung DL. Adsorption of the natural protein surfactant Rsn-2 onto liquid interfaces. Phys Chem Chem Phys 2017; 19:8584-8594. [PMID: 28289744 DOI: 10.1039/c6cp07261e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To stabilize foams, droplets and films at liquid interfaces a range of protein biosurfactants have evolved in nature. Compared to synthetic surfactants, these combine surface activity with biocompatibility and low solution aggregation. One recently studied example is Rsn-2, a component of the foam nest of the frog Engystomops pustulosus, which has been predicted to undergo a clamshell-like opening transition at the air-water interface. Using atomistic molecular dynamics simulations and surface tension measurements we study the adsorption of Rsn-2 onto air-water and cyclohexane-water interfaces. The protein adsorbs readily at both interfaces, with adsorption mediated by the hydrophobic N-terminus. At the cyclohexane-water interface the clamshell opens, due to the favourable interaction between hydrophobic residues and cyclohexane molecules and the penetration of cyclohexane molecules into the protein core. Simulations of deletion mutants showed that removal of the N-terminus inhibits interfacial adsorption, which is consistent with the surface tension measurements. Deletion of the hydrophilic C-terminus also affects adsorption, suggesting that this plays a role in orienting the protein at the interface. The characterisation of the interfacial behaviour gives insight into the factors that control the interfacial adsorption of proteins, which may inform new applications of this and similar proteins in areas including drug delivery and food technology and may also be used in the design of synthetic molecules showing similar changes in conformation at interfaces.
Collapse
Affiliation(s)
- Giovanni B Brandani
- School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK.
| | - Steven J Vance
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Marieke Schor
- School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK.
| | - Alan Cooper
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Malcolm W Kennedy
- School of Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Brian O Smith
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, G12 8QQ, UK.
| | - Cait E MacPhee
- School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK.
| | - David L Cheung
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK and School of Chemistry, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
13
|
Cheung DL. Conformations of Myoglobin-Derived Peptides at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4405-4414. [PMID: 27077474 DOI: 10.1021/acs.langmuir.5b04619] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The conformational change exhibited by proteins at liquid interfaces, such as the air-water and oil-water interfaces, has long been of interest both for understanding protein structure outside of native environments and for applications in areas including food technology and pharmaceuticals. Using molecular simulation, this article studies the conformations of two peptides derived from myoglobin, for which the emulsification behavior has been studied. Both peptides were found to readily adsorb onto the air-water interface, with one of these (experimentally, the more effective stabilizer) adopting a flat, extended conformation and the other peptide remaining close to its solution conformation.
Collapse
Affiliation(s)
- David L Cheung
- School of Chemistry, National University of Ireland Galway , Galway, Ireland
| |
Collapse
|
14
|
Atomistic simulation of hydrophobin HFBII conformation in aqueous and fluorous media and at the water/vacuum interface. J Mol Graph Model 2015; 63:8-14. [PMID: 26606320 DOI: 10.1016/j.jmgm.2015.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/05/2015] [Accepted: 11/06/2015] [Indexed: 11/20/2022]
Abstract
Hydrophobins are proteins of interest for numerous applications thanks to their unique conformational and surface properties and their ability to self-assemble at interfaces. Here we report fully atomistic molecular mechanics and molecular dynamics results together with circular dichroism experimental data, aimed to study the conformational properties of the hydrophobin HFBII in a fluorinated solvent in comparison with a water solution and/or at an aqueous/vacuum interface. Both the atomistic simulations and the circular dichroism data show the remarkable structural stability of HFBII at all scales in all these environments, with no significant structural change, although a small cavity is formed in the fluorinated solvent. The combination of theoretical calculations and circular dichroism data can describe in detail the protein conformation and flexibility in different solvents and/or at an interface, and constitutes a first step towards the study of their self-assembly.
Collapse
|