1
|
The Improvement of Dispersion Stability and Bioaccessibility of Calcium Carbonate by Solid/Oil/Water (S/O/W) Emulsion. Foods 2022; 11:foods11244044. [PMID: 36553786 PMCID: PMC9777969 DOI: 10.3390/foods11244044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/16/2022] Open
Abstract
Solid/oil/water (S/O/W) emulsion loaded with calcium carbonate (CaCO3) was constructed to raise the dispersion stability and bioaccessibility. In the presence or absence of sodium caseinate (NaCas), the particle size, Zeta-potential, physical stability, and apparent viscosity of stabilized S/O/W emulsions with different gelatin (GEL) concentrations (0.1~8.0 wt%) were compared. Combined with a confocal laser scanning microscope (CLSM), cryoscanning electron microscope (Cryo-SEM), and interfacial adsorption characteristics, the stabilization mechanism was analyzed. The bioavailability of CaCO3 was investigated in a simulated gastrointestinal tract (GIT) model. The S/O/W-emulsion droplets prepared by the NaCas-GEL composite have a smaller particle size, higher Zeta-potential, larger apparent viscosity, and better physical stability compared with GEL as a single emulsifier. CLSM results confirmed that CaCO3 powder was encapsulated in emulsion droplets. The Cryo-SEM results and interfacial adsorption characteristics analysis indicated that the NaCas-GEL binary composite could effectively reduce the interfacial tension, and the droplets form a denser three-dimensional network space structure with a shell-core structure which enhanced the stability of the system. GIT studies showed that the droplets presented higher CaCO3 bioaccessibility than the CaCO3 powder. This study enriched the theory of the S/O/W transfer system and provided theoretical support for the development of CaCO3 application in liquid food.
Collapse
|
2
|
Enhancing the Dispersion Stability and Sustained Release of S/O/W Emulsions by Encapsulation of CaCO3 Droplets in Sodium Caseinate/Xanthan Gum Microparticles. Foods 2022; 11:foods11182854. [PMID: 36140982 PMCID: PMC9498002 DOI: 10.3390/foods11182854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/05/2022] Open
Abstract
In this study, solid/oil/water (S/O/W) emulsions were prepared by sodium caseinate (NaCas) and Xanthan gum (XG) binary composite to improve the dispersion stability of calcium carbonate (CaCO3) and achieve a targeted slow-release effect. CaCO3 S/O/W emulsions were determined by particle size, Zeta potential, physical stability, and microstructure. X-ray diffraction (XRD), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR) were used to characterize the molecular interactions among components. Molecular docking technology was used to predict the possible binding mode between NaCas-XG. The percentage of free Ca2+ released in the gastrointestinal tract (GIT) model was also studied. It was found that when the concentration of XG was 0.5 wt% and pH was 7, the particle size was smaller, the distribution was uniform, and the physical stability was improved. The microstructure results showed that the embedding effect of S/O/W emulsions was better, the particle size distribution was more uniform when XG concentration increased and formed a filament-like connector with a relatively more stereoscopic structure. XRD results confirmed that the CaCO3 was partially covered due to physical embedding. Infrared and Raman analysis and molecular docking results showed electrostatic and hydrophobic interaction between NaCas and XG. In the GIT digestion model, S/O/W emulsion released Ca2+ slowly in the gastric digestion stage, which proved the targeted slow-release effect of the S/O/W emulsions delivery vector. The results showed that the S/O/W emulsions delivery system is an effective way to promote the application of CaCO3.
Collapse
|
3
|
Chen X, Chen Y, Liu Y, Zou L, McClements DJ, Liu W. A review of recent progress in improving the bioavailability of nutraceutical-loaded emulsions after oral intake. Compr Rev Food Sci Food Saf 2022; 21:3963-4001. [PMID: 35912644 DOI: 10.1111/1541-4337.13017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 01/28/2023]
Abstract
Increasing awareness of the health benefits of specific constituents in fruits, vegetables, cereals, and other whole foods has sparked a broader interest in the potential health benefits of nutraceuticals. Many nutraceuticals are hydrophobic substances, which means they must be encapsulated in colloidal delivery systems. Oil-in-water emulsions are one of the most widely used delivery systems for improving the bioavailability and bioactivity of these nutraceuticals. The composition and structure of emulsions can be designed to improve the water dispersibility, physicochemical stability, and bioavailability of the encapsulated nutraceuticals. The nature of the emulsion used influences the interfacial area and properties of the nutraceutical-loaded oil droplets in the gastrointestinal tract, which influences their digestion, as well as the bioaccessibility, metabolism, and absorption of the nutraceuticals. In this article, we review recent in vitro and in vivo studies on the utilization of emulsions to improve the bioavailability of nutraceuticals. The findings from this review should facilitate the design of more efficacious nutraceutical-loaded emulsions with increased bioactivity.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Yan Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yikun Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
|
5
|
Bertsch P, Bergfreund J, Windhab EJ, Fischer P. Physiological fluid interfaces: Functional microenvironments, drug delivery targets, and first line of defense. Acta Biomater 2021; 130:32-53. [PMID: 34077806 DOI: 10.1016/j.actbio.2021.05.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Fluid interfaces, i.e. the boundary layer of two liquids or a liquid and a gas, play a vital role in physiological processes as diverse as visual perception, oral health and taste, lipid metabolism, and pulmonary breathing. These fluid interfaces exhibit a complex composition, structure, and rheology tailored to their individual physiological functions. Advances in interfacial thin film techniques have facilitated the analysis of such complex interfaces under physiologically relevant conditions. This allowed new insights on the origin of their physiological functionality, how deviations may cause disease, and has revealed new therapy strategies. Furthermore, the interactions of physiological fluid interfaces with exogenous substances is crucial for understanding certain disorders and exploiting drug delivery routes to or across fluid interfaces. Here, we provide an overview on fluid interfaces with physiological relevance, namely tear films, interfacial aspects of saliva, lipid droplet digestion and storage in the cell, and the functioning of lung surfactant. We elucidate their structure-function relationship, discuss diseases associated with interfacial composition, and describe therapies and drug delivery approaches targeted at fluid interfaces. STATEMENT OF SIGNIFICANCE: Fluid interfaces are inherent to all living organisms and play a vital role in various physiological processes. Examples are the eye tear film, saliva, lipid digestion & storage in cells, and pulmonary breathing. These fluid interfaces exhibit complex interfacial compositions and structures to meet their specific physiological function. We provide an overview on physiological fluid interfaces with a focus on interfacial phenomena. We elucidate their structure-function relationship, discuss diseases associated with interfacial composition, and describe novel therapies and drug delivery approaches targeted at fluid interfaces. This sets the scene for ocular, oral, or pulmonary surface engineering and drug delivery approaches.
Collapse
|
6
|
Zhu Y, Peng Y, Wen J, Quek SY. A Comparison of Microfluidic-Jet Spray Drying, Two-Fluid Nozzle Spray Drying, and Freeze-Drying for Co-Encapsulating β-Carotene, Lutein, Zeaxanthin, and Fish Oil. Foods 2021; 10:foods10071522. [PMID: 34359390 PMCID: PMC8303781 DOI: 10.3390/foods10071522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
Various microencapsulation techniques can result in significant differences in the properties of dried microcapsules. Microencapsulation is an effective approach to improve fish oil properties, including oxidisability and unpleasant flavour. In this study, β-carotene, lutein, zeaxanthin, and fish oil were co-encapsulated by microfluidic-jet spray drying (MFJSD), two-fluid nozzle spray drying (SD), and freeze-drying (FD), respectively. The aim of the current study is to understand the effect of different drying techniques on microcapsule properties. Whey protein isolate (WPI) and octenylsuccinic anhydride (OSA) modified starch were used as wall matrices in this study for encapsulating carotenoids and fish oil due to their strong emulsifying properties. Results showed the MFJSD microcapsules presented uniform particle size and regular morphological characteristics, while the SD and FD microcapsules presented a large distribution of particle size and irregular morphological characteristics. Compared to the SD and FD microcapsules, the MFJSD microcapsules possessed higher microencapsulation efficiency (94.0–95.1%), higher tapped density (0.373–0.652 g/cm3), and higher flowability (the Carr index of 16.0–30.0%). After a 4-week storage, the SD microcapsules showed the lower retention of carotenoids, as well as ω-3 LC-PUFAs than the FD and MFJSD microcapsules. After in vitro digestion trial, the differences in the digestion behaviours of the microcapsules mainly resulted from the different wall materials, but independent of drying methods. This study has provided an alternative way of delivering visual-beneficial compounds via a novel drying method, which is fundamentally essential in both areas of microencapsulation application and functional food development.
Collapse
Affiliation(s)
- Yongchao Zhu
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (Y.Z.); (Y.P.)
| | - Yaoyao Peng
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (Y.Z.); (Y.P.)
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (Y.Z.); (Y.P.)
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
- Correspondence:
| |
Collapse
|
7
|
Sams L, Amara S, Mansuelle P, Puppo R, Lebrun R, Paume J, Giallo J, Carrière F. Characterization of pepsin from rabbit gastric extract, its action on β-casein and the effects of lipids on proteolysis. Food Funct 2019; 9:5975-5988. [PMID: 30379166 DOI: 10.1039/c8fo01450g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rabbit gastric extract (RGE) is a source of gastric enzymes for in vitro digestion studies. While its gastric lipase activity has been characterized and compared to other lipases, its pepsin activity has not been studied. We measured pepsin activity in RGE using both hemoglobin and azocoll as substrates, and identified the protein separated by SDS-PAGE as a type II-4 mature pepsin of 328 amino acid residues using Edman sequencing, LC-MS/MS analysis and intact mass measurement. As a proof-of-concept that RGE was suitable for in vitro digestion of both proteins and lipids, it was used for studying the proteolysis of β-casein under conditions mimicking the early stages of intragastric digestion. β-Casein was displayed either in solution or at the surface of a β-casein-stabilized rapeseed oil emulsion to investigate the impact of lipids and lipolysis on proteolysis. Proteolysis of β-casein was quantified based on the kinetics of β-casein disappearance, the identification of various peptides generated upon digestion and their variation with time. The results obtained with RGE were highly similar to those obtained with equivalent amounts of porcine pepsin used as a reference standard. Digestion of β-casein was slower when it was displayed at the oil-water interface and some degradation peptides were transiently observed at higher levels and for a longer time than with β-casein in solution, or accumulated upon digestion. N-terminal sequencing of the main isolated peptides revealed a sequential action of pepsin starting from the hydrophobic C-terminal end of β-casein, which was impaired by the interaction of β-casein with lipids.
Collapse
Affiliation(s)
- Laura Sams
- Aix Marseille Université, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, Marseille, France.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Liu W, Wei F, Ye A, Tian M, Han J. Kinetic stability and membrane structure of liposomes during in vitro infant intestinal digestion: Effect of cholesterol and lactoferrin. Food Chem 2017; 230:6-13. [DOI: 10.1016/j.foodchem.2017.03.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 12/17/2016] [Accepted: 03/04/2017] [Indexed: 11/29/2022]
|
9
|
Shani-Levi C, Alvito P, Andrés A, Assunção R, Barberá R, Blanquet-Diot S, Bourlieu C, Brodkorb A, Cilla A, Deglaire A, Denis S, Dupont D, Heredia A, Karakaya S, Giosafatto CVL, Mariniello L, Martins C, Ménard O, El SN, Vegarud GE, Ulleberg E, Lesmes U. Extending in vitro digestion models to specific human populations: Perspectives, practical tools and bio-relevant information. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2016.10.017] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Liu W, Kong Y, Tu P, Lu J, Liu C, Liu W, Han J, Liu J. Physical–chemical stability and in vitro digestibility of hybrid nanoparticles based on the layer-by-layer assembly of lactoferrin and BSA on liposomes. Food Funct 2017; 8:1688-1697. [DOI: 10.1039/c7fo00308k] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Novel hybrid nanoparticles fabricated by the layer-by-layer deposition of lactoferrin and BSA on nanoliposomes showed a higher physical–chemical stability and digestibility than bare liposomes.
Collapse
Affiliation(s)
- Weilin Liu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- P.R. China
- College of Food and Biotechnology
| | - Youyu Kong
- College of Food and Biotechnology
- Zhejiang Gongshang University
- Hangzhou
- P.R. China
| | - Piaohan Tu
- College of Food and Biotechnology
- Zhejiang Gongshang University
- Hangzhou
- P.R. China
| | - Junmeng Lu
- College of Food and Biotechnology
- Zhejiang Gongshang University
- Hangzhou
- P.R. China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- P.R. China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- P.R. China
| | - Jianzhong Han
- College of Food and Biotechnology
- Zhejiang Gongshang University
- Hangzhou
- P.R. China
| | - Jianhua Liu
- Department of Food Science and Engineering
- Ocean College
- Zhejiang University of Technology
- Hangzhou 310014
- PR China
| |
Collapse
|
11
|
Sams L, Paume J, Giallo J, Carrière F. Relevant pH and lipase for in vitro models of gastric digestion. Food Funct 2016; 7:30-45. [PMID: 26527368 DOI: 10.1039/c5fo00930h] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of in vitro digestion models relies on the availability of in vivo data such as digestive enzyme levels and pH values recorded in the course of meal digestion. The variations of these parameters along the GI tract are important for designing dynamic digestion models but also static models for which the choice of representative conditions of the gastric and intestinal conditions is critical. Simulating gastric digestion with a static model and a single set of parameters is particularly challenging because the variations in pH and enzyme concentration occurring in the stomach are much broader than those occurring in the small intestine. A review of the literature on this topic reveals that most models of gastric digestion use very low pH values that are not representative of the fed conditions. This is illustrated here by showing the variations in gastric pH as a function of meal gastric emptying instead of time. This representation highlights those pH values that are the most relevant for testing meal digestion in the stomach. Gastric lipolysis is still largely ignored or is performed with microbial lipases. In vivo data on gastric lipase and lipolysis have however been collected in humans and dogs during test meals. The biochemical characterization of gastric lipase has shown that this enzyme is rather unique among lipases: (i) stability and activity in the pH range 2 to 7 with an optimum at pH 4-5.4; (ii) high tensioactivity that allows resistance to bile salts and penetration into phospholipid layers covering TAG droplets; (iii) sn-3 stereospecificity for TAG hydrolysis; and (iv) resistance to pepsin. Most of these properties have been known for more than two decades and should provide a rational basis for the replacement of gastric lipase by other lipases when gastric lipase is not available.
Collapse
Affiliation(s)
- Laura Sams
- CNRS, Aix Marseille Université, Enzymologie Interfaciale et Physiologie de la Lipolyse UMR7282, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France. and GERME S.A., Technopôle Marseille Provence Château-Gombert, ZAC la Baronne, 12 Rue Marc Donadille, 13013 Marseille, France
| | - Julie Paume
- GERME S.A., Technopôle Marseille Provence Château-Gombert, ZAC la Baronne, 12 Rue Marc Donadille, 13013 Marseille, France
| | - Jacqueline Giallo
- GERME S.A., Technopôle Marseille Provence Château-Gombert, ZAC la Baronne, 12 Rue Marc Donadille, 13013 Marseille, France
| | - Frédéric Carrière
- CNRS, Aix Marseille Université, Enzymologie Interfaciale et Physiologie de la Lipolyse UMR7282, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| |
Collapse
|