1
|
Huang M, Li L, Lei G, Qiu R, Wang Y, Wu J, Zong X. Preparation of fern root resistant starch by pullulanase and glucoamylase combined with autoclaving-enzymatic method: physicochemical properties and structural characterization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39258371 DOI: 10.1002/jsfa.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Fern root starch has a high percentage of amylose and has great potential for application in the field of slow-digesting foods. Clarifying the effect of treatment conditions on fern root starch is key to achieving industrialized production of fern root resistant starch. In the present study, fern root starch was treated by the autoclave-enzymatic method with pullulanase, glucoamylase and mixed enzyme. RESULTS The content of resistant starch in fern roots treated with mixed enzyme was the highest (24.07 ± 1.11%), which was approximately 320% times that of the native starch, had the best water-holding capacity (151.08%), vital transparency and freeze-thaw stability. By contrast, the solubility, swelling and viscosity were lower than natural starch. In addition, mixed enzyme shows a denser structure, and the crystal form changes from C-type to V-type, with a high relative crystallinity and significantly enhanced thermal stability. CONCLUSION After mixed enzyme combined with autoclave treatment, the content of resistant starch in fern root was greatly increased. The modified starch molecules did not produce new functional groups, which made the crystal structure of starch molecules more compact, and resistance to enzymatic hydrolysis and high temperature thermal stability were significantly enhanced. This provides a positive reference for further in-depth study of fern root starch, improvement of utilization value, development and innovation of new food health products, and diabetes treatment. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Huang
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin, China
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Li Li
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Guoqing Lei
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Ran Qiu
- China Resources Snow Breweries Co., Ltd, Beijing, China
| | - Yi Wang
- Sichuan Yibin Wuliangye Group Limited, Yibin, China
| | - Jianhang Wu
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin, China
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Xuyan Zong
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin, China
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| |
Collapse
|
2
|
Chen L, Li X, Li W, Hao X, Wu S, Zhang M, Zheng F, Zhang N. Structural, physicochemical, and digestive properties of enzymatic debranched rice starch modified by phenolic compounds with varying structures. Int J Biol Macromol 2024; 274:133262. [PMID: 38901511 DOI: 10.1016/j.ijbiomac.2024.133262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/11/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
The physicochemical properties of starch and phenolic acid (PA) complexes largely depend on the effect of non-covalent interactions on the microstructure of starch. However, whether there are differences and commonalities in the interactions between various types of PAs and starch remains unclear. The physicochemical properties and digestive characteristics of the complexes were investigated by pre-gelatinization of 16 structurally different PAs and pullulanase-modified rice starches screened. FT-IR and XRD results revealed that PA complexed with debranched rice starch (DRS) through hydrogen bonding and hydrophobic interaction. Benzoic/phenylacetic acid with polyhydroxy groups could enter the helical cavities of the starch chains to promote the formation of V-shaped crystals, and cinnamic acid with p-hydroxyl structure acted between starch chains in a bridging manner, both of which increased the relative crystallinity of DRS, with DRS-ellagic acid increasing to 20.03 %. The digestion and hydrolysis results indicated that the acidification and methoxylation of PA synergistically decreased the enzyme activity leading to a decrease in the digestibility of the complexes, and the resistant starch content of the DRS-vanillic acid complexes increased from 28.27 % to 71.67 %. Therefore, the selection of structurally appropriate PAs can be used for the targeted preparation of starch-based foods and materials.
Collapse
Affiliation(s)
- Linlin Chen
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China.
| | - Xintong Li
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Wei Li
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Xi Hao
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Songyao Wu
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Ming Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Fengming Zheng
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China.
| |
Collapse
|
3
|
Lee SH, Huang WY, Hwang J, Yoon H, Heo W, Hong J, Kim MJ, Kang CS, Han BK, Kim YJ. Characteristics of amylose-lipid complex prepared from pullulanase-treated rice and wheat flour. Food Sci Biotechnol 2024; 33:1113-1122. [PMID: 38440677 PMCID: PMC10908976 DOI: 10.1007/s10068-023-01411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/25/2023] [Accepted: 08/01/2023] [Indexed: 03/06/2024] Open
Abstract
This study aimed to evaluate the properties of amylose-lipid complexes in rice and wheat flours utilizing pullulanase as a debranching enzyme. Rice and flour were both treated with pullulanase before being combined with free fatty acids to form compounds denoted as RPF (rice-pullulanase-fatty acid) and FPF (flour-pullulanase-fatty acid), respectively. Our results showed that RPF and FPF had higher complex index and lower hydrolysis values than enzyme-untreated amylose-lipid complexes. Furthermore, RPF and FPF demonstrated lower swelling power and higher water solubility values, indicating changes in the physical properties of the starches. In vivo studies showed that RPF and FPF caused a smaller increase in blood glucose levels than untreated rice and flour, highlighting their potential use as functional food ingredients. These findings provide valuable information for the development of novel rice-and wheat-based foods with improved nutritional and physiological properties. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01411-0.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Department of Food & Biotechnology, Korea University, Sejong, 30019 Republic of Korea
| | - Wen Yan Huang
- Department of Food & Biotechnology, Korea University, Sejong, 30019 Republic of Korea
| | - Jinhee Hwang
- Department of Food & Biotechnology, Korea University, Sejong, 30019 Republic of Korea
| | - Hyeock Yoon
- Department of Food and Regulatory Science, Korea University, Sejong, 30019 Republic of Korea
| | - Wan Heo
- Department of Food & Nutrition, Seowon University, Cheongju, 28674 Republic of Korea
| | - Jiyoun Hong
- Department of Food & Biotechnology, Korea University, Sejong, 30019 Republic of Korea
- Department of Food and Regulatory Science, Korea University, Sejong, 30019 Republic of Korea
| | - Mi Jeong Kim
- Department of Food & Biotechnology, Korea University, Sejong, 30019 Republic of Korea
| | - Chang-Soo Kang
- Department of Agriculture & Fisheries Processing, Korea National College of Agriculture and Fisheres, Jeonju, 54874 Republic of Korea
| | - Bok Kyung Han
- Department of Food & Biotechnology, Korea University, Sejong, 30019 Republic of Korea
- Department of Food and Regulatory Science, Korea University, Sejong, 30019 Republic of Korea
| | - Young Jun Kim
- Department of Food & Biotechnology, Korea University, Sejong, 30019 Republic of Korea
- Department of Food and Regulatory Science, Korea University, Sejong, 30019 Republic of Korea
| |
Collapse
|
4
|
Li Z, Kong H, Li Z, Gu Z, Yang Q, Ban X, Hong Y, Cheng L, Li C. Pullulanase pretreatment of highly concentrated maltodextrin solution improves maltose yield during β-amylase-catalyzed saccharification. Int J Biol Macromol 2024; 264:130701. [PMID: 38458283 DOI: 10.1016/j.ijbiomac.2024.130701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/25/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Increasing the substrate concentration can effectively reduce energy consumption and result in more economic benefits in the industrial production of maltose, but this process remarkably increases the viscosity, which has a negative effect on saccharification. To improve saccharification efficiency, pullulanase is usually employed. In the conventional process of maltose production, pullulanase is added at the same time with β-amylase or later, but this process seems inefficient when the substrate concentration is high. Herein, a novel method was introduced to enhance the maltose yield under high substrate concentration. The results indicated that the pullulanase pretreatment of highly concentrated maltodextrin solution for 2 h greatly affects the final conversion rate of β-amylase-catalyzed saccharification. The maltose yield reached 80.95 %, which is 11.8 % above the control value. Further examination confirmed that pullulanase pretreatment decreased the number of branch points of maltodextrin and resulted in a high content of oligosaccharides. These linear chains were suitable for β-amylase-catalyzed saccharification to produce maltose. This research offers a new effective and green strategy for starch sugar production.
Collapse
Affiliation(s)
- Zexi Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haocun Kong
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.
| | - Qianwen Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Bai M, Liu K, Wang Y, Hou S, Li X, Luo J. Extraction process, physicochemical properties, and digestive performance of red yeast rice starch. Biotechnol Appl Biochem 2024; 71:372-386. [PMID: 38128959 DOI: 10.1002/bab.2546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
In the present study, taking red yeast rice (RYR) as the raw material, the optimum extraction process of RYR starch was investigated through a single-factor experiment and the Box-Behnken design: The liquid-to-solid ratio was 5 mL/g, the concentration of sodium hydroxide solution was 0.075 mol/L, and the extraction time was 3.1 h. Under these extraction conditions, the extraction rate of starch reached 90.077%. To explore the influence of solid-state fermentation on RYR starch, three different fermentation stages of RYR starch, raw rice starch, semi-gelatinized rice starch, and RYR starch were used as test materials to determine the changes in the physicochemical properties and glycemic index (GI) values of RYR starch during solid-state fermentation. The results showed that with the advancement of the RYR solid-state fermentation process, the starch particle size gradually increased, the light transmittance gradually decreased, and the solubility and swelling power significantly increased. In addition, the amylose content of starch gradually increased, whereas the amylopectin content gradually decreased; the content of fast digestible starch and slow digestible starch decreased, whereas the content of resistant starch increased. In parallel, during solid-state fermentation, the hydrolysis index significantly decreased, and the GI values also decreased. In summary, solid-state fermentation reduced the digestibility of RYR starch. These results provide a theoretical basis for the structural and physicochemical properties of RYR starch and lay a foundation for its subsequent application and expansion of RYR starch.
Collapse
Affiliation(s)
- Mengting Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuguang Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Kumari B, Sit N. Comprehensive review on single and dual modification of starch: Methods, properties and applications. Int J Biol Macromol 2023; 253:126952. [PMID: 37722643 DOI: 10.1016/j.ijbiomac.2023.126952] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Starch is a natural, renewable, affordable, and easily available polymer used as gelling agents, thickeners, binders, and potential raw materials in various food products. Due to these techno-functional properties of starch, food and non-food industries are showing interest in developing starch-based food products such as films, hydrogels, starch nanoparticles, and many more. However, the application of native starch is limited due to its shortcomings. To overcome these problems, modification of starch is necessary. Various single and dual modification processes are used to improve techno-functional, morphological, and microstructural properties, film-forming capacity, and resistant starch. This review paper provides a comprehensive and critical understanding of physical, chemical, enzymatic, and dual modifications (combination of any two single modifications), the effects of parameters on modification, and their applications. The sequence of modification plays a key role in the dual modification process. All single modification methods modify the physicochemical properties, crystallinity, and emulsion properties, but some shortcomings such as lower thermal, acidic, and shear stability limit their application in industries. Dual modification has been introduced to overcome these limitations and maximize the effectiveness of single modification.
Collapse
Affiliation(s)
- Bharati Kumari
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India
| | - Nandan Sit
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India.
| |
Collapse
|
7
|
Wan L, Wang X, Liu H, Xiao S, Ding W, Pan X, Fu Y. Retrogradation inhibition of wheat starch with wheat oligopeptides. Food Chem 2023; 427:136723. [PMID: 37385058 DOI: 10.1016/j.foodchem.2023.136723] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
Starch staling greatly reduces the cereal products quality, and the staling retardation becomes a focus in current research. The effect of wheat oligopeptide (WOP) on anti-staling properties of wheat starch (WS) was studied. Rheology property indicated that WOP reduced WS viscosity, showing more liquid-like behavior. WOP improved the water holding capacity, inhibited swelling power, and reduced the hardness of WS gels, which decreased from 1200 gf to 800 gf compared with the control after 30 days storage. Meanwhile, the water migration of WS gels were also reduced with WOP incorporation. The relative crystallinity of WS gel with 1% WOP was reduced by 13.3%, and the pore size and the microstructure of gels was improved with WOP. Besides, the short-range order degree reached the lowest value with 1% WOP. In conclusion, this study explained the interaction between WOP and WS, which was beneficial to the application of WOP in WS-based food.
Collapse
Affiliation(s)
- Liuyu Wan
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xuedong Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongyan Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shensheng Xiao
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenping Ding
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiuyun Pan
- Yiyantang (Yingcheng) Healthy Salt Manufacturing Co. LTD, Yingcheng 432400, China
| | - Yang Fu
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
8
|
Xie S, Chen H, Jiang X, Zhou B, Guo Z, Zeng H, Zhang Y. Structural and Physicochemical Properties of a Chinese Yam Starch-Tea Polyphenol Complex Prepared Using Autoclave-Assisted Pullulanase Treatment. Foods 2023; 12:3763. [PMID: 37893656 PMCID: PMC10606916 DOI: 10.3390/foods12203763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Interactions between food components have a positive impact in the field of food science. In this study, the effects of tea polyphenol on the structural and physicochemical properties of Chinese yam starch using autoclave-assisted pullulanase treatment were investigated. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, rapid visco analysis, differential scanning calorimetry, and the 3,5-dinitrosalicylic acid method were applied in this study. The results showed that the Chinese yam starch-tea polyphenol complex formed a structural domain with higher thermal stability along with lower pasting viscosities than native starch. The in vitro digestibility of Chinese yam starch decreased with the addition of the tea polyphenol, and the amount of resistant starch content in the complex was 56.25 ± 1.37%, significantly higher than that of native starch (p < 0.05). In addition, the complex showed a B+V-type crystalline structure, which confirmed that the interaction modes between the starch and tea polyphenol include hydrogen bonding and hydrophobic interactions. Moreover, the appearance of an irregular sponge network structure of the complex further supported the interactions between the starch and tea polyphenol. This study provides a theoretical basis for the development of functional foods using Chinese yam starch.
Collapse
Affiliation(s)
- Sandu Xie
- School of Life Sciences and Chemistry, Minnan Science and Technology College, Quanzhou 362332, China; (S.X.)
| | - Huiqing Chen
- School of Life Sciences and Chemistry, Minnan Science and Technology College, Quanzhou 362332, China; (S.X.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyan Jiang
- School of Life Sciences and Chemistry, Minnan Science and Technology College, Quanzhou 362332, China; (S.X.)
| | - Bifang Zhou
- School of Life Sciences and Chemistry, Minnan Science and Technology College, Quanzhou 362332, China; (S.X.)
| | - Zebin Guo
- School of Life Sciences and Chemistry, Minnan Science and Technology College, Quanzhou 362332, China; (S.X.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Zheng F, Xu Q, Zeng S, Zhao Z, Xing Y, Chen J, Zhang P. Multi-scale structural characteristics of black Tartary buckwheat resistant starch by autoclaving combined with debranching modification. Int J Biol Macromol 2023; 249:126102. [PMID: 37541464 DOI: 10.1016/j.ijbiomac.2023.126102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/08/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
The impact of autoclaving or autoclave-debranching treatments on the multi-scale structure of resistant starch (RS) and the relationship with starch digestion remains unclear, despite their widespread use in its preparation. This work investigated the relationship between RS structure in black Tartary buckwheat and its digestibility by analyzing the effects of autoclaving and autoclave-debranching combined treatments on the multi-scale structure of RS. The results showed that black Tartary buckwheat RS exhibited a more extensive honeycomb-like network structure and enhanced thermal stability than either black Tartary buckwheat native starch (BTBNS) or common buckwheat native starch (CBNS). Autoclaving and autoclaving-debranching converted A-type native starch to V-type and possibly the formation of flavonoid-starch complexes. Autoclaving treatment significantly increased the proportion of short A chain (DP 6-12) and the amylose (AM) content, reduced the viscosity and the total crystallinity. Notably, the autoclave-debranching co-treatment significantly enhanced the resistance of starch to digestion, promoted the formation of perfect microcrystallines, and increased the AM content, short-range ordered degree, and the proportion of long B2 chain (DP 25-36). This study reveals the relationship between the multi-scale structure and digestibility of black Tartary buckwheat RS by autoclaving combined with debranching modification.
Collapse
Affiliation(s)
- Faying Zheng
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Qinglian Xu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Shanshan Zeng
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zixian Zhao
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yage Xing
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | | | - Ping Zhang
- Huantai Biotechnology Co., Ltd., Chengdu 610225, China
| |
Collapse
|
10
|
Sun S, Hong Y, Gu Z, Cheng L, Ban X, Li Z, Li C. Different starch varieties influence the complexing state and digestibility of the resulting starch-lipid complexes. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
11
|
Shang M, Jiang H, Li J, Ji N, Li M, Dai L, He J, Qin Y. A dual physical crosslinking starch-based hydrogel exhibiting high strength, fatigue resistance, excellent biocompatibility, and biodegradability. Food Chem X 2023; 18:100728. [PMID: 37397217 PMCID: PMC10314210 DOI: 10.1016/j.fochx.2023.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Simultaneous realization of high strength, toughness, and fatigue resistance in natural starch-based hydrogel materials is challenging. A facile method of in situ self-assembly and a freeze-thaw cycle was proposed to construct double-network nanocomposite hydrogels of debranched corn starch/polyvinyl alcohol (Gels). Rheology, chemical structure, microstructure, and mechanical property of Gels were investigated. Notably, short linear starch chains were self-assembled into nanoparticles and subsequently into 3D microaggregates, which were tightly wrapped by starch and PVA network. Compared with corn starch single-network and starch/PVA double-network hydrogels, the Gels reached up to a higher compressive strength (ca. 1095.7 kPa), and then achieved to ∼20-30-fold improvement in compressive strength. Recovery efficiency exceeded 85% after 20 successive compression loading-unloading cycle tests. Furthermore, the Gels had good biocompatibility to L929 cells. Hence, the high-performance starch hydrogels are thought to serve as a biodegradable and biocompatible material to replace synthetic hydrogels, which can broaden their application fields.
Collapse
Affiliation(s)
- Mengshan Shang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Han Jiang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Jiaqi Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Man Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Jian He
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| |
Collapse
|
12
|
Yan Y, An H, Liu Y, Ji X, Shi M, Niu B. Debranching facilitates malate esterification of waxy maize starch and decreases the digestibility. Int J Biol Macromol 2023:125056. [PMID: 37245772 DOI: 10.1016/j.ijbiomac.2023.125056] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/15/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
In this study, the debranching followed by malate esterification was employed to prepare malate debranched waxy maize starch (MA-DBS) with a high degree of substitution (DS) and low digestibility using malate waxy maize starch (MA-WMS) as the control. The optimal esterification conditions were obtained using an orthogonal experiment. Under this condition, the DS of MA-DBS (0.866) was much higher than that of MA-WMS (0.523). A new absorption peak was generated at 1757 cm-1 in the infrared spectra, indicating the occurrence of malate esterification. Compared with MA-WMS, MA-DBS had more particle aggregation, resulting in an increase in the average particle size from scanning electron microscopy and particle size analysis. The X-ray diffraction results showed that the relative crystallinity decreased after malate esterification, in which the crystalline structure of MA-DBS almost disappeared, which was consistent with the decrease of decomposition temperature by thermogravimetric analysis and the disappearance of the endothermic peak by differential scanning calorimeter. In vitro digestibility tests showed an order: WMS > DBS > MA-WMS > MA-DBS. The MA-DBS showed the highest content of resistant starch (RS) of 95.77 % and the lowest estimated glycemic index of 42.27. In a word, pullulanase debranching could produce more short amylose, promoting malate esterification and improving the DS. The presence of more malate groups inhibited the formation of starch crystals, increased particle aggregation, and enhanced resistance to enzymolysis. The present study provides a novel protocol for producing modified starch with higher RS content, which has potential application in functional foods with a low glycemic index.
Collapse
Affiliation(s)
- Yizhe Yan
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China.
| | - Hong An
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Yanqi Liu
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Xiaolong Ji
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Miaomiao Shi
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Bin Niu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, PR China.
| |
Collapse
|
13
|
Xia J, Zhang Y, Huang K, Cao H, Sun Q, Wang M, Zhang S, Sun Z, Guan X. Different multi-scale structural features of oat resistant starch prepared by ultrasound combined enzymatic hydrolysis affect its digestive properties. ULTRASONICS SONOCHEMISTRY 2023; 96:106419. [PMID: 37156158 DOI: 10.1016/j.ultsonch.2023.106419] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
In this research, oat resistant starch (ORS) was prepared by autoclaving-retrogradation cycle (ORS-A), enzymatic hydrolysis (ORS-B), and ultrasound combined enzymatic hydrolysis (ORS-C). Differences in their structural features, physicochemical properties and digestive properties were studied. Results of particle size distribution, XRD, DSC, FTIR, SEM and in vitro digestion showed that ORS-C was a B + C-crystal, and ORS-C had a larger particle size, the smallest span value, the highest relative crystallinity, the most ordered and stable double helix structure, the roughest surface shape and strongest digestion resistance compared to ORS-A and ORS-B. Correlation analysis revealed that the digestion resistance of ORS-C was strongly positively correlated with RS content, amylose content, relative crystallinity and absorption peak intensity ratio of 1047/1022 cm-1 (R1047/1022), and weakly positively correlated with average particle size. These results provided theoretical support for the application of ORS-C with strong digestion resistance prepared by ultrasound combined enzymatic hydrolysis in the low GI food application.
Collapse
Affiliation(s)
- Ji'an Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Qiqi Sun
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Man Wang
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Suhua Zhang
- Suzhou Kowloon Hospital Shanghai Jiao Tong University School of Medicine, Suzhou, Jiangsu 215028, China
| | - Zhenliang Sun
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China.
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China.
| |
Collapse
|
14
|
Deng C, Zhang T, Zhang X, Gu T, Xu L, Yu Z, Zheng M, Zhou Y. Multiscale structure and precipitation mechanism of debranched starch precipitated by different alcohols. Int J Biol Macromol 2023; 241:124562. [PMID: 37088190 DOI: 10.1016/j.ijbiomac.2023.124562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Alcohol solution is a cheap, simple, and effective precipitating solvent frequently used for separating debranched starch (DBS), yet little is known about the precipitation mechanism of DBS by different alcohols. This study precipitated DBS from pullulanase-hydrolyzed starch using ethanol, n-butanol, and isopentanol. The multiscale structures of DBS were characterized, including chain length, single/double helix, and crystalline. The chain conformation and precipitation mechanism of DBS in different alcohols was investigated using molecular dynamics (MD) simulation. DBS precipitated by n-butanol contained the largest proportion of short chain (DP6-24, 83.2 %), the highest V-type crystallinity (21.1 %), and the largest single-helix content (24.7 %). A single helix conformation of DBS chain was determined in alcohols, where alcohol molecules entered the helix cavity. Intra/inter-molecular hydrogen bonds stabilized the helix, with a large number of hydrogen bonds leading to strong molecular interaction and stable helical structure. The solvent accessible surface area of DBS chain decreased by 7.88-19.32 % in alcohols, and the radial distribution function revealed that the first solvent layer of DBS chain at 0.29 nm was closely related to hydrogen bonding. This study provides a basis for the choice of precipitation solvent for preparing DBS with different chain lengths and physicochemical properties.
Collapse
Affiliation(s)
- Changyue Deng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Tiantian Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Xiumei Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Tingting Gu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Li Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
15
|
Ab'lah N, Yusuf CYL, Rojsitthisak P, Wong TW. Reinvention of starch for oral drug delivery system design. Int J Biol Macromol 2023; 241:124506. [PMID: 37085071 DOI: 10.1016/j.ijbiomac.2023.124506] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Starch is a polysaccharide with varying amylose-to-amylopectin ratios as a function of its biological sources. It is characterized by low shear stress resistance, poor aqueous/organic solubility and gastrointestinal digestibility which limit its ease of processing and functionality display as an oral drug delivery vehicle. Modulation of starch composition through genetic engineering primarily alters amylose-to-amylopectin ratio. Greater molecular properties changes require chemical and enzymatic modifications of starch. Acetylation reduces water solubility and enzymatic digestibility of starch. Carboxymethylation turns starch acid-insoluble and aggregative at low pHs. The summative effects are sustaining drug release in the upper gut. Acid-insoluble carboxymethylated starch can be aminated to provide an ionic character essential for hydrogel formation which further reduces its drug release. Ionic starch can coacervate with oppositely charged starch, non-starch polyelectrolyte or drug into insoluble, controlled-release complexes. Enzymatically debranched and resistant starch has a small molecular size which confers chain aggregation into a helical hydrogel network that traps the drug molecules, protecting them from biodegradation. The modified starch has been used to modulate the intestinal/colon-specific or controlled systemic delivery of oral small molecule drugs and macromolecular therapeutics. This review highlights synthesis aspects of starch and starch derivatives, and their outcomes and challenges of applications in oral drug delivery.
Collapse
Affiliation(s)
- NorulNazilah Ab'lah
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Centre of Foundation Studies, Universiti Teknologi MARA Selangor, Dengkil 43800, Dengkil, Malaysia
| | - Chong Yu Lok Yusuf
- Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, Jasin, 77300, Merlimau, Melaka, Malaysia
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, 10330 Bangkok, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330 Bangkok, Thailand
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
16
|
Characterization, immunomodulatory activity and digestibility in vitro of a novel floridean starch from Grateloupia filicina. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
17
|
V-amylose Nanocarriers Complexed with Debranched Sweet Potato Starch: Structural Characteristics and Digestibility. FOOD BIOPHYS 2023. [DOI: 10.1007/s11483-023-09782-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
18
|
Xie Q, Liu X, Liu H, Zhang Y, Xiao S, Ding W, Lyu Q, Fu Y, Wang X. Insight into the effect of garlic peptides on the physicochemical and anti-staling properties of wheat starch. Int J Biol Macromol 2023; 229:363-371. [PMID: 36581041 DOI: 10.1016/j.ijbiomac.2022.12.253] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
The staling of wheat starch in storage seriously damages the quality of starch-based foods, and how to delay the staling has become a topic focus. To solve the problem, this study analyzed the effect of garlic peptides on the physical and retrogradation behaviors of wheat starch during storage. The rheological, pasting, swelling properties, molecular order, water migration, and microstructure of wheat starch gels were evaluated. Our results showed that garlic peptides effectively reduced the storage and loss modulus of wheat starch. The physical properties indicated that garlic peptides suppressed the swelling and gelatinization of starch, which exhibited higher water holding capacity and lower water migration. In addition, garlic peptides incorporated wheat starch exhibited the lowest gel hardness during storage. X-ray diffraction and Fourier Transform Infrared Spectroscopy analysis indicated that garlic peptides could reduce the crystallinity and inhibit the formation of ordered structures in wheat starch gel. The microstructure observation showed that the gel with garlic peptides maintained the integrity of the network structure. Consequently, garlic peptides are expected to be an effective natural additive to inhibit starch staling and provide new insights for starch-based foods.
Collapse
Affiliation(s)
- Qianran Xie
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaorong Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongyan Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuting Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shensheng Xiao
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenping Ding
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qingyun Lyu
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Fu
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Xuedong Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
19
|
Influence of de-structured starch on fine-stranded polymeric and coarse-stranded particulate whey protein gels. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Liu G, Wang R, Liu S, Xu M, Guo L, Zhang H, Wei H. Relationship between starch fine structure and simulated oral processing of cooked japonica rice. Front Nutr 2022; 9:1046061. [DOI: 10.3389/fnut.2022.1046061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
BackgroundSimulated oral processing can be used to evaluate the palatability of cooked rice. Previously, we established a simulated oral processing method using a texture analyzer equipped with a multiple extrusion cell probe (TA/MEC). However, the relationship between oral processing and starch fine structure remains unknown.MethodsIn this study, we analyzed the oral processing properties using TA/MEC and characterized the starch fine structure of japonica rice by size-exclusion chromatography (SEC) and fluorophore-assisted capillary electrophoresis (FACE). The relationship between starch fine structure and oral processing of cooked japonica rice was further investigated.ResultsCooked rice structure contains fast-breakdown (Type I structure), slow-breakdown (Type II structure) and unbreakable structures (Type III structure). Fast-breakdown and slow-breakdown structure were positively correlated with the content of amylose and shorter amylopectin branches. The content of longer amylopectin branches was positively correlated with the contribution of unbreakable structure.ConclusionThe results indicated that cooked japonica rice varieties with more amylose and shorter amylopectin branches tend to form a harder texture and need more work to break down the fast and slow breakdown structures related to rice kernel fragmentation. Meanwhile, cooked japonica rice varieties possess stronger molecular entanglements due to their longer amylopectin branches and contribute more to the breakdown of unbreakable structures. These results can guide breeders to select rice varieties with desirable eating qualities for cultivation.
Collapse
|
21
|
Wang D, Zhao M, Wang Y, Mu H, Sun C, Chen H, Sun Q. Research Progress on Debranched Starch: Preparation, Characterization, and Application. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2126854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Deda Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Mei Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hongyan Mu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Cong Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Haihua Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
22
|
Wang N, Shi N, Fei H, Liu Y, Zhang Y, Li Z, Ruan C, Zhang D. Physicochemical, structural, and digestive properties of pea starch obtained via ultrasonic-assisted alkali extraction. ULTRASONICS SONOCHEMISTRY 2022; 89:106136. [PMID: 36055014 PMCID: PMC9445431 DOI: 10.1016/j.ultsonch.2022.106136] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/13/2022] [Accepted: 08/20/2022] [Indexed: 05/09/2023]
Abstract
As a new and clean extraction technology, ultrasonic extraction has been demonstrated with great potential in the preparation of modified starch. In order to increase its added value, it is necessary to modify pea starch to enlarge its application. In this study, the efficiency of combining ultrasonic with alkali in the extraction of pea starch was evaluated and compared to conventional alkali extraction. Ultrasonic-assisted alkali extraction conditions were optimized using single-factor experiments and response surface methodology. The results revealed that maximum yield of pea starch (54.43 %) was achieved using ultrasound-assisted alkali extraction under the following conditions: sodium hydroxide solution with a concentration of 0.33 %, solid/alkali solution ratio of 1:6 (w/v), ultrasonic power of 240 W, temperature of 42 °C, and extraction time of 22 min. The ultrasound-assisted alkali extraction yielded 13.72 % greater pea starch than conventional alkali extraction. On the other hand, morphological, structural, and physicochemical properties of the obtained starch isolates were evaluated. The ultrasound-assisted alkali extraction resulted in pea starch with greater amylose content, water-solubility, swelling power, and viscosity compared with conventional alkali extraction. Furthermore, ultrasonication influenced the morphological properties of pea starch granules, while the molecular structure and crystal type were not affected. Moreover, the ultrasonic-assisted extraction produced starch with a slightly greater resistant starch content. Therefore, ultrasonic-assisted extraction can be suggested as a potential method for extracting pea starch with improved functional properties.
Collapse
Affiliation(s)
- Ning Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319 China
| | - Ningning Shi
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319 China
| | - Hongli Fei
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319 China
| | - Yuan Liu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319 China
| | - Yaqi Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319 China
| | - Zhijiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319 China; Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing 163319 China; National Coarse Cereals Engineering Research Center, Daqing 163319 China
| | - Changqing Ruan
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319 China; Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing 163319 China; National Coarse Cereals Engineering Research Center, Daqing 163319 China.
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319 China; Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing 163319 China; National Coarse Cereals Engineering Research Center, Daqing 163319 China.
| |
Collapse
|
23
|
Liu Z, Wang S, Tan CP, Zhang B, Fu X, Huang Q. Effect of lipids complexes on controlling ethylene gas release from V-type starch. Carbohydr Polym 2022; 291:119556. [DOI: 10.1016/j.carbpol.2022.119556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/08/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
|
24
|
Wang K, Sui J, Gao W, Yu B, Yuan C, Guo L, Cui B, Abd El-Aty A. Effects of xanthan gum and sodium alginate on gelatinization and gels structure of debranched pea starch by pullulanase. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
25
|
Effect of Physical and Enzymatic Modifications on Composition, Properties and In Vitro Starch Digestibility of Sacred Lotus ( Nelumbo nucifera) Seed Flour. Foods 2022; 11:foods11162473. [PMID: 36010474 PMCID: PMC9407196 DOI: 10.3390/foods11162473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, native lotus seed flour (N-LSF) was modified by different methods, namely, partial gelatinization (PG), heat−moisture treatment (HMT), or pullulanase treatment (EP). Their composition, functional properties, starch composition, and estimated glycemic index (eGI) were compared. PG contained similar protein, soluble dietary fiber, and insoluble dietary fiber contents to N-LSF, while those of HMT and EP differed from their native form. PG increased rapid digestible starch (RDS) but decreased resistant starch (RS); while HMT and EP increased amylose and RS contents to 34.57−39.23% and 86.99−92.52% total starch, respectively. Such differences led to the different pasting properties of the modified flours rather than PG, which was comparable to the native flour. HMT had limited pasting properties, while EP gave the highest viscosities upon pasting. The eGI of all samples could be classified as low (<50), except that of PG, which was in the medium range (60). It was plausible that lotus seed flour modified either with HMT or EP could be used as carbohydrate source for diabetes patients or health-conscious people.
Collapse
|
26
|
Liu Y, Jiang F, Du C, Li M, Leng Z, Yu X, Du SK. Optimization of Corn Resistant Starch Preparation by Dual Enzymatic Modification Using Response Surface Methodology and Its Physicochemical Characterization. Foods 2022; 11:2223. [PMID: 35892808 PMCID: PMC9331437 DOI: 10.3390/foods11152223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 12/10/2022] Open
Abstract
Corn starch was dually modified using thermostable α-amylase and pullulanase to prepare resistant starch (RS). The concentration of starch liquid, the amount of added thermostable α-amylase, the duration of enzymatic hydrolysis and the amount of added pullulanase were optimized using RSM to increase RS content of the treated sample. The optimum pretreatment conditions were 15% starch liquid, 3 U/g thermostable α-amylase, 35 min of enzymatic hydrolysis and 8 U/g pullulanase. The maximum RS content of 10.75% was obtained, and this value was significantly higher than that of native corn starch. The degree of polymerization (DP) of the enzyme-modified starch decreased compared with that of native starch. The scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) were performed to assess structural changes in native and pretreated starch. The effect of dual enzyme pretreatment on the structure and properties of corn starch was significant. Unlike the untreated one, the pretreated corn starch showed clear pores and cracks. Significant differences in RS contents and structural characterization between starch pretreated and untreated with dual enzymes demonstrated that the dual enzyme modification of corn was effective in enhancing RS contents.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuang-Kui Du
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Xianyang 712100, China; (Y.L.); (F.J.); (C.D.); (M.L.); (Z.L.); (X.Y.)
| |
Collapse
|
27
|
Wang Y, Tian Y, Ban X, Li C, Hong Y, Cheng L, Gu Z, Li Z. Substrate Selectivity of a Novel Amylo-α-1,6-glucosidase from Thermococcus gammatolerans STB12. Foods 2022; 11:1442. [PMID: 35627012 PMCID: PMC9142091 DOI: 10.3390/foods11101442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/05/2023] Open
Abstract
Amylo-α-1,6-glucosidase (EC 3.2.1.33, AMY) exhibits hydrolytic activity towards α-1,6-glycosidic bonds of branched substrates. The debranching products of maltodextrin, waxy corn starch and cassava starch treated with AMY, pullulanase (EC 3.2.1.41, PUL) and isoamylase (EC 3.2.1.68, ISO), were investigated and their differences in substrate selectivity and debranching efficiency were compared. AMY had a preference for the branched structure with medium-length chains, and the optimal debranching length was DP 13-24. Its optimum debranching length was shorter than ISO (DP 25-36). In addition, the debranching rate of maltodextrin treated by AMY for 6 h was 80%, which was 20% higher than that of ISO. AMY could decompose most of the polymerized amylopectin in maltodextrin into short amylose and oligosaccharides, while it could only decompose the polymerized amylopectin in starch into branched glucan chains and long amylose. Furthermore, the successive use of AMY and β-amylase increased the hydrolysis rate of maltodextrin from 68% to 86%. Therefore, AMY with high substrate selectivity and a high catalytic capacity could be used synergistically with other enzyme preparations to improve substrate utilization and reduce reaction time. Importantly, the development of a novel AMY provides an effective choice to meet different production requirements.
Collapse
Affiliation(s)
- Yamei Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.W.); (Y.T.); (X.B.); (C.L.); (Y.H.); (L.C.); (Z.G.)
| | - Yixiong Tian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.W.); (Y.T.); (X.B.); (C.L.); (Y.H.); (L.C.); (Z.G.)
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.W.); (Y.T.); (X.B.); (C.L.); (Y.H.); (L.C.); (Z.G.)
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.W.); (Y.T.); (X.B.); (C.L.); (Y.H.); (L.C.); (Z.G.)
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.W.); (Y.T.); (X.B.); (C.L.); (Y.H.); (L.C.); (Z.G.)
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.W.); (Y.T.); (X.B.); (C.L.); (Y.H.); (L.C.); (Z.G.)
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.W.); (Y.T.); (X.B.); (C.L.); (Y.H.); (L.C.); (Z.G.)
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.W.); (Y.T.); (X.B.); (C.L.); (Y.H.); (L.C.); (Z.G.)
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
28
|
Tang J, Zou F, Guo L, Wang N, Zhang H, Cui B, Liu X. The relationship between linear chain length distributions of amylopectin and the functional properties of the debranched starch-based films. Carbohydr Polym 2022; 279:119012. [PMID: 34980355 DOI: 10.1016/j.carbpol.2021.119012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
Abstract
The relationship between linear chain length distributions and the functional properties of the starch-based films after pullulanase debranching treatment of corn (CS), rice (RS) and wheat (WS) were investigated. The results indicated that the film thickness was negatively correlated with A chains content (r = -0.939) and apparent amylose content (r = -0.926), and was positively correlated with B3 chains content (r = 0.847). The tensile strength of the debranched starch-based films were positively correlated with apparent amylose content (r = 0.813), and the elongation at break were inversely proportional to B3 chains content (r = -0.817). The hydrophobicity of the starch-based films was positively and negatively correlated with the proportions of linear chains with DP 6-12 (r = 0.892) and DP 25-36 (r = -0.863), respectively. On the contrary, no significant correlation was noticed between chain length distribution of amylopectin and transparency and thermal stability.
Collapse
Affiliation(s)
- Jun Tang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Feixue Zou
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Na Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hongxia Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Xingxun Liu
- Laboratory of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
29
|
Characteristics and ethylene encapsulation properties of V-type linear dextrin with different degrees of polymerisation. Carbohydr Polym 2022; 277:118814. [PMID: 34893231 DOI: 10.1016/j.carbpol.2021.118814] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/13/2021] [Accepted: 10/24/2021] [Indexed: 12/22/2022]
Abstract
The objective of this research was to investigate the effects of preparation method on the characteristics and ethylene loading capacity of V-type linear dextrin (LD). LD with different degrees of polymerisation were obtained from debranched starch by gradient ethanol precipitation. X-ray diffraction (XRD) patterns of samples obtained by precipitation and anti-solvent precipitation presented A + V-type crystalline structure. However, the percentage of V-type structure of samples obtained by anti-solvent precipitation was significantly higher than for samples prepared by precipitation, which was further confirmed by nuclear magnetic resonance spectroscopy (NMR), and molecular dynamics simulation supported the XRD and NMR results. The ethylene encapsulation capabilities of samples fabricated by different methods were in range of 1.15-4.68 cm3/g. Ethylene release from V-type LD was a physical process at different storage temperatures, and the higher percentage of V-type structure, the slower release rate. Thus, a higher V-type structure content was beneficial for encapsulation of gaseous molecules.
Collapse
|
30
|
Ge X, Shen H, Su C, Zhang B, Zhang Q, Jiang H, Yuan L, Yu X, Li W. Pullulanase modification of granular sweet potato starch: Assistant effect of dielectric barrier discharge plasma on multi-scale structure, physicochemical properties. Carbohydr Polym 2021; 272:118481. [PMID: 34420740 DOI: 10.1016/j.carbpol.2021.118481] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022]
Abstract
This study explored the potential application of physical combined enzyme treatment to modify starch granules. Starch was modified by exposure to cold plasma (CP) for 1, 3, and 9 min and to pullulanase (PUL) for 12, 24, and 36 h. Individual treatments with CP and PUL somewhat modified starch structure and physicochemical properties. Nevertheless, compared with native starch and individual treatments, CP-PUL combined treatment significantly (p < 0.05) promoted the subsequent structural modification, increased the short-chain ratio and the amylose content, reduce the molecular weight and the relative crystallinity, and disturb the short-range order. CP also improved the properties of PUL-modified starch, including enhanced solubility, thermal properties and resistance to enzymatic hydrolysis but worsened swelling power and peak viscosity properties. This research provides a new perspective for the rational application of CP-PUL co-treated starch in the food industry.
Collapse
Affiliation(s)
- Xiangzhen Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Huishan Shen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Chunyan Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Bo Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qian Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hao Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Li Yuan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi, Xi'an 710119, China
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
31
|
Phthalate debranched Canna edulis Ker starch with high degree of substitution: preparation, characterization and property. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Li C, Kong H, Yang Q, Gu Z, Ban X, Cheng L, Hong Y, Li Z. A temperature-mediated two-step saccharification process enhances maltose yield from high-concentration maltodextrin solutions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3742-3748. [PMID: 33301206 DOI: 10.1002/jsfa.11005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/02/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Designing a high-concentration (50%, w/w) maltodextrin saccharification process is a green method to increase the productivity of maltose syrup. RESULTS In this study, a temperature-mediated two-step process using β-amylase and pullulanase was investigated as a strategy to improve the efficiency of saccharification. During the saccharification process, both pullulanase addition time and temperature adjustment greatly impacted the final maltose yield. These results indicated that an appropriate β-amylolysis in the first stage (the first 8 h) was required to facilitate saccharification process, with the maltose yield of 8.46% greater than that of the single step saccharification. Molecular structure analysis further demonstrated that a relatively low temperature (50 °C), as compared with a normal temperature (60 °C), in the first stage resulted in a greater number of chains polymerized by at least seven glucose units and a less heterogeneity system within the residual substrate. The molecular structure of the residual substrate might be beneficial for the subsequent cooperation between β-amylase and pullulanase in the following 40 h (second stage). CONCLUSION Over a 48 h saccharification, the temperature-mediated two-step process dramatically increased the conversion rate of maltodextrin and yielded significantly more maltose and less byproduct, as compared with a constant-temperature process. The two-step saccharification process therefore offered an efficient and green strategy for maltose syrup production in industry. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Caiming Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Haocun Kong
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Qianwen Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Zhengbiao Gu
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Li Cheng
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Yan Hong
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Zhaofeng Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
33
|
Liang Q, Chen X, Ren X, Yang X, Raza H, Ma H. Effects of ultrasound-assisted enzymolysis on the physicochemical properties and structure of arrowhead-derived resistant starch. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111616] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Microbial starch debranching enzymes: Developments and applications. Biotechnol Adv 2021; 50:107786. [PMID: 34147588 DOI: 10.1016/j.biotechadv.2021.107786] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022]
Abstract
Starch debranching enzymes (SDBEs) hydrolyze the α-1,6 glycosidic bonds in polysaccharides such as starch, amylopectin, pullulan and glycogen. SDBEs are also important enzymes for the preparation of sugar syrup, resistant starch and cyclodextrin. As the synergistic catalysis of SDBEs and other starch-acting hydrolases can effectively improve the raw material utilization and production efficiency during starch processing steps such as saccharification and modification, they have attracted substantial research interest in the past decades. The substrate specificities of the two major members of SDBEs, pullulanases and isoamylases, are quite different. Pullulanases generally require at least two α-1,4 linked glucose units existing on both sugar chains linked by the α-1,6 bond, while isoamylases require at least three units of α-1,4 linked glucose. SDBEs mainly belong to glycoside hydrolase (GH) family 13 and 57. Except for GH57 type II pullulanse, GH13 pullulanases and isoamylases share plenty of similarities in sequence and structure of the core catalytic domains. However, the N-terminal domains, which might be one of the determinants contributing to the substrate binding of SDBEs, are distinct in different enzymes. In order to overcome the current defects of SDBEs in catalytic efficiency, thermostability and expression level, great efforts have been made to develop effective enzyme engineering and fermentation strategies. Herein, the diverse biochemical properties and distinct features in the sequence and structure of pullulanase and isoamylase from different sources are summarized. Up-to-date developments in the enzyme engineering, heterologous production and industrial applications of SDBEs is also reviewed. Finally, research perspective which could help understanding and broadening the applications of SDBEs are provided.
Collapse
|
35
|
Cao C, Wei D, Xu L, Hu J, Qi J, Zhou Y. Characterization of tea tree essential oil and large-ring cyclodextrins (CD 9 -CD 22 ) inclusion complex and evaluation of its thermal stability and volatility. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2877-2883. [PMID: 33155673 DOI: 10.1002/jsfa.10919] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/29/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Although the structure and physicochemical properties of large ring cyclodextrins (LR-CDs) exhibit unique characteristics, and also possess very strong water solubility and high safety, little is known about the embedding performance of macrocyclodextrin. Encapsulation refers to a complex of tea tree oil (TTO) with the wall material, protecting the core material or changing its properties from adverse external factors, controlling its release rate against the evaporation and degradation of essential oils. In the present study, LR-CDs complexed with TTO were prepared by co-precipitation methods. RESULTS The mass ratio of LR-CDs-TTO was six and the maximum complexation efficiency was 86.23%. Fourier-transform infrared spectroscopy analysis presented the loss of characteristic peaks related to TTO in the complex and no other additional peaks were observed. X-ray diffraction examination demonstrated several sharp peaks and intensity peaks at the diffraction angle of the TTO-LR-CDs complex. 1 H-NMR indicated a chemical shift as a result of the interaction between the molecules in the inclusion complex. Moreover, the thermal stability and aqueous solubility of TTO were enhanced after synergy with LR-CDs; particularly, the solubility of the complex was increased by 329-fold. The volatile characteristics of the encapsulated and original TTO were identical. CONCLUSION The results of the present study show that TTO was efficaciously complexed with LR-CDs and exhibited enhanced solubility and thermal stability. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuan Cao
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
- Anhui Vocational College of Grain Engineering, Hefei, China
| | - Dongmei Wei
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Li Xu
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Jinwei Hu
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Jun Qi
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Yibin Zhou
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| |
Collapse
|
36
|
Yang Y, Chen Q, Yu A, Tong S, Gu Z. Study on structural characterization, physicochemical properties and digestive properties of euryale ferox resistant starch. Food Chem 2021; 359:129924. [PMID: 33964663 DOI: 10.1016/j.foodchem.2021.129924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/26/2022]
Abstract
At present, the raw materials for industrialized RS3 products are relatively simple and its purity is low. In addition, the correlation between structure and digestion characteristics of RS3 are rarely studied. In this study, euryale ferox, a kind of annual aquatic herb crop with high content of starch was used as a raw material to prepare RS3 by different methods, including autoclaving, enzymolysis-autoclaving and dual enzymolysis, respectively. The results showed that there were significant differences in the structure and physicochemical properties of the different euryale ferox resistant-enhanced and purified resistant starches (p < 0.05). Purified euryale ferox resistant starches belonged to B + V type crystal and had high thermal stability. After digestion, the structure and thermal properties of euryale ferox resistant-enhanced starches changed a lot. The digestion rate and estimated glycemic index (eGI) of the three kinds of purified euryale ferox RS3 were lower than 20% and 50%, respectively.
Collapse
Affiliation(s)
- Yuexi Yang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Qing Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Anzhen Yu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shu Tong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhenyu Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
37
|
Formation of debranched wheat starch-fatty acid inclusion complexes using saturated fatty acids with different chain length. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Ren N, Ma Z, Li X, Hu X. Preparation of rutin-loaded microparticles by debranched lentil starch-based wall materials: Structure, morphology and in vitro release behavior. Int J Biol Macromol 2021; 173:293-306. [PMID: 33484801 DOI: 10.1016/j.ijbiomac.2021.01.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022]
Abstract
Different treatments of autoclaving, pullulanase debranching and/or ultrasound were applied to prepare debranched lentil starch (DBLS). Their fine structures can affect the retrogradation patterns of DBLSs, which consequently could affect their potential use as delivery carrier of sensitive bioactive compounds. An attempt was made to use these DBLSs as wall materials to encapsulate rutin, aiming to improve the bioaccessibility, meanwhile to enhance the aqueous solubility and stability of rutin molecules. Their encapsulation efficiency, structural characteristics, thermal stability, morphological features, antioxidant activity and in vitro release behavior under simulated upper gastrointestinal tract environment were evaluated. The results suggested that rutin was dispersed in the DBLS polymer matrix, showing the amorphous nature that further authenticates the encapsulation and entrapment of rutin. The structural analyses of microparticles revealed that rutin could interacted with DBLS biopolymer chains by hydrogen bonds, making the starch molecular chains less susceptible to interact with themselves for reordering. The encapsulation efficiency was found to be in an opposite trend with those values obtained for relative crystallinity, melting enthalpy, degree of order/double helices of DBLS wall materials before encapsulation. The release rate results indicated that DBLS carrier with lower Mw, DPn and higher molecular order was beneficial for the slower release of rutin encapsulated in the microparticles.
Collapse
Affiliation(s)
- Namei Ren
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Zhen Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
| | - Xiaoping Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| |
Collapse
|
39
|
Liu P, Fang Y, Zhang X, Zou F, Gao W, Zhao H, Yuan C, Cui B. Effects of multienzyme treatment on the physicochemical properties of maize starch-lauric acid complex. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Zhu L, Zhang H, Wu G, Qi X, Wang L, Qian H. Effect of structure evolution of starch in rice on the textural formation of cooked rice. Food Chem 2020; 342:128205. [PMID: 33092921 DOI: 10.1016/j.foodchem.2020.128205] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/27/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
The content and composition of rice kernels are closely related to the textural properties of cooked rice. In this study, the mechanistic explanations of textural changes were linked to proton mobility, leaching behavior, and the molecular features of rice components during cooking. The decreasing trend of hardness and the formation of stickiness was mainly determined by the molecular mobility of components. The molecular weight (Mw) of starch and protein in leached solids increased with the leaching at 70-100 °C. The Mw of rice kernels at different cooking temperatures and times was similar, but the molecular size and volume varied at different stages of cooking. The dismission of the crystalline structure, C1 resonance, and lamellar structures after cooking at 100 °C for 10 min indicated that the structural evolution of starch in rice kernels was time- and temperature-dependent. These results provide a promising foundation for developing strategies to control rice cooking.
Collapse
Affiliation(s)
- Ling Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China.
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Xiguang Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
41
|
Wang K, Hong Y, Gu Z, Cheng L, Li Z, Li C. Stabilization of Pickering emulsions using starch nanocrystals treated with alkaline solution. Int J Biol Macromol 2020; 155:273-285. [DOI: 10.1016/j.ijbiomac.2020.03.219] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022]
|
42
|
Oh SM, Lee BH, Seo DH, Choi HW, Kim BY, Baik MY. Starch nanoparticles prepared by enzymatic hydrolysis and self-assembly of short-chain glucans. Food Sci Biotechnol 2020; 29:585-598. [PMID: 32419957 PMCID: PMC7221041 DOI: 10.1007/s10068-020-00768-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Enzymatic hydrolysis and self-assembly are considered promising methods for preparation of starch nanoparticles (SNPs) because they are environmentally friendly, and time- and cost-effective. These methods are based on the self-assembly of short-chain glucans released from the α-1,6 bonds in amylopectin. Since their discovery, many studies have described the structural and physicochemical properties of self-assembled SNPs. Self-assembled SNPs can be prepared by two methods: using only the soluble portion containing the short-chain glucans, or using the whole hydrolyzate including both insoluble and soluble fractions. Although the structural and physical properties of self-assembled SNPs can be attributed to the composition of the hydrolyzates that participate in self-assembly, this aspect has not yet been discussed. This review focuses on SNPs self-assembled with only soluble short-chain glucans and addresses their characteristics, including formation mechanisms as well as structural and physicochemical properties, compared with SNPs prepared with total hydrolyzates.
Collapse
Affiliation(s)
- Seon-Min Oh
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hyun-Wook Choi
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, Republic of Korea
| | - Byung-Yong Kim
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Moo-Yeol Baik
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| |
Collapse
|
43
|
Effect of increased pressure on the coated layer profile of steamed rice. Food Chem 2020; 310:125971. [DOI: 10.1016/j.foodchem.2019.125971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/07/2019] [Accepted: 11/27/2019] [Indexed: 01/29/2023]
|
44
|
Liu G, Gu Z, Hong Y, Wei H, Zhang C, Huang S, Chen Y, Lu Y, Li Y. Effects of molecular interactions in debranched high amylose starch on digestibility and hydrogel properties. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105498] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Zhu L, Bi S, Wu G, Gong B, Zhang H, Wang L, Qian H, Qi X. Study of the migration and molecular structure of starch and protein in rice kernel during heating. Int J Biol Macromol 2020; 147:1116-1124. [DOI: 10.1016/j.ijbiomac.2019.10.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 02/01/2023]
|
46
|
Cao C, Xu L, Xie P, Hu J, Qi J, Zhou Y, Cao L. The characterization and evaluation of the synthesis of large-ring cyclodextrins (CD 9-CD 22) and α-tocopherol with enhanced thermal stability. RSC Adv 2020; 10:6584-6591. [PMID: 35495982 PMCID: PMC9049713 DOI: 10.1039/c9ra10748g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/21/2020] [Indexed: 11/21/2022] Open
Abstract
Large-ring cyclodextrins LR-CDs (CD9–CD22) were obtained from rice starch using cyclodextrin glycosyltransferase (CGTase), and were used as a wall material for embedding α-tocopherol. Complexes of α-tocopherol and LR-CDs were prepared by co-precipitation. A molar ratio of α-tocopherol/LR-CD of 1 : 2 showed the highest encapsulation efficiency. The surface morphology of the complex particles was observed to vary from irregular flakes to the formation of smaller clusters of particles using scanning electron microscopy (SEM). Based on 1H NMR and FT-IR observations, the inclusion complexes exhibited significant chemical shifts of 0.3 ppm and decreased peak signals. In addition, thermal analysis showed that the microcapsules improved the thermostability of the α-tocopherols. Antioxidant activity analysis proved the stability of α-tocopherol during storage. This study could serve as a reference for the more effective use of LR-CDs as wall materials. Large-ring cyclodextrins LR-CDs (CD9–CD22) were obtained from rice starch using cyclodextrin glycosyltransferase (CGTase), and were used as a wall material for embedding α-tocopherol.![]()
Collapse
Affiliation(s)
- Chuan Cao
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University Hefei 230036 China .,Anhui Vocational College of Grain Engineering Hefei 230011 China
| | - Li Xu
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University Hefei 230036 China
| | - Peng Xie
- Nanjing University of Finance and Economics China
| | - Jinwei Hu
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University Hefei 230036 China
| | - Jun Qi
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University Hefei 230036 China
| | - Yibin Zhou
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University Hefei 230036 China
| | - Lei Cao
- Institute of Agro-Products Processing, Anhui Academy of Agricultural Sciences China
| |
Collapse
|
47
|
Cao C, Shen M, Hu J, Qi J, Xie P, Zhou Y. Comparative study on the structure-properties relationships of native and debranched rice starch. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2019.1710261] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Chuan Cao
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
- Department of Food Engineering, Anhui Vocational College of Grain Engineering, Hefei, China
| | - Mingyu Shen
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Jinwei Hu
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Jun Qi
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Peng Xie
- Institute of Food Economics of NJUE, Nanjing University of Finance & Economics, NanJing, China
| | - Yibin Zhou
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| |
Collapse
|
48
|
Liu P, Kang X, Cui B, Gao W, Wu Z, Yu B. Effects of amylose content and enzymatic debranching on the properties of maize starch-glycerol monolaurate complexes. Carbohydr Polym 2019; 222:115000. [DOI: 10.1016/j.carbpol.2019.115000] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 06/14/2019] [Indexed: 02/04/2023]
|
49
|
Chi C, Li X, Lu P, Miao S, Zhang Y, Chen L. Dry heating and annealing treatment synergistically modulate starch structure and digestibility. Int J Biol Macromol 2019; 137:554-561. [DOI: 10.1016/j.ijbiomac.2019.06.137] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/10/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
|
50
|
Li H, Li J, Xiao Y, Cui B, Fang Y, Guo L. In vitro digestibility of rice starch granules modified by β-amylase, transglucosidase and pullulanase. Int J Biol Macromol 2019; 136:1228-1236. [DOI: 10.1016/j.ijbiomac.2019.06.111] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 01/15/2023]
|