1
|
Xie Y, Li H, Deng Z, Peng H, Yu Y, Zhang B. Preparation and characterization of a new food-grade Pickering emulsion stabilized by mulberry-leaf protein nanoparticles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1080-1090. [PMID: 39271605 DOI: 10.1002/jsfa.13898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Food-grade Pickering particles, particularly plant proteins, have attracted significant interest due to their bio-based nature, environmental friendliness, and edibility. Mulberry-leaf protein (MLP) is a high-quality protein with rich nutritional value and important functional properties. It has special amphoteric and emulsifying characteristics, making it valuable for use in Pickering emulsions. This study aimed to investigate the feasibility of using MLP nanoparticles as solid particles to stabilize Pickering emulsions. RESULTS The particle size of MLP nanoparticles was less than 300 nm under neutral and alkaline conditions. At pH 9, the zeta potential value reached -34.3 mV, indicating the electrostatic stability of the particles. As ion concentration increased, the particle size of MLP nanoparticles increased, and the zeta potential decreased. Throughout the storage process, no obvious aggregation or precipitation was observed in the dispersion of MLP nanoparticles, indicating strong stability. The particle size of the Pickering emulsion decreased with the increase in protein concentration. When the protein concentration was low, the particles on the oil-water interface became sparse, resulting in poor stability of the prepared emulsion and making it susceptible to aggregation and thus larger particle sizes. Increasing the oil-phase ratio to 70% (v/v) promotes the formation of Pickering emulsions, which exhibit exceptional stability when MLP nanoparticles are fixed at a concentration of 20 mg mL-1. CONCLUSION The overall findings indicated that MLP nanoparticles have potential as food-grade materials for Pickering emulsions, marking a novel application of these nanoparticles in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yingshan Xie
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
| | - Han Peng
- Department of Food Science and Technology, University of California, Davis, California, USA
| | - Yanfang Yu
- Jiangxi Cash Crops Institute, Nanchang, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Lin M, Chen Y, Shi L, Zhang Y, Liu S, Liu Z, Weng W, Ren Z. High internal-phase Pickering emulsions constructed using myofibrillar proteins from large yellow croaker: Effect of glycerol. Int J Biol Macromol 2024; 288:138605. [PMID: 39662571 DOI: 10.1016/j.ijbiomac.2024.138605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Exploring the emulsification of myofibrillar protein (MP) from large yellow croaker (Larimichthys crocea) could meet the demand for high-value development and utilization of fish proteins. Therefore, MPs as the emulsifier to form stable high internal-phase Pickering emulsions (HIPPEs) with the addition of glycerol and the effects of different glycerol addition ratios of HIPPEs were investigated. HIPPEs could be constructed by MPs with the glycerol addition at a ratio of 15 %-30 % (v/v) compared to those without the addition of glycerol. With the increase in glycerol ratios, the absolute value of Zeta potential increased and reached 22.57 ± 0.29 mV at the glycerol ratio of 30 %. All the HIPPEs stabilized by MPs with the addition of glycerol possessed storage stability. Besides, the centrifugal stability constant (Ke), backscattered light intensity and reflected light stability index confirmed that the addition of glycerol was beneficial for the formation of stable HIPPEs prepared by MPs. Additionally, HIPPEs stabilized by MPs with the addition of glycerol possessed small emulsion droplets and viscoelastic behavior. These findings could be helpful for the development and utilization of MPs of large yellow croaker in the food industry.
Collapse
Affiliation(s)
- Min Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Linfan Shi
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, China
| | - Yucang Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Shuji Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Xiamen 361013, China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Xiamen 361013, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China.
| |
Collapse
|
3
|
Xie Y, Li H, Deng Z, Yu Y, Zhang B. Enhanced Bioaccessibility and Antioxidant Activity of Curcumin from Transglutaminase Cross-Linked Mulberry Leaf Protein-Stabilized High-Internal-Phase Pickering Emulsion: In Vivo and In Vitro Studies. Foods 2024; 13:3939. [PMID: 39683012 DOI: 10.3390/foods13233939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
The objective of this study was to formulate Pickering emulsions stabilized by transglutaminase cross-linked mulberry leaf protein (TG-MLP) nanoparticles as a delivery system for curcumin (Cur) and to assess its bioaccessibility both in vivo and in vitro. The encapsulation efficiency of curcumin in high-internal-phase Pickering emulsions (HIPEs) prepared at pH 10 with a 20 mg/mL concentration of TG-MLP reached 93%. Compared to Oil-Cur, Cur-HIPEs exhibited superior antioxidant activity. Furthermore, Cur-HIPEs demonstrated enhanced stability against ultraviolet irradiation, storage under dark and visible light, and heating, in contrast to Oil-Cur. Among the various conditions tested, HIPEs stabilized by TG-MLP nanoparticles at an ionic strength of 1000 mM offered the most effective protection for curcumin. Moreover, TG-MLP nanoparticles at pH 8 provided better stability for the formulated HIPEs compared to those at pH 6 and 10. During simulated gastrointestinal digestion, the bioaccessibility of curcumin in Cur-HIPEs was significantly increased to 30.1% compared to Oil-Cur. In murine studies, higher levels of curcumin were detected in the stomach, small intestine, rectum, ileum, and feces following administration of Cur-HIPEs, indicating improved protection, absorption, and potential biological activity during digestion. Consequently, HIPEs offer excellent protection and delivery for curcumin during digestion.
Collapse
Affiliation(s)
- Yingshan Xie
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, China
| | - Yanfang Yu
- Jiangxi Cash Crops Institute, Nanchang 330202, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, China
| |
Collapse
|
4
|
Wang H, Wang J, Zhang H, Wang X, Rao X. Quercetin encapsulation and release using rapid CO 2-responsive rosin-based surfactants in Pickering emulsions. Food Chem 2024; 458:140528. [PMID: 39047322 DOI: 10.1016/j.foodchem.2024.140528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Emulsion-based delivery systems are extensively employed for encapsulating functional active ingredients, protecting them from degradation, and enhancing bioavailability and release efficiency. Here, a CO2-responsive surfactant synthesized from rosin displays rapid responsiveness to CO2 at room temperature, transitioning reversibly switches between active and inactive states multiple times. The dual tertiary amines on the rosin rigid structure contributes to its CO2 sensitivity. When in its active cationic form, in conjunction with silica nanoparticles, it exhibits desired Pickering emulsification performance across various oil phases. In the Pickering emulsion loaded with quercetin, the encapsulation efficiency and loading efficiency reached 80.50% and 0.69%, respectively, with stability lasting at least 30 days. The system provides robust protection for quercetin against external factors, such as UV and heat, revealing sustained release effects. This study investigated the potential of using rosin-based CO2-responsive surfactants alongside nanoparticles to design stable Pickering emulsion systems for active substance encapsulation and sustained release.
Collapse
Affiliation(s)
- Hanwen Wang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen, Fujian Province 361021, China
| | - Jiawei Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China
| | - Hangyuan Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China
| | - Xinyang Wang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen, Fujian Province 361021, China.
| | - Xiaoping Rao
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen, Fujian Province 361021, China.
| |
Collapse
|
5
|
Karaca AC, Boostani S, Assadpour E, Tan C, Zhang F, Jafari SM. Pickering emulsions stabilized by prolamin-based proteins as innovative carriers of bioactive compounds. Adv Colloid Interface Sci 2024; 333:103246. [PMID: 39208623 DOI: 10.1016/j.cis.2024.103246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
Pickering emulsions (PEs) can be used as efficient carriers for encapsulation and controlled release of different bioactive compounds. Recent research has revealed the potential of prolamins in development of nanoparticle- and emulsion-based carriers which can improve the stability and bioavailability of bioactive compounds. Prolamin-based particles have been effectively used as stabilizers of various PEs including single PEs, high internal phase PEs, multiple PEs, novel triphasic PEs, and PE gels due to their tunable self-assembly behaviors. Prolamin particles can be fabricated via different techniques including anti-solvent precipitation, dissolution followed by pH adjustment, heating, and ion induced aggregation. Particles fabricated from prolamins alone or in combination with other hydrocolloids or polyphenols have also been used for stabilization of different PEs which were shown to be effective carriers for food bioactives, providing improved stability and functionality. This article covers the recent advances in various PEs stabilized by prolamin particles as innovative carriers for bioactive ingredients. Strategies applied for fabrication of prolamin particles and prolamin-based carriers are discussed. Emerging techno-functional applications of prolamin-based PEs and possible challenges are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Sareh Boostani
- Shiraz Pharmaceutical Products Technology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
6
|
Almeida FS, da Silva AMM, Mendes GAC, Sato ACK, Cunha RL. Almond protein as Pickering emulsion stabilizer: Impact of microgel fabrication method and pH on emulsion stability. Int J Biol Macromol 2024; 280:135812. [PMID: 39306185 DOI: 10.1016/j.ijbiomac.2024.135812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
We evaluated the ability of almond proteins to produce Pickering emulsions (EM) stabilized by microgels (MG) fabricated by three different methods (heat treatment-HT, crosslinking with transglutaminase-TG or calcium-CA), at two pH levels (pH 3 or 7). Compared to pH 7, acidic pH significantly denatured almond proteins (ellipticity ∼0 mdeg), decreased absolute zeta potential values (10.5 to 18.6 mV at pH 3 and - 24.6 to -32.6 mV at pH 7), and free thiol content (114.64-131.60 μmol SH/g protein at pH 3 and 129.46-148.17 μmol SH/g protein at pH 7 - except in CA-crosslinked microgels, p > 0.05). These changes led to larger microgel sizes (D3,2pH3: 26.3-39.5 μm vs. D3,2pH7: 5.9-9.0 μm) with lower polydispersity (SpanpH3: ∼ 1.94 vs. SpanpH7: 2.32, excluding CA-based samples). Consequently, the Turbiscan Stability Index (TSI) was higher in acidic conditions for all emulsions, except for the calcium-containing formulation (EM_CApH3), emphasizing the critical role of calcium binding in maintaining emulsion stability in acidic environments. Microgels prepared via the traditional heat treatment method produced emulsions with intermediate stability (TSI ranging from 3.4 % to 5.1 % at 28 days of storage). Conversely, TG-crosslinked microgels led to unstable emulsions at pH 3, likely due to the lowest zeta potential (+4.2 mV), whereas at pH 7, the greatest stability was attributed to bridging flocculation that created a stable gel-like structure. Indeed, emulsions with lower TSI (EM_CApH3 = 1.8 %, EM_CApH7 = 2.3 % and EM_TGpH7 = 1.0 %, at 28 days of storage) also exhibited higher elastic modulus (G') over frequency sweep, indicating that the strong elastic network was relevant for emulsion stability (up to 28 days). This study, for the first time, demonstrated the production of stable almond-based Pickering emulsions, with properties modulated by the pH and method used to fabricate the microgels.
Collapse
Affiliation(s)
- Flávia Souza Almeida
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, 13083-862 Campinas, Brazil
| | - Aurenice Maria Mota da Silva
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, 13083-862 Campinas, Brazil
| | - Gabriel Augusto Campos Mendes
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, 13083-862 Campinas, Brazil
| | - Ana Carla Kawazoe Sato
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, 13083-862 Campinas, Brazil
| | - Rosiane Lopes Cunha
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, 13083-862 Campinas, Brazil.
| |
Collapse
|
7
|
Kang ZL, Yao PL, Xie JJ, Li YP, Ma HJ. Effects of low-frequency magnetic field on solubility, structural and functional properties of soy 11S globulin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5944-5954. [PMID: 38415770 DOI: 10.1002/jsfa.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Soy 11S globulin has high thermal stability, limiting its application in the production of low-temperature gel foods. In this study, the low-frequency magnetic field (LF-MF, 5 mT) treatment (time, 30, 60, 90, and 120 min) was used to improve the solubility, conformation, physicochemical properties, surface characteristics, and gel properties of soy 11S globulin. RESULTS Compared with the native soy 11S globulin, the sulfhydryl content, emulsifying capacity, gel strength, water-holding capacity, and absolute zeta potential values significantly increased (P < 0.05) after LF-MF treatment. The LF-MF treatment induced the unfolding of the protein structure and the fracture of disulfide bonds. The variations in solubility, foaming properties, viscosity, surface hydrophobicity, and rheological properties were closely related to the conformational changes of soy 11S globulin, with the optimum LF-MF modification time being 90 min. CONCLUSION LF-MF treatment is an effective method to improve various functional properties of native soy 11S globulin, and this study provides a reference for the development of plant-based proteins in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhuang-Li Kang
- School of Tourism and Cuisine, Industrial Engineering Center for Huaiyang Cuisin of Jiangsu Province, Yangzhou University, Yangzhou, China
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, China
| | - Peng-Lei Yao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Jing-Jie Xie
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Yan-Ping Li
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu, China
| | - Han-Jun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
8
|
Hu Y, Zhou C, Zeng X, Xia Q, Sun Y, Pan D. Phosphate type dependent phosphorylation on the interfacial and emulsion stabilizing behaviors of goose liver protein: Perspective of protein charging. Colloids Surf B Biointerfaces 2024; 238:113872. [PMID: 38555762 DOI: 10.1016/j.colsurfb.2024.113872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Elucidation on the emulsifying behaviors of goose liver protein (GLP) from interfacial perspective was scarce when protein charging was altered. This work aimed to elucidate the role of phosphorylation on the interfacial associative interaction and then emulsion stabilizing properties of GLP using three structurally relevant phosphates of sodium trimetaphosphate (STMP), sodium tripolyphosphate (STPP) and sodium pyrophosphate (TSPP). A monotonic increment of protein charging treated from STMP, STPP to TSPP caused progressively increased particle de-aggregation, surface hydrophobicity and structural flexibility of GLP. Compared with STMP and TSPP, STPP phosphorylation rendered the most strengthened interfacial equilibrium pressure (11.98 ± 0.24 mN/m) due to sufficient unfolding but moderated charging character conveyed. Desorption curve and interfacial protein microstructure indicated that STPP phosphorylation caused the highest interfacial connectivity between proteins adsorbed onto the same droplet, as was also verified by interfacial elastic modulus (10.3 ± 0.21 mN/m). STPP treated GLP also yielded lowest droplet size (8.16 ± 0.10 μm), flocculation (8.18%) and Turbiscan stability index (8.78 ± 0.36) of emulsion but most improved microrheological properties. Overall, phosphorylation functioned itself in fortifying the intradroplet protein-protein interaction but restraining the interdroplet aggregation, and STPP phosphorylation endowed the protein with most enhanced interfacial stabilization and emulsifying efficiency.
Collapse
Affiliation(s)
- Yangyang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
9
|
Intiquilla A, Arazo M, Gamboa A, Caro N, Gotteland M, Palomino-Calderón A, Abugoch L, Tapia C. Nanoemulsions Based on Soluble Chenopodin/Alginate Complex for Colonic Delivery of Quercetin. Antioxidants (Basel) 2024; 13:658. [PMID: 38929097 PMCID: PMC11200757 DOI: 10.3390/antiox13060658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disorder caused by uncontrolled immune activation and the subsequent destruction of the colon tissue. Quercetin (Qt) is a natural antioxidant and anti-inflammatory agent proposed as an alternative to mitigate IBD. However, its use is limited by its low oral bioavailability. This study aimed to develop nanoemulsions (NEs) based on a soluble chenopodin/alginate (QPA) complex and Tween 80 (T80), intended for the colonic release of Qt, activated by the pH (5.4) and bacteria present in the human colonic microbiota. NEs with different ratios of QPA/Tw80 (F1-F6) were prepared, where F4Qt (60/40) and F5Qt (70/30) showed sizes smaller than 260 nm, PDI < 0.27, and high encapsulation efficiency (>85%). The stability was evaluated under different conditions (time, temperature, pH, and NaCl). The DSC and FTIR analyses indicated hydrophobic and hydrogen bonding interactions between QPA and Qt. F4Qt and F5Qt showed the greater release of Qt in PBS1X and Krebs buffer at pH 5.4 (diseased condition), compared to the release at pH 7.4 (healthy condition) at 8 h of study. In the presence of E. coli and B. thetaiotaomicron, they triggered the more significant release of Qt (ƒ2 < 50) compared to the control (without bacteria). The NEs (without Qt) did not show cytotoxicity in HT-29 cells (cell viability > 80%) and increased the antioxidant capacity of encapsulated Qt. Therefore, these NEs are promising nanocarriers for the delivery of flavonoids to the colon to treat IBD.
Collapse
Affiliation(s)
- Arturo Intiquilla
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jirón Puno 1002, Lima 15081, Peru;
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Santiago 8330015, Chile;
| | - Migdalia Arazo
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago 8330015, Chile;
| | - Alexander Gamboa
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O’Higgins 3363, Estación Central, Santiago 9170022, Chile;
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército 146, Santiago 8370003, Chile;
| | - Nelson Caro
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército 146, Santiago 8370003, Chile;
| | - Martin Gotteland
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8330015, Chile;
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de Alimentos (INTA), Universidad de Chile, Santiago 8330015, Chile
| | - Alan Palomino-Calderón
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Santiago 8330015, Chile;
| | - Lilian Abugoch
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Santiago 8330015, Chile;
| | - Cristian Tapia
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Santiago 8330015, Chile;
| |
Collapse
|
10
|
Liu Y, Guo X, Liu T, Fan X, Yu X, Zhang J. Study on the structural characteristics and emulsifying properties of chickpea protein isolate-citrus pectin conjugates prepared by Maillard reaction. Int J Biol Macromol 2024; 264:130606. [PMID: 38447830 DOI: 10.1016/j.ijbiomac.2024.130606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Chickpea protein isolate (CPI) typically exhibits limited emulsifying properties under various food processing conditions, including pH variations, different salt concentrations, and elevated temperatures, which limits its applications in the food industry. In this study, CPI-citrus pectin (CP) conjugates were prepared through the Maillard reaction to investigate the influence of various CP concentrations on the structural and emulsifying properties of CPI. With the CPI/CP ratio of 1:2, the degree of graft reached 35.54 %, indicating the successful covalent binding between CPI and CP. FT-IR and intrinsic fluorescence spectroscopy analyses revealed alterations in the secondary and tertiary structures of CPI after glycosylation modification. The solubility of CPI increased from 81.39 % to 89.59 % after glycosylation. Moreover, freshly prepared CPI emulsions showed an increase in interfacial protein adsorption (70.33 % to 92.71 %), a reduction in particle size (5.33 μm to 1.49 μm), and a decrease in zeta-potential (-34.9 mV to -52.5 mV). Simultaneously, the long-term stability of the emulsions was assessed by employing a LUMiSizer stability analyzer. Furthermore, emulsions prepared with CPI:CP 1:2 exhibited excellent stability under various environmental stressors. In conclusion, the results of this study demonstrate that the glycosylation is a valuable approach to improve the emulsifying properties of CPI.
Collapse
Affiliation(s)
- Yibo Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Ting Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xuemei Fan
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiyu Yu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
11
|
Liu XY, He TS, Wang CC, Xu BC, Feng R, Zhang B, Tao H. Modulation of pea protein isolate nanoparticles by interaction with OSA-corn starch: Enhancing the stability of the constructed Pickering emulsions. Food Chem 2024; 437:137766. [PMID: 37866346 DOI: 10.1016/j.foodchem.2023.137766] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/28/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
The impact of particle concentration (0.5-2.5%) on the stability of Pickering emulsions was investigated in this work. Pickering emulsion was prepared using pea protein isolate (PPI)/octenyl succinic anhydrate corn starch (OSA-CS) composite nanoparticles (PPI/OSA-CS) as stabilizers. PPI/OSA-CS was prepared with pH adjustment and ultrasonic treatment, and the particle size was 100.05 ± 0.46 nm. The formation of PPI/OSA-CS through hydrophobic interaction and hydrogen bond was confirmed by Fourier transform infrared spectroscopy, intrinsic fluorescence spectroscopy and dissociation analysis. The results indicated that the emulsion stabilized with composite nanoparticles at 1.5% particle concentration had smaller particle size and better stability than at other concentrations. This could be attributed to the presence of sufficient composite nanoparticles wrapped around the surface of oil droplets. At high temperature (100 °C) and high ionic strength (500 mM), the emulsion remained stable. These results provide a potential method for preparing a novel and stable Pickering emulsion, which could have important applications in various fields.
Collapse
Affiliation(s)
- Xin-Yue Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Ting-Shi He
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Chen-Chen Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Bao-Cai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Ran Feng
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| | - Bao Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Han Tao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| |
Collapse
|
12
|
Ridella F, Marcet I, Gutiérrez G, Rendueles M, Díaz M. Characterization of Pickering emulsions stabilized by delipidated egg yolk granular protein nanoparticles crosslinked with ultraviolet radiation. Food Chem 2024; 433:137330. [PMID: 37660604 DOI: 10.1016/j.foodchem.2023.137330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/08/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
In this study, delipidated egg yolk proteins were used for the first time to prepare nanoparticles by the self-assembling method at pH 8.0, then treated with UV-C as a crosslinking agent, and their stability tested at pH 7.0, which is a more convenient pH for food applications. According to the results obtained, non-irradiated nanoparticles had a size of 431.8 ± 75.7 nm at pH 7.0, but the 10 min UV-C irradiated nanoparticles had an average size of 139.7 ± 5.9 nm. These nanoparticles also showed a high resistance to destabilization by SDS, urea or DTT and noticeable antioxidant and ferrous chelating activities. Pickering emulsions prepared at the nanoparticle concentration of 1 % (w/w) showed the smallest average droplet size and the lowest Turbiscan stability index value after 80 days of storage. All in all, these results have important implications for the utilisation of these proteins as a conventional Pickering emulsifying agent.
Collapse
Affiliation(s)
- Florencia Ridella
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Ismael Marcet
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Manuel Rendueles
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain.
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
13
|
Zhang Q, Kong B, Liu H, Du X, Sun F, Xia X. Nanoscale Pickering emulsion food preservative films/coatings: Compositions, preparations, influencing factors, and applications. Compr Rev Food Sci Food Saf 2024; 23:e13279. [PMID: 38284612 DOI: 10.1111/1541-4337.13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/18/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024]
Abstract
Pickering emulsion (PE) technology effectively addresses the issues of poor compatibility and low retention of hydrophobic active ingredients in food packaging. Nonetheless, it is important to recognize that each stage of the preparation process for PE films/coatings (PEFCs) can significantly influence their functional properties. With the fundamental considerations of environmental friendliness and human safety, this review extensively explores the potential of raw materials for PEFC and introduces the preparation methods of nanoparticles, emulsification technology, and film-forming techniques. The critical factors that impact the performance of PEFC during the preparation process are analyzed to enhance food preservation effectiveness. Moreover, the latest advancements in PE packaging across diverse food applications are summarized, along with prospects for innovative food packaging materials. Finally, the preservation mechanism and application safety have been systematically elucidated. The study revealed that the PEFCs provide structural flexibility, where designable nanoparticles offer unique functional properties for intelligent control over active ingredient release. The selection of the dispersed and continuous phases, along with component proportions, can be customized for specific food characteristics and storage conditions. By employing suitable preparation and emulsification techniques, the stability of the emulsion can be improved, thereby enhancing the effectiveness of the films/coatings in preserving food. Including additional substances broadens the functionality of degradable materials. The PE packaging technology provides a safe and innovative solution for extending the shelf life and enhancing the quality of food products by protecting and releasing active components.
Collapse
Affiliation(s)
- Quanyu Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
14
|
Nieto G, Martínez-Zamora L, Peñalver R, Marín-Iniesta F, Taboada-Rodríguez A, López-Gómez A, Martínez-Hernández GB. Applications of Plant Bioactive Compounds as Replacers of Synthetic Additives in the Food Industry. Foods 2023; 13:47. [PMID: 38201075 PMCID: PMC10778451 DOI: 10.3390/foods13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
According to the Codex Alimentarius, a food additive is any substance that is incorporated into a food solely for technological or organoleptic purposes during the production of that food. Food additives can be of synthetic or natural origin. Several scientific evidence (in vitro studies and epidemiological studies like the controversial Southampton study published in 2007) have pointed out that several synthetic additives may lead to health issues for consumers. In that sense, the actual consumer searches for "Clean Label" foods with ingredient lists clean of coded additives, which are rejected by the actual consumer, highlighting the need to distinguish synthetic and natural codded additives from the ingredient lists. However, this natural approach must focus on an integrated vision of the replacement of chemical substances from the food ingredients, food contact materials (packaging), and their application on the final product. Hence, natural plant alternatives are hereby presented, analyzing their potential success in replacing common synthetic emulsifiers, colorants, flavorings, inhibitors of quality-degrading enzymes, antimicrobials, and antioxidants. In addition, the need for a complete absence of chemical additive migration to the food is approached through the use of plant-origin bioactive compounds (e.g., plant essential oils) incorporated in active packaging.
Collapse
Affiliation(s)
- Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Lorena Martínez-Zamora
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Rocío Peñalver
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Fulgencio Marín-Iniesta
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Amaury Taboada-Rodríguez
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
- Agrosingularity, Calle Pintor Aurelio Pérez 12, 30006 Murcia, Spain
| | - Antonio López-Gómez
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
| | - Ginés Benito Martínez-Hernández
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
| |
Collapse
|
15
|
Wu M, He X, Feng D, Li H, Han D, Li Q, Zhao B, Li N, Liu T, Wang J. The Emulsifying Properties, In Vitro Digestion Characteristics and Storage Stability of High-Pressure-Homogenization-Modified Dual-Protein-Based Emulsions. Foods 2023; 12:4141. [PMID: 38002198 PMCID: PMC10670896 DOI: 10.3390/foods12224141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The droplet size, zeta potential, interface protein adsorption rate, physical stability and microrheological properties of high-pressure-homogenization (HPH)-modified, dual-protein-based whey-soy (whey protein isolate-soy protein isolate) emulsions containing different oil phase concentrations (5%, 10% and 15%; w/w) were compared in this paper. The in vitro digestion characteristics and storage stability of the dual-protein emulsions before and after HPH treatment were also explored. The results show that with an increase in the oil phase concentration, the droplet size and interface protein adsorption rate of the untreated dual-protein emulsions increased, while the absolute value of the zeta potential decreased. When the oil phase concentration was 10% (w/w), HPH treatment could significantly reduce the droplet size of the dual-protein emulsion, increase the interface protein adsorption rate, and improve the elasticity of the emulsion. Compared with other oil phase concentrations, the physical stability of the dual-protein emulsion containing a 10% (w/w) oil phase concentration was the best, so the in vitro digestion characteristics and storage stability of the emulsions were studied. Compared with the control group, the droplet size of the HPH-modified dual-protein emulsion was significantly reduced after gastrointestinal digestion, and the in vitro digestibility and release of free amino groups both significantly increased. The storage stability results show that the HPH-modified dual-protein emulsion showed good stability under different storage methods, and the storage stability of the steam-sterilized dual-protein emulsion stored at room temperature was the best. These results provide a theoretical basis for the development of new nutritional and healthy dual-protein liquid products.
Collapse
Affiliation(s)
- Meishan Wu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiaoye He
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Duo Feng
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Hu Li
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Di Han
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Qingye Li
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Boya Zhao
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Li
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Tianxin Liu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
16
|
Jo YJ, Chu Y, Chen L. Enhanced stabilization of oil-in-water (O/W) emulsions by fibrillar gel particles from lentil proteins. Food Res Int 2023; 172:113203. [PMID: 37689950 DOI: 10.1016/j.foodres.2023.113203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Pulse proteins as a sustainable protein source have attracted increasing interest in food development, but pulse proteins are generally less surface active than dairy proteins. This work introduces lentil protein (LP)-based fibrillar gel particles (FGPs) fabricated from heat-induced LP fibrillar aggregates by 1, 4, 8, and 16 h of heating, followed by particle reduction using sonication. The heating time significantly impacts the FGPs particle size and surface hydrophobicity. The FGP prepared by 4 h of heating (FGP-4) showed a small size (<200 nm) and homogeneous size distribution while possessing significantly increased surface hydrophobicity compared to untreated LP. Such structural features made FGP-4 better adsorb at the O/W interface and then completely covered the oil droplet surface, leading to homogeneous emulsions of small size (22.33 μm) and superior long-term stability without creaming for 30 days. In addition, the dispersed FGP in the bulk phase could develop interactions among each other, leading to improved emulsion viscosity and texture without oil droplet size change. This finding suggests that constructing fibril-type gel particles can provide a new strategy for forming superior O/W emulsions with improved stability from plant proteins.
Collapse
Affiliation(s)
- Yeon-Ji Jo
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Yifu Chu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Lingyun Chen
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
17
|
Tang M, Sun Y, Feng X, Ma L, Dai H, Fu Y, Zhang Y. Regulation mechanism of ionic strength on the ultra-high freeze-thaw stability of myofibrillar protein microgel emulsions. Food Chem 2023; 419:136044. [PMID: 37011570 DOI: 10.1016/j.foodchem.2023.136044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
The regulation mechanism of ionic strength (0-1000 mM) on the freeze-thaw (FT) stability of emulsions stabilized by myofibrillar protein microgel particles (MMP) was systematically investigated. High ionic strength emulsions (300-1000 mM) exhibited stability after five FT cycles. With ionic strength increasing, the repulsive force between particles gradually reduced, the flocculation degree (20.72 ∼ 75.60%) and apparent viscosity of emulsions gradually rose (69 ∼ 170 mPa·s), promoting the formation of protein network structures in the continuous phase. Concurrently, the interfacial proteins rearranged (18.8 ∼ 104.2 s-1) and aggregated rapidly, facilitating the formation of a stable interface network structure, ultimately improving its stability. Besides, scanning electron microscopy (SEM) images revealed that the interfacial proteins gradually aggregated, further forming a network with the MMP in the continuous phase, allowing MMP emulsions with enhanced FT stability at high ionic strength (300-1000 mM). This study was beneficial to produce emulsion-based sauces with ultra-high FT stability.
Collapse
|
18
|
Li W, Li W, Wan Y, Zhou T, Wang L. Thymol-loaded Zein-pectin composite nanoparticles as stabilizer to fabricate Pickering emulsion of star anise essential oil for improved stability and antimicrobial activity. J Food Sci 2023; 88:3807-3819. [PMID: 37530639 DOI: 10.1111/1750-3841.16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 08/03/2023]
Abstract
The aim of the present study was to prepare a new antimicrobial Pickering emulsion of which the star anise essential oil was added to the oil phase, and to investigate the effect of stabilization by bio-based active nanoparticles consisting of zein and pectin loaded with thymol. First, the thymol-loaded zein/pectin composite nanoparticles (ZTNPs) were fabricated as uniformly distributed spherical nanoparticles with an average diameter of 200 nm through antisolvent precipitation. Second, the effects of nanoparticles' concentration, oil phase ratio, and storage time on the stability of emulsions were explored according to particle size potential, interfacial tension, rheology, and micromorphology. Finally, the antibacterial results showed that Pickering emulsion inhibited Escherichia coli and Staphylococcus aureus compared to the control group by nearly 7 log colony-forming unit/g at 36 h, which was twice as much as the inhibition by thymol or star anise essential oils and ZTNPs. Therefore, the proposed Pickering emulsion with star anise essential oil could be used as a green and safe plant-derived antimicrobial agent in the food industry.
Collapse
Affiliation(s)
- Wei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| | - Wenqing Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| | - Yulian Wan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| | - Tao Zhou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| | - Longfeng Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| |
Collapse
|
19
|
Zong M, Tong X, Farid MS, Chang C, Guo Y, Lian L, Zeng X, Pan D, Wu Z. Enhancement of gum Arabic/casein microencapsulation on the survival of Lactiplantibacillus plantarum in the stimulated gastrointestinal conditions. Int J Biol Macromol 2023; 246:125639. [PMID: 37394217 DOI: 10.1016/j.ijbiomac.2023.125639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Probiotic products that contain lactobacilli have long histories of safe use as Lactobacillus strains have many physiological functions in the gastrointestinal tract (GIT). However, the viability of probiotics can be affected by food processing and the adverse environment. This study investigated the O/W (Oil-in-water emulsions) emulsions formed by coagulation of casein/GA (Gum Arabic) complexes for Lactiplantibacillus plantarum microencapsulation, and the stability of the strains during gastrointestinal environment were also determined. The results showed that the particle size of the emulsion decreased from 9.72 μm to 5.48 μm when the GA concentration increased from 0 to 2 (w/v), and the emulsion particles were found to be more uniform as observed by CLSM (Confocal Laser Scanning Microscope). The surface of this microencapsulated casein/GA composite forms smooth, dense agglomerates and has high viscoelasticity, which effectively improved casein's emulsifying activity (8.66 ± 0.17 m2/g). After the casein/GA complexes microencapsulation, a higher viable count was detected after gastrointestinal digestion in vitro, and the activity of L. plantarum is more stable (about 7.51 log CFU/mL) during 35 days of storage at 4 °C. The results of study will help to design lactic acid bacteria encapsulation systems based on the GIT environment for the oral delivery strategy.
Collapse
Affiliation(s)
- Manli Zong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Xin Tong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Muhammad Salman Farid
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Chun Chang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yuxing Guo
- School of Food Science & Pharmaceutical Engineering, Nanjing Normal University, Nanjing, PR China
| | - Liwei Lian
- Ningbo Dairy Group, Ningbo, 315211, Zhejiang, PR China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China.
| |
Collapse
|
20
|
Li W, Faisal S, Guo X, Li S, Shi A, Jiao B, Wang Q. The preparation of Diacylglycerol-rich soybean oil by acetylated modification of arachin nanoparticles for W/O Pickering emulsion system. Food Chem 2023; 426:136615. [PMID: 37331136 DOI: 10.1016/j.foodchem.2023.136615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/18/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Pickering emulsion catalytic system (PEC) stabilized by nanoparticles is an efficient catalytic platform. Herein, a high-performance PEC was constructed by acetylated modification of arachin nanoparticles (AAPs). The results showed the pI of arachin was decreased from pH 5.5 to pH 3.5. The surface hydrophobicity index was significantly increased (from 56.28 ± 4.23 to 120.77 ± 0.79) after acetylated modification. The three-phase contact angle of AAPs was 91.20 ± 0.98°. AAPs were used as lipase immobilization carriers to increase the activity of free lipase fabricating lipase-AAPs. The immobilization efficiency and activity of lipase-AAPs were 12.95 ± 0.03% and 1.74 ± 0.07 U/mg, respectively. Enzymatic reaction kinetics showed that Vm of lipase-AAPs was twice of free lipase. Km was 1/5 of free lipase. The catalytic efficiency of PEC to prepare DAG was 2.36 times of biphasic catalytic system (BCS). This work provided a promising way to promote the efficiency of DAG preparation.
Collapse
Affiliation(s)
- Wei Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, P.O. Box 5109, Beijing 100193, China
| | - Shah Faisal
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, P.O. Box 5109, Beijing 100193, China
| | - Xin Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, P.O. Box 5109, Beijing 100193, China
| | - Sisheng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, P.O. Box 5109, Beijing 100193, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, P.O. Box 5109, Beijing 100193, China
| | - Bo Jiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, P.O. Box 5109, Beijing 100193, China.
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, P.O. Box 5109, Beijing 100193, China.
| |
Collapse
|
21
|
Wu S, Zhang Z, Liu C, Ma T. Effect of pH-shifting and sonication-assisted treatment on properties and stability of vegetable oil-based whipped cream stabilized by kidney bean protein aggregates. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
22
|
Liu YW, Li QH, Li SY, Huang GQ, Xiao JX. Interfacial adsorption behavior of the Aspergillus oryzae lipase-chitosan complex and stability evaluation of the resultant Pickering emulsion. Int J Biol Macromol 2023; 233:123599. [PMID: 36773866 DOI: 10.1016/j.ijbiomac.2023.123599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/05/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
To prompt the application of the chitosan (CS)-Aspergillus oryzae lipase (AOL) complex in the construction of novel biphasic catalysis medium, its Pickering emulsion stabilization ability as well as adsorption behavior in the oil-water interface were investigated and the stability of resultant emulsion was evaluated. The results indicated that the CS-AOL complex assembled in mass ratio 1:5 was an effective Pickering stabilizer and up to 90 % AOL could be retained in the emulsion interface. Quartz crystal microbalance with dissipation monitoring suggested that the CS-AOL complex spontaneously absorbed to oil-water interface; absorption dynamics analysis revealed that the adsorption was driven by diffusion accompanied by rapid structural rearrangement; while interfacial dilatational rheology demonstrated the formation of an elastic film in the oil-water interface. The Pickering emulsions were pseudoplastic and that in oil fraction 0.6 exhibited the elastic behavior in contrast to the viscous behavior in oil fractions 0.2 and 0.4. The Pickering emulsion exhibited excellent stability against storage for up to 28 d, pHs 2.0-12.0, heating at 25-90 °C, and up to 500 mmol/L NaCl, and the corresponding interfacial AOL retentions exceeded 80 % during exposure to these conditions. Hence, the CS-AOL complex could be used as a stabilizer to construct Pickering emulsion-based biphasic catalysis systems.
Collapse
Affiliation(s)
- Yan-Wei Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Qing-Hao Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Shi-Yu Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Qing Huang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun-Xia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
23
|
Meng W, Sun H, Mu T, Garcia-Vaquero M. Chitosan-based Pickering emulsion: A comprehensive review on their stabilizers, bioavailability, applications and regulations. Carbohydr Polym 2023; 304:120491. [PMID: 36641178 DOI: 10.1016/j.carbpol.2022.120491] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Chitosan-based particles are one of the most promising Pickering emulsions stabilizers due to its cationic properties, cost-effective, biocompatibility, biodegradability. However, there are currently no comprehensive reviews analyzing the role of chitosan to develop Pickering emulsions, and the bioavailability and multiple uses of these emulsions. SCOPE AND APPROACH This review firstly summarizes the types, preparation and functional properties of chitosan-based Pickering emulsion stabilizers, followed by in vivo and in vitro bioavailability, main regulations, and future application and trends. KEY FINDINGS AND CONCLUSIONS Stabilizers used in chitosan-based Pickering emulsions include 6 categories: chitosan self-aggregating particles and 5 types of composites (chitosan-protein, chitosan-polysaccharide, chitosan-fatty acid, chitosan-polyphenol, and chitosan-inorganic). Chitosan-based Pickering emulsions improved the bioavailability of different compounds compared to traditional emulsions. Current applications include hydrogels, microcapsules, food ingredients, bio-based films, cosmeceuticals, porous scaffolds, environmental protection agents, and interfacial catalysis systems. However, due to current limitations, more research and development are needed to be extensively explored to meet consumer demand, industrial manufacturing, and regulatory requirements. Thus, optimization of stabilizers, bioavailability studies, 3D4D printing, fat substitutes, and double emulsions are the main potential development trends or research gaps in the field which would contribute to increase adoption of these promising emulsions at industrial level.
Collapse
Affiliation(s)
- Weihao Meng
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China.
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China.
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
24
|
Guo Y, Liu C, Ma Y, Shen L, Gong Q, Hu Z, Wang Z, Liu X, Guo Z, Zhou L. Study on the Structure, Function, and Interface Characteristics of Soybean Protein Isolate by Industrial Phosphorylation. Foods 2023; 12:foods12051108. [PMID: 36900624 PMCID: PMC10000779 DOI: 10.3390/foods12051108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The impacts of industrial phosphorylation on the structural changes, microstructure, functional, and rheological features of soybean protein isolate (SPI) were spotlighted. The findings implied that the spatial structure and functional features of the SPI changed significantly after treatment with the two phosphates. Sodium hexametaphosphate (SHMP) promoted aggregation of SPI with a larger particle size; sodium tripolyphosphate (STP) modified SPI with smaller particle size. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) results showed insignificant alterations in the structure of SPI subunits. Fourier transform infrared (FTIR) and endogenous fluorescence noted a decline in α-helix quantity, an amplification in β-fold quantity, and an increase in protein stretching and disorder, indicating that phosphorylation treatment fluctuated the spatial structure of the SPI. Functional characterization studies showed that the solubility and emulsion properties of the SPI increased to varying degrees after phosphorylation, with a maximum solubility of 94.64% for SHMP-SPI and 97.09% for STP-SPI. Emulsifying activity index (EAI) and emulsifying steadiness index (ESI) results for STP-SPI were better than those for SHMP-SPI. Rheological results showed that the modulus of G' and G″ increased and the emulsion exhibited significant elastic behavior. This affords a theoretical core for expanding the industrial production applications of soybean isolates in the food and various industries.
Collapse
Affiliation(s)
- Yanan Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Caihua Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yitong Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lulu Shen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qi Gong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhaodong Hu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Linyi Zhou
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
25
|
Chang C, Li X, Zhai J, Su Y, Gu L, Li J, Yang Y. Stability of protein particle based Pickering emulsions in various environments: review on strategies to inhibit coalescence and oxidation. Food Chem X 2023; 18:100651. [PMID: 37091511 PMCID: PMC10113778 DOI: 10.1016/j.fochx.2023.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
The emerging research interests in fabrication of protein particles as soft-particle emulsifiers show the prospective potential of using protein particles in novel poly-phase dispersing food systems. This review first provides a comprehensive summary and analysis on the dominant role of key physicochemical properties of protein particles including wettability, morphology, surface charge and protein concentration on their emulsifying abilities to construct Pickering emulsions. It was found that the constructed emulsions showed high sensitivity to changes in pH, ionic strength and temperature (thermal and freeze-thaw treatment). Moreover, oxidation remains as a challenge for protein particle based Pickering emulsions during prolonged storage, reducing their acceptance in food products. Current strategies for improving the stability of these emulsions to variable aqueous conditions and variable temperatures, and restricting oxidation event are summarized. In summary, an "ideal" protein particle-based Pickering emulsion system is proposed, encompassing aspects of interfacial property, emulsion network and texture, and antioxidant enrichment, thus promoting industrial translation into novel food and nutraceutical products.
Collapse
|
26
|
Effect of egg white protein-insoluble soybean fiber interactions on the formation and structural characteristics of low-oil emulsion gels. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
27
|
Han W, Liu TX, Tang CH. Use of oligomeric globulins to efficiently fabricate nanoemulsions: Importance of enhanced structural stability by introducing trehalose. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
28
|
Guo Y, Liu C, Wang Y, Ren S, Zheng X, Zhang J, Cheng T, Guo Z, Wang Z. Impact of Cavitation Jet on the Structural, Emulsifying Features and Interfacial Features of Soluble Soybean Protein Oxidized Aggregates. Foods 2023; 12:foods12050909. [PMID: 36900426 PMCID: PMC10000764 DOI: 10.3390/foods12050909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
A cavitation jet can enhance food proteins' functionalities by regulating solvable oxidized soybean protein accumulates (SOSPI). We investigated the impacts of cavitation jet treatment on the emulsifying, structural and interfacial features of soluble soybean protein oxidation accumulate. Findings have shown that radicals in an oxidative environment not only induce proteins to form insoluble oxidative aggregates with a large particle size and high molecular weight, but also attack the protein side chains to form soluble small molecular weight protein aggregates. Emulsion prepared by SOSPI shows worse interface properties than OSPI. A cavitation jet at a short treating time (<6 min) has been shown to break the core aggregation skeleton of soybean protein insoluble aggregates, and insoluble aggregates into soluble aggregates resulting in an increase of emulsion activity (EAI) and constancy (ESI), and a decrease of interfacial tension from 25.15 to 20.19 mN/m. However, a cavitation jet at a long treating time (>6 min) would cause soluble oxidized aggregates to reaggregate through an anti-parallel intermolecular β-sheet, which resulted in lower EAI and ESI, and a higher interfacial tension (22.44 mN/m). The results showed that suitable cavitation jet treatment could adjust the structural and functional features of SOSPI by targeted regulated transformation between the soluble and insoluble components.
Collapse
|
29
|
Novel high internal phase oleogels-in-water pickering emulsions stabilized solely by whey protein isolate for 3D printing and fucoxanthin delivery. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
30
|
Pickering stabilizing capacity of Plasma-treated Grass pea protein nanoparticles. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
31
|
Song S, Zhong L, Wei Y, Li Y, Tao L, Yu L. Highly stable solid-like Pickering emulsions stabilized by kafirin-chitosan complex particles. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
32
|
Song S, Li Y, Zhu Q, Zhang X, Wang Y, Tao L, Yu L. Structure and properties of Pickering emulsions stabilized solely with novel buckwheat protein colloidal particles. Int J Biol Macromol 2023; 226:61-71. [PMID: 36493922 DOI: 10.1016/j.ijbiomac.2022.12.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
In this paper, buckwheat protein colloidal particles (BPCPs) were prepared by heat treatment to stabilize oil-water interface. The results of particle size, surface hydrophobicity and wettability indicated that the prepared BPCPs could be used as novel Pickering emulsifier. The effects of BPCPs concentration, ionic strength and heat treatment on the structure and properties of Pickering emulsions were explored. The microstructure results showed that BPCPs could tightly coated on the surface of oil droplets to form a tight interfacial film, confirming that BPCPs could be used as an effective Pickering-like stabilizer. With the increase of BPCPs concentration, the droplet size of the Pickering emulsion gradually decreased, and the viscoelasticity and storage stability of the emulsion were effectively improved. Different from the effect of ionic strength, heat treatment was beneficial to increasing the viscoelasticity of BPCPs-stabilized Pickering emulsion. The Pickering emulsions exhibited certain flocculation at different temperatures and ionic strengths, while still maintained good solid-like behavior. These results suggest that the structure and properties of BPCPs-stabilized Pickering emulsion could be regulated by changing the ionic strength and temperature.
Collapse
Affiliation(s)
- Shixin Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Yufei Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Qiyuan Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Xin Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Yang Wang
- National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, PR China
| | - Li Tao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Lei Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, PR China.
| |
Collapse
|
33
|
Li J, Sun J, Gu L, Su Y, Yang Y, Chang C, Han Q. Foaming properties of dried egg white at different outlet temperatures. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Interfacial Characterization of an Oxidative Pickering Emulsion Stabilized by Polysaccharides/Polyphenol Complex Nanogels via a Multiscale Study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Yang S, Lian Z, Wang M, Liao P, Wu H, Cao J, Tong X, Tian T, Wang H, Jiang L. Molecular structural modification of β-conglycinin using pH-shifting with ultrasound to improve emulsifying properties and stability. ULTRASONICS SONOCHEMISTRY 2022; 90:106186. [PMID: 36201932 PMCID: PMC9535325 DOI: 10.1016/j.ultsonch.2022.106186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 05/07/2023]
Abstract
This present work underlines the effect of pH-shifting at pH 2 and pH 12 individually or combined with ultrasound treatment to modify the molecular structure of β-conglycinin (7S) on its emulsifying properties and stability. Fourier transform infrared (FTIR) spectroscopy and intrinsic fluorescence spectroscopy showed that pH-shifting improves the molecular structure of 7S, while ultrasound further promotes structural changes. In particular, the pH-shifting at pH 12 combined with ultrasound treatment (U-7S-12) resulted in more significant changes than the pH-shifting at pH 2 combined with ultrasound (U-7S-2). U-7S-12 showed a significant reduction in protein particle size from 152 to 34.77 nm and a relatively smooth protein surface compared to 7S. The protein had the highest surface hydrophobicity and flexibility at 81,560.0 and 0.45, respectively, and the free sulfhydryl content from 1.57 to 2.02 μmol/g. In addition, we characterized the emulsions prepared after 7S treatment. The single or combined treatment increased the interfacial protein adsorption of the samples, which showed lower viscosity and shear stress compared to 7S. The U-7S-12 emulsion exhibited the highest emulsifying properties and was more stable than other emulsions under creaming, heating, and freeze-thaw conditions. In summary, the concerted action of pH-shifting and ultrasound can modify the structure, and combined alkaline pH-shifting and ultrasound treatment can further improve the emulsifying properties and stability of 7S.
Collapse
Affiliation(s)
- Sai Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ziteng Lian
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mengmeng Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Peilong Liao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Haibo Wu
- College of Food Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Jia Cao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohong Tong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tian Tian
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
36
|
Guo Y, Wang Z, Hu Z, Yang Z, Liu J, Tan B, Guo Z, Li B, Li H. The temporal evolution mechanism of structure and function of oxidized soy protein aggregates. Food Chem X 2022; 15:100382. [PMID: 36211760 PMCID: PMC9532710 DOI: 10.1016/j.fochx.2022.100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/01/2022] [Accepted: 07/03/2022] [Indexed: 11/30/2022] Open
Abstract
The oxidation of soybean protein has the regular temporal evolution mechanism. The oxidation with proper time can enhance functionality properties of soy protein. Excessive oxidation leads to the decline of functionality properties of soy protein.
The emulsifying activity of soy protein would decrease after long-term storage, which caused huge economic losses to food processing plants. This study explored the temporal evolution mechanism of oxidation on the structure and function of soy protein aggregates, which would improve the application of soy protein in food industry. Decreased α-helix and increased random coil were observed at the initial oxidation stage (0–4 h), which induced increases in hydrophobicity and disulfide bond content. In addition, emulsibility increased significantly. However, when the oxidation time extended to 6–12 h, the soluble aggregates transformed into insoluble aggregates with large particle size, low solubility, and molecular flexibility. Surface hydrophobicity and emulsifying activity were reduced, resulting in bridging flocculation of emulsion droplets. Mutual transformation between components is affected by factors that include spatial conformation and intermolecular forces, which eventually lead to functional changes in the protein molecules.
Collapse
Affiliation(s)
- Yanan Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhaodong Hu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zongrui Yang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Jun Liu
- Shandong Yuwang Ecological Food Industry Co., Ltd., Dezhou, Shandong 253000, China
| | - Bin Tan
- Academy of State Administration of Grain, Beijing 100037, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
- Corresponding authors.
| | - Bailiang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
- Corresponding authors.
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- Corresponding authors.
| |
Collapse
|
37
|
Zhao XL, Bao YH, Guo Y, Luo JY, Jiang SL, Yang X. Effect of phenolic compounds and hydroxyl content on the physicochemical properties of pine nut oil Pickering emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5814-5825. [PMID: 35426140 DOI: 10.1002/jsfa.11931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/10/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND For decades, pine nut oil Pickering emulsions have been stabilized using a covalent composite of two phenolic chemicals (tannic acid, TA; and gallic acid, GA) and whey protein isolate (WPI) following alkali treatment. Based on covalent composite particles being excellent sources of high-quality stabilizers, this research explored the influence of phenolic addition and hydroxyl content on stability, rheological parameters and characterization of Pickering emulsions. RESULTS Tannic acid was more effective in reducing the average particle size of the emulsion, which decreased from 479.4 ± 2.1 nm without addition to between 187.6 ± 5.9 and 368.2 ± 16.8 nm (P < 0.05). The potential values of all the emulsions were between -30 and -50 mV (except for the gallic acid addition of 2.5 g kg-1 ). When the phenolic addition was 7.5 g kg-1 , emulsions demonstrated the best emulsification ability. Pickering emulsion stabilized by WPI-TA and WPI-GA particles were successfully generated, according to confocal laser scanning microscopy. Rheological results showed that the increase of phenolic addition contributed to larger elastic modulus (G'), viscosity modulus (G″) and viscosity of emulsions, which was beneficial to the stability of emulsions. CONCLUSION Both phenolic compounds significantly improved the physicochemical stability of the emulsions (P < 0.05) and their oxidative stability. Covalently crosslinking phenolic compounds to proteins is a better method to prepare stable emulsions. It is more prominent that TA shows a more significant improvement in emulsion stability due to the number of hydroxyl groups it can provide. This research might serve as a theoretical foundation for enhancing the quality of pine nut oil-related products. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin-Lei Zhao
- College of Forestry, Northeast Forestry University, Harbin, PR China
| | - Yi-Hong Bao
- College of Forestry, Northeast Forestry University, Harbin, PR China
- College of Forestry, Heilongjiang Key Laboratory of Forest Food Resources Utilization, Harbin, PR China
| | - Yang Guo
- College of Forestry, Northeast Forestry University, Harbin, PR China
| | - Jia-Yuan Luo
- College of Forestry, Northeast Forestry University, Harbin, PR China
| | - Shi-Long Jiang
- Heilongjiang Feihe Dairy Company Limited, Beijing, PR China
| | - Xue Yang
- College of Forestry, Northeast Forestry University, Harbin, PR China
| |
Collapse
|
38
|
Zhang Y, Zhou F, Zeng X, Shen P, Yuan D, Zhong M, Zhao Q, Zhao M. pH-driven-assembled soy peptide nanoparticles as particulate emulsifier for oil-in-water Pickering emulsion and their potential for encapsulation of vitamin D 3. Food Chem 2022; 383:132489. [PMID: 35183964 DOI: 10.1016/j.foodchem.2022.132489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
Pickering emulsions prepared by food-grade particles have gained growing attention due to their promising application in functional food and pharmaceutical industries. In this study, we successfully fabricated soy peptide-based nanoparticles (SPN) through pH-driven process. Obtained particles with small particle size were surface active and shared intermediate wettability, and they could be well applied as an efficient particulate emulsifier for stabilizing oil-in-water Pickering emulsions at SPN concentration above 0.25 wt%. Furthermore, formed emulsions stabilized with SPN exhibited good protection towards Vitamin D3 against UV irradiation and oxidative deterioration, where controlled release of Vitamin D3in vitro could also be well achieved by modulating particle concentration. The whole process can contribute to a sustainable development of low-value peptide byproducts as functional food ingredients.
Collapse
Affiliation(s)
- Yuanhong Zhang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Feibai Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Xiaofang Zeng
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Penghui Shen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dan Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Min Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| |
Collapse
|
39
|
Choe U, Chang L, Ohm JB, Chen B, Rao J. Structure modification, functionality and interfacial properties of kidney bean (Phaseolus vulgaris L.) protein concentrate as affected by post-extraction treatments. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
40
|
Song S, Cui Y, Ji X, Gao F, Zhu H, Zhu J, Liu X, Guan J. Microencapsulation of Lactobacillus plantarum with enzymatic hydrolysate of soybean protein isolate for improved acid resistance and gastrointestinal survival in vitro. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2021-0374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This study aimed to improve the acid resistance effect of Lactobacillus plantarum through microencapsulation with enzymatic hydrolysate of soybean protein isolate (EHSPI) and modified phospholipid. Response surface methodology was adopted to establish the optimal microencapsulation technology of L. plantarum, while coating characters were evaluated. Through response surface methodology, the optimal conditions were obtained as follows based on microencapsulation efficiency: the ratio of bacteria/EHSPI 1:1.83, EHSPI content 4.01%, modified phospholipid content 11.41%. The results of digestion in vitro showed that after passing through the simulated gastric fluid (SGF), the L. plantarum was released and reached 3.55 × 108 CFU/mL in the simulated intestinal fluid. Meanwhile, the surviving bacteria number of control significantly decreased to 2.63 × 104 CFU/mL (P < 0.05) at 120 min in SGF. In sum, the acid resistance and survival of L. plantarum were improved in SGF in vitro, through the microencapsulation technology based on EHSPI.
Collapse
Affiliation(s)
- Shijia Song
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| | - Yaoming Cui
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| | - Xuyang Ji
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| | - Feng Gao
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| | - Hao Zhu
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| | - Jinfeng Zhu
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| | - Xinyu Liu
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| | - Junjun Guan
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| |
Collapse
|
41
|
Jiang F, Chen C, Wang X, Huang W, Jin W, Huang Q. Effect of Fibril Entanglement on Pickering Emulsions Stabilized by Whey Protein Fibrils for Nobiletin Delivery. Foods 2022; 11:foods11111626. [PMID: 35681376 PMCID: PMC9180220 DOI: 10.3390/foods11111626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of the study was to investigate the effects of whey protein isolate (WPI) fibrils entanglement on the stability and loading capacity of WPI fibrils-stabilized Pickering emulsion. The results of rheology and small-angle X-ray scattering (SAXS) showed the overlap concentration (C*) of WPI fibrils was around 0.5 wt.%. When the concentration was higher than C*, the fibrils became compact and entangled in solution due to a small cross-sectional radius of gyration value (1.18 nm). The interfacial behavior was evaluated by interfacial adsorption and confocal laser scanning microscopy (CLSM). As the fibril concentration increased from 0.1 wt.% to 1.25 wt.%, faster adsorption kinetics (from 0.13 to 0.21) and lower interfacial tension (from 11.85 mN/m to 10.34 mN/m) were achieved. CLSM results showed that WPI fibrils can effectively absorb on the surface of oil droplets. Finally, the microstructure and in vitro lipolysis were used to evaluate the effect of fibrils entanglement on the stability of emulsion and bioaccessibility of nobiletin. At C* concentration, WPI fibrils-stabilized Pickering emulsions exhibited excellent long-term stability and were also stable at various pHs (2.0–7.0) and ionic strengths (0–200 mM). WPI fibrils-stabilized Pickering emulsions after loading nobiletin remained stable, and in vitro digestion showed that these Pickering emulsions could significantly improve the extent of lipolysis (from 36% to 49%) and nobiletin bioaccessibility (21.9% to 62.5%). This study could provide new insight into the fabrication of food-grade Pickering emulsion with good nutraceutical protection.
Collapse
Affiliation(s)
- Fangcheng Jiang
- Key Laboratory for Deep Processing of Major Grain and Oil, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (F.J.); (C.C.); (X.W.); (W.H.)
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Chunling Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (F.J.); (C.C.); (X.W.); (W.H.)
| | - Xinlan Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (F.J.); (C.C.); (X.W.); (W.H.)
| | - Wenjing Huang
- Key Laboratory for Deep Processing of Major Grain and Oil, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (F.J.); (C.C.); (X.W.); (W.H.)
| | - Weiping Jin
- Key Laboratory for Deep Processing of Major Grain and Oil, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (F.J.); (C.C.); (X.W.); (W.H.)
- Correspondence: (W.J.); (Q.H.)
| | - Qingrong Huang
- Key Laboratory for Deep Processing of Major Grain and Oil, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (F.J.); (C.C.); (X.W.); (W.H.)
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
- Correspondence: (W.J.); (Q.H.)
| |
Collapse
|
42
|
Ren Z, Chen Z, Zhang Y, Lin X, Weng W, Li B. Pickering Emulsions Stabilized by Tea Water-Insoluble Protein Nanoparticles From Tea Residues: Responsiveness to Ionic Strength. Front Nutr 2022; 9:892845. [PMID: 35558751 PMCID: PMC9087344 DOI: 10.3389/fnut.2022.892845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Tea water-insoluble protein nanoparticles (TWIPNs) can be applied to stabilize Pickering emulsions. However, the effect of ionic strength (0–400 mmol/L) on the characteristics of Pickering emulsions stabilized by TWIPNs (TWIPNPEs) including volume-averaged particle size (d4,3), zeta potential, microstructure and rheological properties is still unclear. Therefore, this work researched the effect of ionic strength on the characteristics of TWIPNPEs. The d4,3 of TWIPNPEs in the aquatic phase increased with the increase in ionic strength (0–400 mmol/L), which was higher than that in the SDS phase. Furthermore, the flocculation index of TWIPNPEs significantly (P < 0.05) increased from 24.48 to 152.92% with the increase in ionic strength. This could be verified from the microstructure observation. These results indicated that ionic strength could promote the flocculation of TWIPNPEs. Besides, the absolute values of zeta potential under different ionic strengths were above 40 mV in favor of the stabilization of TWIPNPEs. The viscosity of TWIPNPEs as a pseudoplastic fluid became thin when shear rate increased from 0.1 to 100 s−1. The viscoelasticity of TWIPNPEs increased with increasing ionic strength to make TWIPNPEs form a gel-like Pickering emulsion. the possible mechanism of flocculation stability of TWIPNPEs under different ionic strengths was propose. TWIPNs adsorbed to the oil-water interface would prompt flocculation between different emulsion droplets under the high ionic strength to form gel-like behavior verified by CLSM. These results on the characteristics of TWIPNPEs in a wide ionic strength range would provide the theoretical basis for applying Pickering emulsions stabilized by plant proteins in the food industry.
Collapse
Affiliation(s)
- Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China.,College of Food Science, South China Agricultural University, Guangzhou, China.,Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian, China
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yuanyuan Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China.,Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian, China
| | - Bin Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
43
|
Characteristics, formation mechanism and stability of high internal phase emulsions stabilized by porcine plasma protein (PPP) / carrageenan (CG) hybrid particles. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Robust pH-switchable pickering emulsions stabilized solely by organic Rosin-based particles with adjustable wettability. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Chen H, Dai H, Zhu H, Ma L, Fu Y, Feng X, Sun Y, Zhang Y. Construction of dual-compartmental micro-droplet via shrimp ferritin nanocages stabilized Pickering emulsions for co-encapsulation of hydrophobic/hydrophilic bioactive compounds. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Hu C, Xiong H. Structure, interfacial adsorption and emulsifying properties of potato protein isolate modified by chitosan. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
47
|
|
48
|
Hu Y, Wu Z, Sun Y, Cao J, He J, Dang Y, Pan D, Zhou C. Insight into ultrasound-assisted phosphorylation on the structural and emulsifying properties of goose liver protein. Food Chem 2022; 373:131598. [PMID: 34810017 DOI: 10.1016/j.foodchem.2021.131598] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/19/2021] [Accepted: 11/10/2021] [Indexed: 01/30/2023]
Abstract
The aim of this study was to elucidate the effect of ultrasound-assisted phosphorylation on the structural and emulsifying properties of goose liver protein (GLP), and GLP underwent different treatments (native (GLP-N), only ultrasound (UGLP), only phosphorylation (GLP-STP) and ultrasound-assisted phosphorylation (UGLP-STP)). UGLP-STP showed the highest phosphorylation degree of GLP among four groups; The FT-IR spectrum confirmed the phosphate group covalently attached to GLP in UGLP-STP. The highest hydrophobic capability and solubility were exhibited in UGLP-STP, resulting from the transformation of α-helix and β-turn into β-sheet and random coil. The treatment of UGLP-STP showed significantly higher values in emulsifying activity (32.24 ± 0.27 m2/g) and emulsifying stability (103.59 ± 2.40%) compared with other treatments. Confocal laser scanning microscopy suggested that UGLP-STP showed largest uniformity of particle distribution and smallest size than other groups. These results implied that ultrasonic-assisted phosphorylation showed a great improvement in emulsifying properties of goose liver protein.
Collapse
Affiliation(s)
- Yangyang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Jun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China.
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China.
| |
Collapse
|
49
|
Huang ZX, Lin WF, Zhang Y, Tang CH. Outstanding Freeze-Thaw Stability of Mayonnaise Stabilized Solely by a Heated Soy Protein Isolate. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09722-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
50
|
Zhang L, Lin WF, Zhang Y, Tang CH. New insights into the NaCl impact on emulsifying properties of globular proteins. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|