1
|
Zongo AWS, Jin C, Yu N, Cheng H, Youssef M, Zogona D, Nie X, Lu Y, Ye Q, Meng X. Exploring Camellia oleifera Abel seed cake as sustainable source of protein for food applications: A review. Food Chem 2024; 470:142595. [PMID: 39742593 DOI: 10.1016/j.foodchem.2024.142595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 01/03/2025]
Abstract
The demand for sustainable plant-based protein is rising due to concerns over the environmental impact of animal-based protein. One promising yet overlooked protein source is the seed cake generated from Camellia oleifera oil extraction (COSC), which contains 14-20 % crude protein. COSC protein (COSCP) exhibit excellent nutritional and functional properties making it a promising ingredient for innovative food products. However, its adoption remains limited. This review discusses COSCP extraction methods, functional properties, and food applications to promote its broader utilization. It also examined how oil extraction methods influence COSCP functional characteristics and explores modification techniques to enhance its functionality. COSCP has excellent functional properties, making it suitable for use as emulsifier, foaming, and gelling agents in food systems. However, cross-linking of COSCP with saponins and phenolics during seed processing compromise the protein yield, purity, and functionality and need to be addressed to fully unlock the potential of COSCP in food applications.
Collapse
Affiliation(s)
- Abel Wend-Soo Zongo
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China; Center for Research in Biological Sciences, Food and Nutrition, Department of Biochemistry and Microbiology, University Joseph Ki-Zerbo, BP 7021 Ouagadougou 03, Burkina Faso
| | - Chengyu Jin
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Ningxiang Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China; Zhejiang WangLin Bio-Tech Co., Ltd., Quzhou 324100, Zhejiang, China.
| | - Hongcai Cheng
- Zhejiang WangLin Bio-Tech Co., Ltd., Quzhou 324100, Zhejiang, China
| | - Mahmoud Youssef
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Daniel Zogona
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Xiaohua Nie
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Yuanchao Lu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Qin Ye
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xianghe Meng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
2
|
Luo Y, Yu M, Liyixia Z, Chen J. Effect of different pretreatment methods on the stability of pumpkin seed milk and potential mechanism. Food Chem 2024; 452:139582. [PMID: 38754170 DOI: 10.1016/j.foodchem.2024.139582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Pumpkin seeds represent a valuable source of plant protein and can be utilized in the production of plant-based milks. This study aims to investigate the effects of different pretreatment techniques on the stability of Pumpkin Seed Milk (PSM) and explore potential mechanisms. Raw pumpkin seeds underwent pretreatment through roasting, microwaving, and steaming to prepare PSM. Physiochemical attributes such as composition, storage stability, and particle size of PSM were evaluated. Results indicate that stability significantly improved at roasting temperatures of 160 °C, with the smallest particle size (305 ± 40 nm) and highest stability coefficient (0.710 ± 0.002) observed. Nutrient content in PSM remained largely unaffected at 160 °C. Protein oxidation levels, infrared, and fluorescence spectra analysis revealed that higher temperatures exacerbated the oxidation of pumpkin seed emulsion. Overall, roasting raw pumpkin seeds at 160 °C is suggested to enhance PSM quality while preserving nutrient content.
Collapse
Affiliation(s)
- Yuhuan Luo
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Min Yu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Zhang Liyixia
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Jingjing Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
3
|
Quintero Quiroz J, Velazquez V, Torres JD, Ciro Gomez G, Delgado E, Rojas J. Effect of the Structural Modification of Plant Proteins as Microencapsulating Agents of Bioactive Compounds from Annatto Seeds ( Bixa orellana L.). Foods 2024; 13:2345. [PMID: 39123536 PMCID: PMC11312334 DOI: 10.3390/foods13152345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
This project studied the use of lentil protein (LP) and quinoa protein (QP) in their native and modified states as carrier material in the encapsulation process by the ionic gelation technique of annatto seed extract. Soy protein (SP) was used as a model of carrier material and encapsulated bioactive compounds, respectively. The plant proteins were modified by enzymatic hydrolysis, N acylation, and N-cationization to improve their encapsulating properties. Additionally, the secondary structure, differential scanning calorimetry (DSC), solubility as a function of pH, isoelectric point (pI), molecular weight (MW), the content of free thiol groups (SH), the absorption capacity of water (WHC) and fat (FAC), emulsifier activity (EAI), emulsifier stability (ESI), and gelation temperature (Tg) were assessed on proteins in native and modified states. The results obtained demonstrated that in a native state, LP (80.52% and 63.82%) showed higher encapsulation efficiency than QP (73.63% and 45.77%), both for the hydrophilic dye and for the annatto extract. Structural modifications on proteins improve some functional properties, such as solubility, WHC, FAC, EAI, and ESI. However, enzymatic hydrolysis on the proteins decreased the gels' formation, the annatto extract's encapsulated efficiency, and the hydrophilic dye by the ionic gelation method. On the other hand, the modifications of N-acylation and N-cationization increased but did not generate statistically significant differences (p-value > 0.05) in the encapsulation efficiency of both the annatto extract and the hydrophilic dye compared to those obtained with native proteins. This research contributes to understanding how plant proteins (LP and QP) can be modified to enhance their encapsulating and solubility properties. The better encapsulation of bioactive compounds (like annatto extract) can improve product self-life, potentially benefiting the development of functional ingredients for the food industry.
Collapse
Affiliation(s)
- Julián Quintero Quiroz
- Faculty of Ciencias de la Nutrición y los Alimentos, CES University, Calle 10 # 22-04, Medellin 050018, Colombia
- Department of Ciencias Farmacéuticas y Alimentarias, University of Antioquia, Calle 67 No. 53-108, University Campus, Medellín 050010, Colombia; (J.D.T.); (G.C.G.); (J.R.)
| | - Víctor Velazquez
- Department of Family and Consumer Sciences, College of Agriculture, Consumer and Environmental Sciences, New Mexico State University, NMSU Gerald Thomas Hall Room, 308 P.O. Box 30003 MSC 3470, Las Cruces, NM 88003, USA;
| | - Juan D. Torres
- Department of Ciencias Farmacéuticas y Alimentarias, University of Antioquia, Calle 67 No. 53-108, University Campus, Medellín 050010, Colombia; (J.D.T.); (G.C.G.); (J.R.)
| | - Gelmy Ciro Gomez
- Department of Ciencias Farmacéuticas y Alimentarias, University of Antioquia, Calle 67 No. 53-108, University Campus, Medellín 050010, Colombia; (J.D.T.); (G.C.G.); (J.R.)
| | - Efren Delgado
- Department of Family and Consumer Sciences, College of Agriculture, Consumer and Environmental Sciences, New Mexico State University, NMSU Gerald Thomas Hall Room, 308 P.O. Box 30003 MSC 3470, Las Cruces, NM 88003, USA;
| | - John Rojas
- Department of Ciencias Farmacéuticas y Alimentarias, University of Antioquia, Calle 67 No. 53-108, University Campus, Medellín 050010, Colombia; (J.D.T.); (G.C.G.); (J.R.)
| |
Collapse
|
4
|
Wen C, Lin X, Tang J, Fan M, Liu G, Zhang J, Xu X. New perspective on protein-based microcapsules as delivery vehicles for sensitive substances: A review. Int J Biol Macromol 2024; 270:132449. [PMID: 38777020 DOI: 10.1016/j.ijbiomac.2024.132449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Sensitive substances have attracted wide attention due to their rich functional activities, such as antibiosis activities, antioxidant activities and prevent disease, etc. However, the low stability of sensitive substances limits their bioavailability and functional activities. Protein-based microcapsules can encapsulate sensitive substances to improve their adverse properties due to their good stability, strong emulsifying ability and wide source. Therefore, it is necessary to fully elaborate and summarize protein-based microcapsules to maximize their potential benefits in nutritional interventions. The focus of this review is to highlight the classification of protein-based microcapsules. In addition, the principles, advantages and disadvantages of preparation methods for protein-based microcapsules are summarized. Some novel preparation methods for protein-based microcapsules are also emphasized. Moreover, the mechanism of protein-based microcapsules that release sensitive substances in vitro is elucidated and summarized. Furthermore, the applications of protein-based microcapsules are outlined. Protein-based microcapsules can effectively encapsulate sensitive substances, which improve their bioavailability, and provide protective effects during storage and gastrointestinal digestion. In addition, microcapsules can improve the sensory quality of food and enhance its stability. The performance of protein-based microcapsules for delivering sensitive substances is influenced by factors such as protein type, the ratio between protein ratio and the other wall material, the preparation process, etc. Future research should focus on the new composite protein-based microcapsule delivery system, which can be applied to in vivo research and have synergistic effects and precise nutritional functions. In summary, protein-based microcapsules have broader research prospects in the functional foods and nutrition field.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xinying Lin
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jialuo Tang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Meidi Fan
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| |
Collapse
|
5
|
Sari TP, Sirohi R, Tyagi P, Tiwari G, Pal J, Kunadia NN, Verma K, Badgujar PC, Pareek S. Protein hydrolysates prepared by Alcalase using ultrasound and microwave pretreated almond meal and their characterization. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1157-1164. [PMID: 38562599 PMCID: PMC10981644 DOI: 10.1007/s13197-024-05945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/31/2024] [Accepted: 02/11/2024] [Indexed: 04/04/2024]
Abstract
The study aimed to optimize ultrasonic (US: 40 kHz/200 W for 10, 20, 30, 40, and 50 min), and microwave (MW: 160 W for 45, 90, 125, 180, and 225 s) pretreatment conditions on protein extraction yield and degree of protein hydrolysis (DH) from almond de-oiled meal, an industrial by-product. First order model was used to describe the kinetics of almond protein hydrolysates obtained with Alcalase. The highest DH, 10.95% was recorded for the US-50 min and 8.87% for MW-45 s; while it was 5.76% for the untreated/control sample. At these optimized pretreatment conditions, a 1.16- and 1.18-fold increment in protein recovery was observed for the US and MW pretreatments, respectively in comparison to the conventional alkaline extraction. The molecular weight distribution recorded for pretreated samples disclosed a significant reduction in the band thickness in comparison with control. Both the pretreatments resulted in a significant increase (P < 0.05) in the antioxidant activity, and TCA solubility index when compared with the control. Results evinced that US and/or MW pretreatments before enzymatic hydrolysis can be a promising approach for the valorization of almond meal for its subsequent use as an ingredient for functional foods/nutraceuticals which otherwise fetches low value as an animal feed.
Collapse
Affiliation(s)
- T. P. Sari
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K), Kundli, Sonipat, Haryana 131028 India
| | - Ranjna Sirohi
- Rajasthan Agricultural Research Institute, Durgapura, Jaipur, Rajasthan 302018 India
- SKN Agriculture University, Jobner, Rajasthan 303329 India
| | - Prajwal Tyagi
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K), Kundli, Sonipat, Haryana 131028 India
| | - Gyanendra Tiwari
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K), Kundli, Sonipat, Haryana 131028 India
| | - Jyotiraditya Pal
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K), Kundli, Sonipat, Haryana 131028 India
| | - Nihar N. Kunadia
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K), Kundli, Sonipat, Haryana 131028 India
| | - Kiran Verma
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K), Kundli, Sonipat, Haryana 131028 India
| | - Prarabdh C. Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K), Kundli, Sonipat, Haryana 131028 India
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K), Kundli, Sonipat, Haryana 131028 India
| |
Collapse
|
6
|
Manzoor M, Singh J, Bhat ZF, Jaglan S. Multifunctional apple seed protein hydrolysates: Impact of enzymolysis on the biochemical, techno-functional and in vitro α-glucosidase, pancreatic lipase and angiotensin-converting enzyme inhibition activities. Int J Biol Macromol 2024; 257:128553. [PMID: 38056736 DOI: 10.1016/j.ijbiomac.2023.128553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
The work was designed to assess the amelioration effect of papain hydrolysis on the biochemical, techno-functional, and biological properties of apple seed protein isolate (API) after 0-90 min of hydrolysis. Hydrolysis significantly enhanced the nutritional value (protein content ˃ 90 %) while decreasing the average particle size. With increasing hydrolysis time, FTIR analysis revealed a transition from α-helix to β-turn structure, indicating the unfolding of protein structure. This structural alteration positively influenced the functional characteristics, with samples hydrolyzed for 90 min exhibiting excellent solubility, higher water and oil absorption capacity, foaming capacity, and increased emulsifying activity index. Moreover, samples hydrolyzed for 90 min displayed the highest α-glucosidase (29.62-57.43 %), pancreatic lipase inhibition (12.87-31.08 %), and ACE inhibition (25.32-62.70 %) activity. Interestingly, the inhibiting ability of protein hydrolysates against α-glucosidase and ACE was more effective than pancreatic lipase, suggesting their usefulness as a functional ingredient, particularly in type II diabetes and hypertension management.
Collapse
Affiliation(s)
- Mehnaza Manzoor
- Division of Food Science and Technology, Sher-e-Kashmir University of Agriculture Science and Technology, Jammu 180009, India; Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Jagmohan Singh
- Division of Food Science and Technology, Sher-e-Kashmir University of Agriculture Science and Technology, Jammu 180009, India.
| | - Zuhaib F Bhat
- Division of Livestock Product Technology, Sher-e-Kashmir University of Agriculture Science and Technology, Jammu, India.
| | - Sundeep Jaglan
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
7
|
Gao K, Rao J, Chen B. Plant protein solubility: A challenge or insurmountable obstacle. Adv Colloid Interface Sci 2024; 324:103074. [PMID: 38181662 DOI: 10.1016/j.cis.2023.103074] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/26/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Currently, there is an increasing focus on comprehending the solubility of plant-based proteins, driven by the rising demand for animal-free food formulations. The solubility of proteins plays a crucial role in impacting other functional properties of proteins and food processing. Consequently, understanding protein solubility in a deeper sense may allow a better usage of plant proteins. Herein, we discussed the definition of protein solubility from both thermodynamic and colloidal perspectives. A range of factors affecting solubility of plant proteins are generalized, including intrinsic factors (amino acids composition, hydrophobicity), and extrinsic factors (pH, ionic strength, extraction and drying methods). Current methods to enhance solubility are outlined, including microwave, high intensity ultrasound, hydrostatic pressure, glycation, pH-shifting, enzymatic hydrolysis, enzymatic cross-linking, complexation and modulation of amino acids. We base the discussion on diverse modified methods of nitrogen solubility index available to determine and analyze protein solubility followed by addressing how other indigenous components affect the solubility of plant proteins. Some nonproteinaceous constituents in proteins such as carbohydrates and polyphenols may exert positive or negative impact on protein solubility. Appropriate protein extraction and modification methods that meet consumer and manufacturers requirements concerning nutritious and eco-friendly foods with lower cost should be investigated and further explored.
Collapse
Affiliation(s)
- Kun Gao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
8
|
Zhao X, Yang X, Bao Y, Guo Y, Luo J, Jiang S, Zhang W. Construction of vitamin D delivery system based on pine nut oil Pickering emulsion: effect of phenols. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4034-4046. [PMID: 36453713 DOI: 10.1002/jsfa.12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/24/2022] [Accepted: 12/01/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND The food industry has begun to develop foods fortified with unsaturated fatty acids; however, the susceptibility of pine nut oil to oxidation and other properties limits its use in food production. Researchers often inhibit the oxidation of oil by adding antioxidants. After the combination of polyphenols and proteins, the complex formed can improve or enhance the performance of the emulsion when it stabilizes the emulsion. Encapsulating, protecting, and controlling the release behavior of vitamin D (VD ) during digestion through an emulsion delivery system can effectively overcome limitations such as easy degradation during processing and storage. This research uses tannic acid, gallic acid, tea polyphenol, and vanillic acid to prepare Pickering emulsions, and the type of phenolic compound is explored by multi-dimensional characterization and the amount of emulsion. RESULTS The influence of traits, microstructure, stability, VD load application, and effect on the emulsion matrix's encapsulation rate and bioaccessibility is studied. A method was investigated to enhance the oxidative stability of whey protein isolate-stabilized emulsions by introducing phenol. Pickering emulsions could be obtained in the presence of phenol, while the type of phenol played a relatively important role, probably because the mechanism involved interactions between particles. Viscosity and creaming stability of emulsions increased with crosslinking of phenol in emulsions. In addition, the presence of phenol in emulsions significantly increased the bioaccessibility of encapsulated VD after in vitro digestion. CONCLUSION The method presented in this study was important for improving the oxidative stability of pine nut oil emulsions, expanding the application of pine nut oil in the food industry, and providing the theoretical and application basis of application and active substance emulsion delivery systems. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinlei Zhao
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xue Yang
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yihong Bao
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang Province, People's Republic of China
- Heilongjiang Key Laboratory of Forest Food Resources Utilization, Harbin, Heilongjiang Province, People's Republic of China
| | - Yang Guo
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jiayuan Luo
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang Province, People's Republic of China
| | - Shilong Jiang
- Heilongjiang Feihe Dairy Company Limited, Beijing, People's Republic of China
| | - Wei Zhang
- Heilongjiang Feihe Dairy Company Limited, Beijing, People's Republic of China
| |
Collapse
|
9
|
Rios-Morales S, Brito-De La Fuente E, Torrestiana-Sánchez B. Kinetics of Egg-Yolk Protein Hydrolysis and Properties of Hydrolysates. ACS OMEGA 2023; 8:17758-17767. [PMID: 37251135 PMCID: PMC10210036 DOI: 10.1021/acsomega.3c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
Lecithin-free egg yolk (LFEY) is a byproduct of the extraction of egg-yolk phospholipids, which contain approximately 46% egg yolk proteins (EYPs) and 48% lipids. The enzymatic proteolysis is the alternative to increase the commercial value of LFEY. The kinetics of proteolysis in full-fat and defatted LFEY with Alcalase 2.4 L was analyzed in terms of the Weibull and Michaelis-Menten models. A product inhibition effect was also studied in the full-fat and defatted substrate hydrolysis. The molecular weight profile of hydrolysates was analyzed by gel filtration chromatography. Results pointed out that the defatting process did not importantly affect the maximum degree of hydrolysis (DHmax) in the reaction but rather the time at which DHmax is attained. The maximum rate of hydrolysis (Vmax) and the Michaelis-Menten constant KM were higher in the hydrolysis of the defatted LFEY. The defatting process might have induced conformational changes in the EYP molecules, and this affected their interaction with the enzyme. Consequently, the enzymatic reaction mechanism of hydrolysis and the molecular weight profile of peptides were influenced by defatting. A product inhibition effect was observed when adding 1% hydrolysates containing peptides lower than 3 kDa at the beginning of the reaction with both substrates.
Collapse
Affiliation(s)
- Silvia
N. Rios-Morales
- Tecnológico
Nacional de México/IT-Veracruz, Av. M.A. de Quevedo # 2779, 91897 Veracruz, Ver., México
| | - Edmundo Brito-De La Fuente
- I&D
Centers China and Germany, BU PN K&IVF
Fresenius Kabi Deutschland GmbH, Siemenstraße 27, D-61352 Bad Homburg, Germany
- Institute
of Applied Sciences and Technology (ICAT), National Autonomous University of Mexico (UNAM), University City, 04510 Mexico
City, Mexico
| | | |
Collapse
|
10
|
Cui L, Guo J, Meng Z. A review on food-grade-polymer-based O/W emulsion gels: Stabilization mechanism and 3D printing application. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
11
|
Xue F, Li C. Effects of ultrasound assisted cell wall disruption on physicochemical properties of camellia bee pollen protein isolates. ULTRASONICS SONOCHEMISTRY 2023; 92:106249. [PMID: 36459901 PMCID: PMC9712773 DOI: 10.1016/j.ultsonch.2022.106249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 05/15/2023]
Abstract
Camellia bee pollen protein isolates were extracted by cell wall disruption using ultrasonication, freeze-thawing, enzymatic hydrolysis, and their combinations. The effects of these methods on microstructure of cell wall, protein release, protein yield, physiochemical properties and structure of proteins were investigated. As compared with physical treatments (ultrasonication, freeze-thawing and their combination), the enzymatic hydrolysis significantly improved the yield of proteins, because it not only promoted the release of proteins from the inside of pollen, but also released proteins in pollen wall. The proteins extracted by enzymatic hydrolysis method also exhibited better solubility, emulsifying and gelation properties due to the partial hydrolysis of proteins by protease. In addition, when ultrasound was combined with freeze-thawing or enzymatic hydrolysis, it could further improve the yield of proteins and the functional properties of proteins, which was mainly related to the changes of protein structure induced by cavitation effect of ultrasound.
Collapse
Affiliation(s)
- Feng Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
12
|
Cui X, Huang Q, Zhang W. Pumpkin seed coat pigments affected aqueous enzymatic extraction processing through interaction with its interfacial protein. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
13
|
Thermal, structural, and emulsifying properties of pumpkin seed protein isolate subjected to pH-shifting treatment. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Liang F, Shi Y, Shi J, Cao W. Exploring the binding mechanism of pumpkin seed protein and apigenin: Spectroscopic analysis, molecular docking and molecular dynamics simulation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Ong KS, Chiang JH, Sim SYJ, Liebl D, Madathummal M, Henry CJ. Functionalising insoluble pea protein aggregates using high-pressure homogenisation: Effects on physicochemical, microstructural and functional properties. FOOD STRUCTURE 2022. [DOI: 10.1016/j.foostr.2022.100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Magalhães IS, Guimarães ADB, Tribst AAL, Oliveira EBD, Leite Júnior BRDC. Ultrasound-assisted enzymatic hydrolysis of goat milk casein: Effects on hydrolysis kinetics and on the solubility and antioxidant activity of hydrolysates. Food Res Int 2022; 157:111310. [DOI: 10.1016/j.foodres.2022.111310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 11/04/2022]
|
17
|
Du X, Jing H, Wang L, Huang X, Wang X, Wang H. Characterization of structure, physicochemical properties, and hypoglycemic activity of goat milk whey protein hydrolysate processed with different proteases. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Du H, Zhang J, Wang S, Manyande A, Wang J. Effect of high-intensity ultrasonic treatment on the physicochemical, structural, rheological, behavioral, and foaming properties of pumpkin (Cucurbita moschata Duch.)-seed protein isolates. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Liu C, Pei R, Heinonen M. Faba bean protein: A promising plant-based emulsifier for improving physical and oxidative stabilities of oil-in-water emulsions. Food Chem 2022; 369:130879. [PMID: 34455319 DOI: 10.1016/j.foodchem.2021.130879] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/13/2021] [Accepted: 08/15/2021] [Indexed: 01/29/2023]
Abstract
Faba bean is a protein-rich, sustainable, but understudied legume. Faba bean protein isolates (FBPIs) can serve as promising emulsifiers. This review aims to summarize the research on FBPIs as emulsifiers and various modification methods to improve the emulsifying functionalities. The emulsifying activities of FBPIs depend on several physiochemical characteristics (e.g. solubility, surface hydrophobicity, surface charge, interfacial activity). Physical modifications, especially via linking FBPIs electrostatically to polysaccharides can effectively increase the interfacial layer thickness/compactness and maintain the interfacial protein adsorption. Chemical modifications of FBPIs (e.g. acetylation and Maillard reaction) could improve the interfacial activity and affect the droplet-size distribution. Enzymatic modifications, usually either via hydrolysis or cross-linking, help to optimize the molecular size, solubility, and surface hydrophobicity of FBPIs. It is critical to consider the lipid/protein oxidative stability and physical stability when optimizing the emulsifying functionality of FBPIs. With suitable modifications, FBPI can serve as a promising emulsifier in food production.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| | - Ruisong Pei
- Department of Food Science, University of Wisconsin-Madison, 1605 Linden Drive, Babcock Hall, Madison, WI 53705, USA
| | - Marina Heinonen
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, Helsinki 00790, Finland
| |
Collapse
|
20
|
Tan Y, McClements DJ. Plant-Based Colloidal Delivery Systems for Bioactives. Molecules 2021; 26:molecules26226895. [PMID: 34833987 PMCID: PMC8625429 DOI: 10.3390/molecules26226895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022] Open
Abstract
The supplementation of plant-based foods and beverages with bioactive agents may be an important strategy for increasing human healthiness. Numerous kinds of colloidal delivery systems have been developed to encapsulate bioactives with the goal of improving their water dispersibility, chemical stability, and bioavailability. In this review, we focus on colloidal delivery systems assembled entirely from plant-based ingredients, such as lipids, proteins, polysaccharides, phospholipids, and surfactants isolated from botanical sources. In particular, the utilization of these ingredients to create plant-based nanoemulsions, nanoliposomes, nanoparticles, and microgels is covered. The utilization of these delivery systems to encapsulate, protect, and release various kinds of bioactives is highlighted, including oil-soluble vitamins (like vitamin D), ω-3 oils, carotenoids (vitamin A precursors), curcuminoids, and polyphenols. The functionality of these delivery systems can be tailored to specific applications by careful selection of ingredients and processing operations, as this enables the composition, size, shape, internal structure, surface chemistry, and electrical characteristics of the colloidal particles to be controlled. The plant-based delivery systems discussed in this article may be useful for introducing active ingredients into the next generation of plant-based foods, meat, seafood, milk, and egg analogs. Nevertheless, there is still a need to systematically compare the functional performance of different delivery systems for specific applications to establish the most appropriate one. In addition, there is a need to test their efficacy at delivering bioavailable forms of bioactives using in vivo studies.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA;
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou 310018, China
- Correspondence:
| |
Collapse
|
21
|
Bárta J, Bártová V, Jarošová M, Švajner J, Smetana P, Kadlec J, Filip V, Kyselka J, Berčíková M, Zdráhal Z, Bjelková M, Kozak M. Oilseed Cake Flour Composition, Functional Properties and Antioxidant Potential as Effects of Sieving and Species Differences. Foods 2021; 10:foods10112766. [PMID: 34829047 PMCID: PMC8624202 DOI: 10.3390/foods10112766] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Oilseed cakes are produced as a by-product of oil pressing and are mostly used as feed. Their use for human consumption is due to the functional properties and benefits for human health. Herein, oilseed cake flours of eight species (flax, hemp, milk thistle, poppy, pumpkin, rapeseed, safflower, sunflower) were sieved into fractions above (A250) and below (B250) 250 µm. The chemical composition, SDS-PAGE profiles, colour, functional properties and antioxidant activities of these flours were evaluated. The B250 fractions were evaluated as being protein and ash rich, reaching crude protein and ash content ranging from 31.78% (milk thistle) to 57.47% (pumpkin) and from 5.0% (flax) to 11.19% (poppy), respectively. A high content of carbohydrates was found in the flours of hemp, milk thistle and safflower with a significant increase for the A250 fraction, with a subsequent relation to a high water holding capacity (WHC) for the A250 fraction (flax, poppy, pumpkin and sunflower). The A250 milk thistle flour was found to have the richest in polyphenols content (TPC) (40.89 mg GAE/g), with the highest antioxidant activity using an ABTS•+ assay (101.95 mg AAE/g). The A250 fraction for all the species exhibited lower lightness than the B250 fraction. The obtained results indicate that sieving oilseed flour with the aim to prepare flours with specific functional characteristics and composition is efficient only in combination with a particular species.
Collapse
Affiliation(s)
- Jan Bárta
- Department of Plant Production, Faculty of Agriculture, University of South Bohemia, 370 05 České Budějovice, Czech Republic; (J.B.); (M.J.); (J.Š.)
| | - Veronika Bártová
- Department of Plant Production, Faculty of Agriculture, University of South Bohemia, 370 05 České Budějovice, Czech Republic; (J.B.); (M.J.); (J.Š.)
- Correspondence: ; Tel.: +420-387772922
| | - Markéta Jarošová
- Department of Plant Production, Faculty of Agriculture, University of South Bohemia, 370 05 České Budějovice, Czech Republic; (J.B.); (M.J.); (J.Š.)
| | - Josef Švajner
- Department of Plant Production, Faculty of Agriculture, University of South Bohemia, 370 05 České Budějovice, Czech Republic; (J.B.); (M.J.); (J.Š.)
| | - Pavel Smetana
- Department of Food Biotechnology and Agricultural Products Quality, Faculty of Agriculture, University of South Bohemia, 370 05 České Budějovice, Czech Republic; (P.S.); (J.K.)
| | - Jaromír Kadlec
- Department of Food Biotechnology and Agricultural Products Quality, Faculty of Agriculture, University of South Bohemia, 370 05 České Budějovice, Czech Republic; (P.S.); (J.K.)
| | - Vladimír Filip
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (V.F.); (J.K.); (M.B.)
| | - Jan Kyselka
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (V.F.); (J.K.); (M.B.)
| | - Markéta Berčíková
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (V.F.); (J.K.); (M.B.)
| | - Zbyněk Zdráhal
- Mendel Centre of Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic;
| | - Marie Bjelková
- Department of Legumes and Technical Crops, Agritec Plant Research, Ltd., 787 01 Šumperk, Czech Republic;
| | - Marcin Kozak
- Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, 50-363 Wrocław, Poland;
| |
Collapse
|
22
|
Gremasqui IDLA, Giménez MA, Lobo MO, Sammán NC. Nutritional and functional characterisation of hydrolysates from quinoa flour (
Chenopodium quinoa
) using two proteases. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ileana de los A. Gremasqui
- Facultad de Ingeniería CIITED Centro de Investigación Interdisciplinario en Tecnología y Desarrollo Social del NOA CONICET Universidad Nacional de Jujuy Ítalo Palanca 10 Jujuy Argentina
| | - Maria A. Giménez
- Facultad de Ingeniería CIITED Centro de Investigación Interdisciplinario en Tecnología y Desarrollo Social del NOA CONICET Universidad Nacional de Jujuy Ítalo Palanca 10 Jujuy Argentina
| | - Manuel O. Lobo
- Facultad de Ingeniería CIITED Centro de Investigación Interdisciplinario en Tecnología y Desarrollo Social del NOA CONICET Universidad Nacional de Jujuy Ítalo Palanca 10 Jujuy Argentina
| | - Norma C. Sammán
- Facultad de Ingeniería CIITED Centro de Investigación Interdisciplinario en Tecnología y Desarrollo Social del NOA CONICET Universidad Nacional de Jujuy Ítalo Palanca 10 Jujuy Argentina
| |
Collapse
|
23
|
Qin N, Bao X, Li H. Structure and functional properties of sunflower seed protein as affected by enzymatic hydrolysis combined with macroporous resin adsorption decolorization. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1978485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Narisu Qin
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, PR China
| | - Xiaolan Bao
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, PR China
| | - Hongjie Li
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, PR China
| |
Collapse
|
24
|
Carranza-Saavedra D, Zapata-Montoya JE, Váquiro-Herrera HA, Solanilla-Duque JF. Study of biological activities and physicochemical properties of Yamú (Brycon siebenthalae) viscera hydrolysates in sodium alginate-based edible coating solutions. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2021-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The fishing industry produces waste such as viscera, which is an environmental problem for many countries. Obtaining protein from these wastes are useful for the food industry. In this study, the chemical composition, amino acid profile, solubility, digestibility and thermal properties of Yamú protein isolate (PI) and its hydrolysates obtained by enzymatic hydrolysis were characterized. The hydrolysates (0.05, 0.1, 0.5, 1 and 2% w/v) were mixed with a sodium alginate-based solution to form an edible coating solution (ECS). Antioxidant capacity antimicrobial activity, Zeta potential (ζ) and adsorption kinetics properties were determined. PI contains 88% (w/w) protein showing better solubility, digestibility and thermal stability properties. The hydrolysate concentrations with DPPH inhibitory ECS were 0.1 and 0.5% (w/v). The kinetic properties of ECS showed good stability and excellent adsorption. These results suggest that this Yamú protein has high nutritional potential as an ingredient for the production of functional foods.
Collapse
Affiliation(s)
- Darwin Carranza-Saavedra
- Grupo de investigación Centro de desarrollo agroindustrial del Tolima (CEDAGRITOL), Universidad Del Tolima , Ibagué 730006299 , Colombia
- Grupo de investigación en Nutrición y Tecnología de Alimentos (Nutec), Universidad de Antioquia , Medellín 050010 , Colombia
| | - José Edgar Zapata-Montoya
- Grupo de investigación en Nutrición y Tecnología de Alimentos (Nutec), Universidad de Antioquia , Medellín 050010 , Colombia
| | - Henry Alexander Váquiro-Herrera
- Grupo de investigación Centro de desarrollo agroindustrial del Tolima (CEDAGRITOL), Universidad Del Tolima , Ibagué 730006299 , Colombia
| | - José Fernando Solanilla-Duque
- Grupo de investigación Centro de desarrollo agroindustrial del Tolima (CEDAGRITOL), Universidad Del Tolima , Ibagué 730006299 , Colombia
- Departamento de Agroindustria , Facultad de Ciencias Agrarias, Universidad del Cauca , Popayán 190001 , Colombia
| |
Collapse
|
25
|
A novel Angiotensin-I-converting enzyme (ACE) inhibitory peptide IAF (Ile-Ala-Phe) from pumpkin seed proteins: in silico screening, inhibitory activity, and molecular mechanisms. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03783-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Akharume FU, Aluko RE, Adedeji AA. Modification of plant proteins for improved functionality: A review. Compr Rev Food Sci Food Saf 2021; 20:198-224. [DOI: 10.1111/1541-4337.12688] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Felix U. Akharume
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences and The Richardson Centre for Functional Foods and Nutraceuticals University of Manitoba Winnipeg Manitoba Canada
| | - Akinbode A. Adedeji
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
| |
Collapse
|
27
|
Physicochemical properties and antioxidant activities of tree peony (Paeonia suffruticosa Andr.) seed protein hydrolysates obtained with different proteases. Food Chem 2020; 345:128765. [PMID: 33340892 DOI: 10.1016/j.foodchem.2020.128765] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 11/22/2022]
Abstract
The physicochemical and antioxidant properties of tree peony seed protein (TPSP) hydrolysates by Alcalase, Neutrase, Papain, Protamex, and Flavourzyme were investigated in this study. The physicochemical properties were characterized by SDS-PAGE, particle size distribution, fourier transform infrared and fluorescence spectroscopy etc. The antioxidant activities were determined by DPPH radical, ABTS radical, Fe2+ chelating, and reducing power. The results showed five proteases produced hydrolysates with a significantly reduced average particle size, α-helices, and surface hydrophobicity compared to TPSP. Alcalase and Neutrase hydrolysis enhanced the nutritional value of the hydrolysates. Alcalase hydrolysates possessed the highest degree of hydrolysis (27.97%) and lowest molecular weight (<13 kDa) with average particle size (231.33 nm). Alcalase hydrolysate displayed the highest radical scavenging (DPPH IC50 = 0.18 mg/mL, ABTS IC50 = 1.57 mg/mL), Fe2+ chelating activity (IC50 = 0.99 mg/mL), and reducing power (0.594). These results provide the fundamentals for TPSP hydrolysates as antioxidants to be employed in food industry or pharmaceutical industry.
Collapse
|
28
|
Jin F, Wang Y, Tang H, Regenstein JM, Wang F. Limited hydrolysis of dehulled walnut (Juglans regia L.) proteins using trypsin: Functional properties and structural characteristics. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Tacias-Pascacio VG, Morellon-Sterling R, Siar EH, Tavano O, Berenguer-Murcia Á, Fernandez-Lafuente R. Use of Alcalase in the production of bioactive peptides: A review. Int J Biol Macromol 2020; 165:2143-2196. [PMID: 33091472 DOI: 10.1016/j.ijbiomac.2020.10.060] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
This review aims to cover the uses of the commercially available protease Alcalase in the production of biologically active peptides since 2010. Immobilization of Alcalase has also been reviewed, as immobilization of the enzyme may improve the final reaction design enabling the use of more drastic conditions and the reuse of the biocatalyst. That way, this review presents the production, via Alcalase hydrolysis of different proteins, of peptides with antioxidant, angiotensin I-converting enzyme inhibitory, metal binding, antidiabetic, anti-inflammatory and antimicrobial activities (among other bioactivities) and peptides that improve the functional, sensory and nutritional properties of foods. Alcalase has proved to be among the most efficient proteases for this goal, using different protein sources, being especially interesting the use of the protein residues from food industry as feedstock, as this also solves nature pollution problems. Very interestingly, the bioactivities of the protein hydrolysates further improved when Alcalase is used in a combined way with other proteases both in a sequential way or in a simultaneous hydrolysis (something that could be related to the concept of combi-enzymes), as the combination of proteases with different selectivities and specificities enable the production of a larger amount of peptides and of a smaller size.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | | | - El-Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Equipe TEPA, Laboratoire LNTA, INATAA, Université des Frères Mentouri Constantine 1, Constantine 25000, Algeria
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
30
|
Fu X, Huang X, Jin Y, Zhang S, Ma M. Characterization of enzymatically modified liquid egg yolk: Structural, interfacial and emulsifying properties. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105763] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Tang S, Zhou X, Gouda M, Cai Z, Jin Y. Effect of enzymatic hydrolysis on the solubility of egg yolk powder from the changes in structure and functional properties. Lebensm Wiss Technol 2019; 110:214-222. [DOI: 10.1016/j.lwt.2019.04.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Liu C, Bhattarai M, Mikkonen KS, Heinonen M. Effects of Enzymatic Hydrolysis of Fava Bean Protein Isolate by Alcalase on the Physical and Oxidative Stability of Oil-in-Water Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6625-6632. [PMID: 31117491 PMCID: PMC6750860 DOI: 10.1021/acs.jafc.9b00914] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/02/2019] [Accepted: 05/21/2019] [Indexed: 05/24/2023]
Abstract
Fava bean protein isolate (FBPI) was hydrolyzed by Alcalase with different degrees of hydrolysis (DHs), and the role of hydrolysates in oil-in-water (O/W) emulsion stability was investigated. Four emulsions, DH0, DH4, DH9, and DH15, were prepared by 1% (w/v) FBPI hydrolysates with different DHs (0% as the control and 4, 9, and 15%) and 5% (w/v) purified rapeseed oil. The emulsions were monitored for physical and oxidative stability at 37 °C for 7 days. DH4 and DH0 exhibited better physical stability than DH9 and DH15, indicated by droplet size, morphology, and Turbiscan stability index. More importantly, FBPI hydrolysates with DH of 4% most effectively inhibited lipid oxidation (i.e., formation of conjugated dienes and hexanal) while maintaining protein oxidative stability compared to the native and extensively hydrolyzed FBPI. Higher DHs (9 and 15%) induced unduly decreased surface hydrophobicity and increased surface load, which might negatively affect the emulsifying activity. FBPI hydrolysates with DH of 4% had suitable molecular weight for better interfacial layer stability, increased surface net charge for more repulsive electrostatic force, and increased hydrophobicity for better adsorption at the interface and, therefore, may serve as potential natural emulsifiers to maintain both physical and oxidative stability of O/W emulsions.
Collapse
|
33
|
Ewert J, Schlierenkamp F, Nesensohn L, Fischer L, Stressler T. Improving the colloidal and sensory properties of a caseinate hydrolysate using particular exopeptidases. Food Funct 2019; 9:5989-5998. [PMID: 30379169 DOI: 10.1039/c8fo01749b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymatic hydrolysis with endopeptidases can be used to modify the colloidal properties of food proteins. In this study, sodium caseinate was hydrolyzed with Sternzym BP 25201, containing a thermolysin-like endopeptidase from Geobacillus stearothermophilus as the only peptidase, to a DH of 2.3 ± 1%. The hydrolysate (pre-hydrolysate) obtained was increased in its foam (+35%) and emulsion stability (+200%) compared to untreated sodium caseinate but showed a bitter taste. This hydrolysate was further treated with the exopeptidases PepN, PepX or PepA, acting on the N-terminus of peptides. Depending on the specificity of the exopeptidase used, changes regarding the hydrolysate properties (hydrophobicity, size), colloidal behavior (emulsions, foams) and taste were observed. No changes regarding the bitterness but further improvements regarding the colloidal stability (foam: +69%, emulsion: +29%) were determined after the application of PepA, which is specific for the hydrophilic amino acids Asp, Glu and Ser. By contrast, treatment with the general aminopeptidase PepN resulted in a non-bitter product, with no significant changes regarding the colloidal properties compared to the pre-hydrolysate (p < 0.05). Similar results to those for PepN (reduced bitterness compared to the pre-hydrolysate, enhanced colloidal stability compared to sodium caseinate) were also obtained using commercial Flavourzyme, which was reduced in its endopeptidase activity (exo-flavourzyme). In conclusion, the modifications obtained with the applied exopeptidases offer a potent tool for researchers and the industry to produce non-bitter protein hydrolysates with increased colloidal properties.
Collapse
Affiliation(s)
- Jacob Ewert
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, Garbenstr. 25, 70599 Stuttgart, Germany.
| | | | | | | | | |
Collapse
|
34
|
Bučko S, Katona J, Petrović L, Milinković J, Spasojević L, Mucić N, Miller R. The Influence of Enzymatic Hydrolysis on Adsorption and Interfacial Dilatational Properties of Pumpkin (Cucurbita pepo) Seed Protein Isolate. FOOD BIOPHYS 2018. [DOI: 10.1007/s11483-018-9528-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Ghelichi S, Shabanpour B, Pourashouri P, Hajfathalian M, Jacobsen C. Extraction of unsaturated fatty acid-rich oil from common carp (Cyprinus carpio) roe and production of defatted roe hydrolysates with functional, antioxidant, and antibacterial properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1407-1415. [PMID: 28771748 DOI: 10.1002/jsfa.8608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/21/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Common carp roe is a rich protein and oil source, which is usually discarded with no specific use. The aims of this study were to extract oil from the discarded roe and examine functional, antioxidant, and antibacterial properties of defatted roe hydrolysates (CDRHs) at various degrees of hydrolysis (DH). RESULTS Gas chromatography of fatty acid methyl esters revealed that common carp roe oil contained high levels of unsaturated fatty acids. The results of high-performance liquid chromatography-mass spectrometry indicated that enzymatic hydrolysis of defatted roe yielded higher content of essential amino acids. CDRHs displayed higher solubility than untreated defatted roe, which increased with DH. Better emulsifying and foaming properties were observed at lower DH and non-isoelectric points. Furthermore, water and oil binding capacity decreased with DH. CDRHs exhibited antioxidant activity both in vitro and in 5% roe oil-in-water emulsions and inhibited the growth of certain bacterial strains. CONCLUSION Common carp roe could be a promising source of unsaturated fatty acids and functional bioactive agents. Unsaturated fatty acid-rich oil extracted from common carp roe can be delivered into food systems by roe oil-in-water emulsions fortified by functional, antioxidant, and antibacterial hydrolysates from the defatted roe. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sakhi Ghelichi
- Department of Seafood Science and Technology, Faculty of Fisheries and Environmental Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Bahareh Shabanpour
- Department of Seafood Science and Technology, Faculty of Fisheries and Environmental Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Parastoo Pourashouri
- Department of Seafood Science and Technology, Faculty of Fisheries and Environmental Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mona Hajfathalian
- Division of Food Technology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Charlotte Jacobsen
- Division of Food Technology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
36
|
Cucurbitaceae Seed Protein Hydrolysates as a Potential Source of Bioactive Peptides with Functional Properties. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2121878. [PMID: 29181389 PMCID: PMC5664370 DOI: 10.1155/2017/2121878] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/16/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022]
Abstract
Seeds from Cucurbitaceae plants (squashes, pumpkins, melons, etc.) have been used both as protein-rich food ingredients and nutraceutical agents by many indigenous cultures for millennia. However, relatively little is known about the bioactive components (e.g., peptides) of the Cucurbitaceae seed proteins (CSP) and their specific effects on human health. Therefore, this paper aims to provide a comprehensive review of latest research on bioactive and functional properties of CSP isolates and hydrolysates. Enzymatic hydrolysis can introduce a series of changes to the CSP structure and improve its bioactive and functional properties, including the enhanced protein solubility over a wide range of pH values. Small-sized peptides in CSP hydrolysates seem to enhance their bioactive properties but adversely affect their functional properties. Therefore, medium degrees of hydrolysis seem to benefit the overall improvement of bioactive and functional properties of CSP hydrolysates. Among the reported bioactive properties of CSP isolates and hydrolysates, their antioxidant, antihypertensive, and antihyperglycaemic activities stand out. Therefore, they could potentially substitute synthetic antioxidants and drugs which might have adverse secondary effects on human health. CSP isolates and hydrolysates could also be implemented as functional food ingredients, thanks to their favorable amino acid composition and good emulsifying and foaming properties.
Collapse
|
37
|
Yuan H, Wang H, Wang L, Chai L, Tian C. Nutritional evaluation and functional properties of the antioxidant polypeptide from Zanthoxylum bungeanum Maxim seeds kernel protein hydrolysate. CYTA - JOURNAL OF FOOD 2017. [DOI: 10.1080/19476337.2017.1288171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hong Yuan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
| | - Hui Wang
- Dongying Entry-Exit Inspection And Quarantine Bureau, Dongying, China
| | - Lixia Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
| | - Liqin Chai
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
| | - Chengrui Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
38
|
Establishment of an Aqueous PEG 200-Based Deep Eutectic Solvent Extraction and Enrichment Method for Pumpkin (Cucurbita moschata) Seed Protein. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0732-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|