1
|
Zhang Y, Wang Y, Dai X, Li Y, Jiang B, Li D, Liu C, Feng Z. Biointerfacial supramolecular self-assembly of whey protein isolate nanofibrils on probiotic surface to enhance survival and application to 3D printing dysphagia foods. Food Chem 2024; 460:140720. [PMID: 39106754 DOI: 10.1016/j.foodchem.2024.140720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
Personalized three-dimensional (3D) printed foods rich in probiotics were investigated. Lactiplantibacillus plantarum (Lp), as a representative of probiotics, was used to investigate the 3D printing of probiotic-rich dysphagia foods. Here, whey protein isolate nanofibrils (WPNFs) were coated and anchored on bacterial surfaces via biointerfacial supramolecular self-assembly, providing protection against environmental stress and the 3D printing process. The optimized composite gels consisting of High acyl gellan gum (0.25 g), whey protein isolate (1.25 g), fructooligosaccharides (0.75 g), Lp-WPNFs-Glyceryl tributyrate emulsion (Φ = 40%, 3.75 mL) can realize 3D printing, and exhibit high resolution, and stable shape. The viable cell count is higher than 8.0 log CFU/g. They are particularly suitable for people with dysphagia and are classified as level 5-minced & moist in the international dysphagia diet standardization initiative framework. The results provide new insights into the development of WPNFs-coating on bacterial surfaces to deliver probiotics and 3D printed food rich in probiotics.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yexuan Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohan Dai
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Bin Jiang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Dongmei Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Chunhong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Zhibiao Feng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Zhao R, Yu T, Li J, Niu R, Liu D, Wang W. Single-cell encapsulation systems for probiotic delivery: Armor probiotics. Adv Colloid Interface Sci 2024; 332:103270. [PMID: 39142064 DOI: 10.1016/j.cis.2024.103270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/28/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024]
Abstract
Functional foods or drugs based on probiotics have gained unprecedented attention and development due to the increasingly clear relationship between probiotics and human health. Probiotics can regulate intestinal microbiota, dynamically participating in various physiological activities to directly affect human health. Some probiotic-based functional preparations have shown great potential in treating multiple refractory diseases. Currently, the survival and activity of probiotic cells in complex environments in vitro and in vivo have taken priority, and various encapsulation systems based on food-derived materials have been designed and constructed to protect and deliver probiotics. However, traditional encapsulation technology cannot achieve precise protection for a single probiotic, which makes it unable to have a significant effect after release. In this case, single-cell encapsulation systems can be assembled based on biological interfaces to protect and functionalize individual probiotic cells, maximizing their physiological activity. This review discussed the arduous challenges of probiotics in food processing, storage, human digestion, and the commonly used probiotic encapsulation system. Besides, a novel technology of probiotic encapsulation was introduced based on single-cell coating, namely, "armor probiotics". We focused on the classification, structural design, and functional characteristics of armor coatings, and emphasized the essential functional characteristics of armor probiotics in human health regulation, including regulating intestinal health and targeted bioimaging and treatment of diseased tissues. Subsequently, the benefits, limitations, potential challenges, as well as future direction of armor probiotics were put forward. We hope this review may provide new insights and ideas for developing a single-cell probiotics encapsulating system.
Collapse
Affiliation(s)
- Runan Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ting Yu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiaheng Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Ruihao Niu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
3
|
Guo H, Zhou Y, Xie Q, Chen H, Zhang M, Yu L, Yan G, Chen Y, Lin X, Zhang Y, Hong Z. Protective Effects of Laminaria japonica Polysaccharide Composite Microcapsules on the Survival of Lactobacillus plantarum during Simulated Gastrointestinal Digestion and Heat Treatment. Mar Drugs 2024; 22:308. [PMID: 39057417 PMCID: PMC11277663 DOI: 10.3390/md22070308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
To improve probiotics' survivability during gastrointestinal digestion and heat treatment, Lactobacillus plantarum was microencapsulated by spray-drying using Laminaria japonica polysaccharide/sodium caseinate/gelatin (LJP/SC/GE) composites. Thermogravimetry and differential scanning calorimetry results revealed that the denaturation of LJP/SC/GE microcapsules requires higher thermal energy than that of SC/GE microcapsules, and the addition of LJP may improve thermal stability. Zeta potential measurements indicated that, at low pH of the gastric fluid, the negatively charged LJP attracted the positively charged SC/GE, helping to maintain an intact microstructure without disintegration. The encapsulation efficiency of L. plantarum-loaded LJP/SC/GE microcapsules reached about 93.4%, and the survival rate was 46.9% in simulated gastric fluid (SGF) for 2 h and 96.0% in simulated intestinal fluid (SIF) for 2 h. In vitro release experiments showed that the LJP/SC/GE microcapsules could protect the viability of L. plantarum in SGF and release probiotics slowly in SIF. The cell survival of LJP/SC/GE microcapsules was significantly improved during the heat treatment compared to SC/GE microcapsules and free cells. LJP/SC/GE microcapsules can increase the survival of L. plantarum by maintaining the lactate dehydrogenase and Na+-K+-ATPase activity. Overall, this study demonstrates the great potential of LJP/SC/GE microcapsules to protect and deliver probiotics in food and pharmaceutical systems.
Collapse
Affiliation(s)
- Honghui Guo
- Engineering Technology Innovation Center for the Development and Utilization of Marine Living Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (H.C.); (M.Z.); (Y.Z.)
- Xiamen Ocean Vocational College, Xiamen 361100, China; (L.Y.); (G.Y.)
- Fujian Key Laboratory of Island Monitoring and Ecological Development, Island Research Center, Ministry of Natural Resources, Pingtan 350400, China
| | - Yelin Zhou
- Engineering Technology Innovation Center for the Development and Utilization of Marine Living Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (H.C.); (M.Z.); (Y.Z.)
- College of Advanced Manufacturing, Fuzhou University, Quanzhou 362200, China
| | - Quanling Xie
- Engineering Technology Innovation Center for the Development and Utilization of Marine Living Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (H.C.); (M.Z.); (Y.Z.)
- Xiamen Ocean Vocational College, Xiamen 361100, China; (L.Y.); (G.Y.)
- Fujian Key Laboratory of Island Monitoring and Ecological Development, Island Research Center, Ministry of Natural Resources, Pingtan 350400, China
| | - Hui Chen
- Engineering Technology Innovation Center for the Development and Utilization of Marine Living Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (H.C.); (M.Z.); (Y.Z.)
- Xiamen Ocean Vocational College, Xiamen 361100, China; (L.Y.); (G.Y.)
- Fujian Key Laboratory of Island Monitoring and Ecological Development, Island Research Center, Ministry of Natural Resources, Pingtan 350400, China
| | - Ming’en Zhang
- Engineering Technology Innovation Center for the Development and Utilization of Marine Living Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (H.C.); (M.Z.); (Y.Z.)
| | - Lei Yu
- Xiamen Ocean Vocational College, Xiamen 361100, China; (L.Y.); (G.Y.)
| | - Guangyu Yan
- Xiamen Ocean Vocational College, Xiamen 361100, China; (L.Y.); (G.Y.)
| | - Yan Chen
- Haijia Flour Milling Company Limited, China Oil & Foodstuffs Corporation, Xiamen 361026, China
| | - Xueliang Lin
- Haijia Flour Milling Company Limited, China Oil & Foodstuffs Corporation, Xiamen 361026, China
| | - Yiping Zhang
- Engineering Technology Innovation Center for the Development and Utilization of Marine Living Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (H.C.); (M.Z.); (Y.Z.)
- Xiamen Ocean Vocational College, Xiamen 361100, China; (L.Y.); (G.Y.)
- Fujian Key Laboratory of Island Monitoring and Ecological Development, Island Research Center, Ministry of Natural Resources, Pingtan 350400, China
| | - Zhuan Hong
- Engineering Technology Innovation Center for the Development and Utilization of Marine Living Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (H.C.); (M.Z.); (Y.Z.)
- Xiamen Ocean Vocational College, Xiamen 361100, China; (L.Y.); (G.Y.)
- Fujian Key Laboratory of Island Monitoring and Ecological Development, Island Research Center, Ministry of Natural Resources, Pingtan 350400, China
| |
Collapse
|
4
|
Yu H, Kong Q, Wang M, Han Z, Xu J. Improved viability of probiotics by encapsulation in chickpea protein matrix during simulated gastrointestinal digestion by succinylated modification. Int J Biol Macromol 2024; 260:129614. [PMID: 38246468 DOI: 10.1016/j.ijbiomac.2024.129614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
The potential application of succinylated chickpea protein (SCP) as a wall material for spray-dried microencapsulated probiotics was investigated. The results showed that succinylation increased the surface charge of chickpea proteins (CP) and reduced the particle size of the proteins. Meanwhile, succinylated modification decreased the solubility of protein under acidic conditions and increased the solubility in alkaline conditions. The effects of spray drying and in vitro gastrointestinal digestion on probiotics were investigated by microencapsulating chickpea protein with different degrees of N-succinylation. The results showed that all microcapsules had similar morphology, particle size and low water content. The microcapsules prepared by succinylated chickpea protein showed better stability and viability during spray drying and gastrointestinal digestion. The protective effect of probiotics was better as the degree of N-succinylation increased. In particular, the SCP-3-P sample (10 % succinic anhydride modified CP and maltodextrin) lost only 0.29 Log CFU/g throughout gastrointestinal digestion. The superior protective effect provided by succinylated CP in simulated gastric fluid (SGF) was mainly attributed to the reaction of succinic anhydride with protein to cause protein aggregation under gastric acidic conditions, reducing the infiltration of gastric acid and pepsin and maintaining the structural integrity of the microcapsules. Therefore, these findings provide a new strategy for probiotic intestinal delivery and application of chickpea protein.
Collapse
Affiliation(s)
- Hui Yu
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266500, China
| | - Qing Kong
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266500, China.
| | - Mengru Wang
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266500, China
| | - Zhuoyu Han
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266500, China
| | - Jia Xu
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266500, China
| |
Collapse
|
5
|
Hao R, Chen Z, Wu Y, Li D, Qi B, Lin C, Zhao L, Xiao T, Zhang K, Wu J. Improving the survival of Lactobacillus plantarum FZU3013 by phase separated caseinate/alginate gel beads. Int J Biol Macromol 2024; 260:129447. [PMID: 38232889 DOI: 10.1016/j.ijbiomac.2024.129447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 11/11/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
The phase separation behavior of mixed solution of caseinate (Cas) and alginate (Alg) was investigated. Lactobacillus plantarum FZU3013 was encapsulated using 4 % Cas/1 % Alg gel beads with a phase-separated structure. The bacteria were predominantly distributed in the Alg-rich continuous phase. The use of 4 % Cas/1 % Alg beads resulted in higher encapsulation efficiency for L. plantarum FZU3013 compared to 1 % Alg beads. After 5 weeks of storage at 4 °C, the viable count in 4 % Cas/1 % Alg beads was 8.3 log CFU/g, which was 1.1 log CFU/g higher than that of the 1 % Alg beads. When 1 % Alg beads of the smallest size were subjected to in vitro digestion, no viable bacteria could be detected at the end of the digestion, whereas the 4 % Cas/1 % Alg beads of the smallest size had a viable count of 3.9 log CFU/g. When the size of the 4 % Cas/1 % Alg beads was increased to 1000 μm, the viable count was 7.0 log CFU/g after digestion. The results of infrared spectroscopy and zeta potential indicated that hydrogen bonding and electrostatic interactions between caseinate and alginate reinforced the structure of the gel beads and improved the protection for L. plantarum FZU 3013.
Collapse
Affiliation(s)
- Ruiying Hao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhiyang Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ya Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Dongdong Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Binxi Qi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chenxin Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Lan Zhao
- College of Life Science, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Tingting Xiao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Kunfeng Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jia Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
6
|
Nezamdoost-Sani N, Khaledabad MA, Amiri S, Phimolsiripol Y, Mousavi Khaneghah A. A comprehensive review on the utilization of biopolymer hydrogels to encapsulate and protect probiotics in foods. Int J Biol Macromol 2024; 254:127907. [PMID: 37935287 DOI: 10.1016/j.ijbiomac.2023.127907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/25/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Probiotics must survive in foods and passage through the human mouth, stomach, and small intestine to reach the colon in a viable state and exhibit their beneficial health effects. Probiotic viability can be improved by encapsulating them inside hydrogel-based delivery systems. These systems typically comprise a 3D network of cross-linked polymers that retain large amounts of water within their pores. This study discussed the stability of probiotics and morphology of hydrogel beads after encapsulation, encapsulation efficiency, utilization of natural polymers, and encapsulation mechanisms. Examples of the application of these hydrogel-based delivery systems are then given. These studies show that encapsulation of probiotics in hydrogels can improve their viability, provide favorable conditions in the food matrix, and control their release for efficient colonization in the large intestine. Finally, we highlight areas where future research is required, such as the large-scale production of encapsulated probiotics and the in vivo testing of their efficacy using animal and human studies.
Collapse
Affiliation(s)
- Narmin Nezamdoost-Sani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Saber Amiri
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | | | - Amin Mousavi Khaneghah
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Department of Fruit and Vegetable Product Technology, Warsaw, Poland.
| |
Collapse
|
7
|
Lin Q, Si Y, Zhou F, Hao W, Zhang P, Jiang P, Cha R. Advances in polysaccharides for probiotic delivery: Properties, methods, and applications. Carbohydr Polym 2024; 323:121414. [PMID: 37940247 DOI: 10.1016/j.carbpol.2023.121414] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 11/10/2023]
Abstract
Probiotics are essential to improve the health of the host, whereas maintaining the viability of probiotics in harsh environments remains a challenge. Polysaccharides have non-toxicity, excellent biocompatibility, and outstanding biodegradability, which can protect probiotics by forming a physical barrier and show a promising prospect for probiotic delivery. In this review, we summarize polysaccharides commonly used for probiotic microencapsulation and introduce the microencapsulation technologies, including extrusion, emulsion, spray drying, freeze drying, and electrohydrodynamics. We discuss strategies for better protection of probiotics and introduce the applications of polysaccharides-encapsulated probiotics in functional food, oral formulation, and animal feed. Finally, we propose the challenges of polysaccharides-based delivery systems in industrial production and application. This review will help provide insight into the advances and challenges of polysaccharides in probiotic delivery.
Collapse
Affiliation(s)
- Qianqian Lin
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China; Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| | - Yanxue Si
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Wenshuai Hao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Pai Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Peng Jiang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China; College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| |
Collapse
|
8
|
Jin H, Wang L, Yang S, Wen J, Zhang Y, Jiang L, Sui X. Producing mixed-soy protein adsorption layers on alginate microgels to controlled-release β-carotene. Food Res Int 2023; 164:112319. [PMID: 36737912 DOI: 10.1016/j.foodres.2022.112319] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
In this study, the effects of soy protein isolate (SPI) on the morphology, encapsulation efficiency, storage stability, swelling behavior, and in vitro digestion behavior of calcium alginate (CA) microgels were investigated. CA and calcium alginate-SPI (CAS) microgels with encapsulated β-carotene were prepared by extruding a mixture of alginate and SPI using a co-extrusion technique, followed by cross-linking with Ca2+. All microgels exhibited homogeneous sizes and spherical shapes, and CAS microgels showed high levels of protein loading efficiency. The encapsulation efficiency and storage stability of β-carotene within CAS microgels were higher than those within CA microgels. The introduction of SPI into CAS microgels resulted in a higher degree of gel size shrinkage in gastric fluid and a lower degree of swelling in intestinal fluid compared to CA microgels. In vitro digestion was conducted to investigate the effects of the addition of SPI on the release behavior of CA and CAS microgels. Results obtained showed that CAS microgels were more resistant to simulated gastric fluid than CA microgels. Cryo-scanning electron microscopy (cryo-SEM) and confocal laser scanning microscopy (CLSM) observations indicated that the release behavior was dependent on the porosity of the CA and CAS microgels, and the porosity was influenced by the concentration of SPI. This study showed that the introduction of SPI to CA microgels can lead to the development of an effective controlled release delivery system.
Collapse
Affiliation(s)
- Hainan Jin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lei Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shuyuan Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiayu Wen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
9
|
Li L, Yin F, Wang X, Yang C, Yu H, Lepp D, Wang Q, Lessard M, Lo Verso L, Mondor M, Yang C, Nie S, Gong J. Microencapsulation protected Lactobacillus viability and its activity in modulating the intestinal microbiota in newly weaned piglets. J Anim Sci 2023; 101:skad193. [PMID: 37403537 PMCID: PMC10516462 DOI: 10.1093/jas/skad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
Lactobacilli are sensitive to heat, which limits their application as probiotics in livestock production. Lactobacillus rhamnosus LB1 was previously shown to reduce enterotoxigenic Escherichia coli (ETEC) and Salmonella infections in pigs. To investigate its potential in the application, the bacterium was microencapsulated and examined for its survival from feed pelleting and long-term storage as well as its function in modulating pig intestinal microbiota. The in vitro studies showed that freshly microencapsulated Lactobacillus rhamnosus LB1 had viable counts of 9.03 ± 0.049 log10 colony-forming units/g, of which only 0.06 and 0.87 Log of viable counts were reduced after storage at 4 and 22 °C for 427 d. The viable counts of encapsulated Lactobacillus rhamnosus LB1 were 1.06 and 1.54 Log higher in the pelleted and mash feed, respectively, than the non-encapsulated form stored at 22 °C for 30 d. In the in vivo studies, 80 piglets (weaned at 21 d of age) were allocated to five dietary treatments for a 10-d growth trial. The dietary treatments were the basal diet (CTL) and basal diet combined with either non-encapsulated LB1 (NEP), encapsulated LB1 (EP), bovine colostrum (BC), or a combination of encapsulated LB1 and bovine colostrum (EP-BC). The results demonstrated that weaning depressed feed intake and reduced growth rates in pigs of all the treatments during 21 to 25 d of age; however, the body weight gain was improved during 25 to 31 d of age in all groups with the numerically highest increase in the EP-BC-fed pigs during 21 to 31 d of age. Dietary treatments with EP, particularly in combination with BC, modulated pig intestinal microbiota, including an increase in Lactobacillus relative abundance. These results suggest that microencapsulation can protect Lactobacillus rhamnosus LB1 against cell damage from a high temperature during processing and storage and there are possible complementary effects between EP and BC.
Collapse
Affiliation(s)
- Linyan Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi, China
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Fugui Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Xiaoyin Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi, China
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Chongwu Yang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Hai Yu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Qi Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Martin Lessard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - Luca Lo Verso
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - Martin Mondor
- St-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, St-Hyacinthe, Quebec, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi, China
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Hu R, Dong D, Hu J, Liu H. Improved viability of probiotics encapsulated in soybean protein isolate matrix microcapsules by coacervation and cross-linking modification. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Mendonça AA, Pinto-Neto WDP, da Paixão GA, Santos DDS, De Morais MA, De Souza RB. Journey of the Probiotic Bacteria: Survival of the Fittest. Microorganisms 2022; 11:95. [PMID: 36677387 PMCID: PMC9861974 DOI: 10.3390/microorganisms11010095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
This review aims to bring a more general view of the technological and biological challenges regarding production and use of probiotic bacteria in promoting human health. After a brief description of the current concepts, the challenges for the production at an industrial level are presented from the physiology of the central metabolism to the ability to face the main forms of stress in the industrial process. Once produced, these cells are processed to be commercialized in suspension or dried forms or added to food matrices. At this stage, the maintenance of cell viability and vitality is of paramount for the quality of the product. Powder products requires the development of strategies that ensure the integrity of components and cellular functions that allow complete recovery of cells at the time of consumption. Finally, once consumed, probiotic cells must face a very powerful set of physicochemical mechanisms within the body, which include enzymes, antibacterial molecules and sudden changes in pH. Understanding the action of these agents and the induction of cellular tolerance mechanisms is fundamental for the selection of increasingly efficient strains in order to survive from production to colonization of the intestinal tract and to promote the desired health benefits.
Collapse
Affiliation(s)
- Allyson Andrade Mendonça
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Walter de Paula Pinto-Neto
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Giselle Alves da Paixão
- Laboratory of Microbial Metabolism, Institute of Biological Sciences, University of Pernambuco, Recife 50100-130, Brazil
| | - Dayane da Silva Santos
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Marcos Antonio De Morais
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Rafael Barros De Souza
- Laboratory of Microbial Metabolism, Institute of Biological Sciences, University of Pernambuco, Recife 50100-130, Brazil
| |
Collapse
|
12
|
Improved enzyme thermal stability, loading and bioavailability using alginate encapsulation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
13
|
Improvement the texture of nitrite-free fermented sausages using microencapsulation of fermenting bacteria. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Yin M, Yuan Y, Chen M, Liu F, Saqib MN, Chiou BS, Zhong F. The dual effect of shellac on survival of spray-dried Lactobacillus rhamnosus GG microcapsules. Food Chem 2022; 389:132999. [PMID: 35552127 DOI: 10.1016/j.foodchem.2022.132999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/26/2022] [Accepted: 04/15/2022] [Indexed: 11/04/2022]
Abstract
Heat shock and hygroscopicity are two main factors that resulted in low viability of probiotics in spray-dried microcapsules during storage. Hydrophobic polyester shellac was combined with whey protein isolate (WPI) to solve this problem. The results suggested that although the survival rate after drying decreased from 20.63% to 0.01% with increased shellac to WPI ratio, the 1:1 shellac-WPI provided the best protection among all samples during storage. The consistence between moisture-adsorption-isotherm and bacterial inactivation constants confirmed the moisture barrier effect of shellac under moderate humidity. Single-droplet drying and differential scanning calorimeter revealed that shellac addition reduced the drying rate and glass transition temperature of microcapsules, which in turn decreased the membrane integrity and growth capability of the probiotics after drying. This study revealed the dual effect of hydrophobic material on instant and long-term survival of spray-dried probiotic microcapsules, which provided new sight to the design of composite wall materials.
Collapse
Affiliation(s)
- Ming Yin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yongkai Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Maoshen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Md Nazmus Saqib
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Bor-Sen Chiou
- Western Regional Research Center, ARS, U.S, Department of Agriculture, Albany, CA 94710, United States
| | - Fang Zhong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
15
|
Guo Q, Tang J, Li S, Qiang L, Chang S, Du G, Yue T, Yuan Y. Lactobacillus plantarum 21805 encapsulated by whey protein isolate and dextran conjugate for enhanced viability. Int J Biol Macromol 2022; 216:124-131. [DOI: 10.1016/j.ijbiomac.2022.06.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
|
16
|
Yadav DN, Tushir S, Sethi S, Mir NA, Wadhwa R, Bansal S. A superior approach for production of protein isolate from de‐oiled soy meal and its comparison with conventional method. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Deep Narayan Yadav
- ICAR‐Central Institute of Post‐Harvest Engineering & Technology Ludhiana 141004 Punjab India
| | - Surya Tushir
- ICAR‐Central Institute of Post‐Harvest Engineering & Technology Ludhiana 141004 Punjab India
| | - Swati Sethi
- ICAR‐Central Institute of Post‐Harvest Engineering & Technology Ludhiana 141004 Punjab India
| | - Nisar A. Mir
- ICAR‐Central Institute of Post‐Harvest Engineering & Technology Ludhiana 141004 Punjab India
| | - Ritika Wadhwa
- ICAR‐Central Institute of Post‐Harvest Engineering & Technology Ludhiana 141004 Punjab India
| | - Sangita Bansal
- ICAR‐National Bureau of Plant Genetic Resources Pusa 110012 New Delhi India
| |
Collapse
|
17
|
Microencapsulation of Bacteriophages for the Delivery to and Modulation of the Human Gut Microbiota through Milk and Cereal Products. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
There is a bidirectional interaction between the gut microbiota and human health status. Disturbance of the microbiota increases the risk of pathogen infections and other diseases. The use of bacteriophages as antibacterial therapy or prophylaxis is intended to counteract intestinal disorders. To deliver bacteriophages unharmed into the gut, they must be protected from acidic conditions in the stomach. Therefore, an encapsulation method based on in situ complexation of alginate (2%), calcium ions (0.5%), and milk proteins (1%) by spray drying was investigated. Powdered capsules with particle sizes of ~10 µm and bacteriophage K5 titers of ~108 plaque forming units (pfu) g−1 were obtained. They protected the bacteriophages from acid (pH 2.5) in the stomach for 2 h and released them within 30 min under intestinal conditions (in vitro). There was no loss of viability during storage over two months (4 °C). Instead of consuming bacteriophage capsules in pure form (i.e., as powder/tablets), they could be inserted into food matrices, as exemplary shown in this study using cereal cookies as a semi-solid food matrix. By consuming bacteriophages in combination with probiotic organisms (e.g., via yoghurt with cereal cookies), probiotics could directly repopulate the niches generated by bacteriophages and, thus, contribute to a healthier life.
Collapse
|
18
|
Probiotic encapsulation in water-in-oil high internal phase emulsions: Enhancement of viability under food and gastrointestinal conditions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Exploring the integrity of cellular membrane and resistance to digestive juices of dehydrated lactic acid bacteria as influenced by drying kinetics. Food Res Int 2022; 157:111395. [DOI: 10.1016/j.foodres.2022.111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
|
20
|
Obradović N, Volić M, Nedović V, Rakin M, Bugarski B. Microencapsulation of probiotic starter culture in protein–carbohydrate carriers using spray and freeze-drying processes: Implementation in whey-based beverages. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.110948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Application of Spray Dried Encapsulated Probiotics in Functional Food Formulations. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Bi H, Xu Y, Fan F, Sun X. Effect of drying methods on
Lactobacillus Rhamnosus
GG microcapsules prepared using the complex coacervation method. J Food Sci 2022; 87:1282-1291. [DOI: 10.1111/1750-3841.16061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/23/2021] [Accepted: 01/02/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Huimin Bi
- Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Ministry of Education, and College of Life Sciences Southwest Forestry University Kunming P. R. China
| | - Yuqiao Xu
- Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Ministry of Education, and College of Life Sciences Southwest Forestry University Kunming P. R. China
| | - Fangyu Fan
- Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Ministry of Education, and College of Life Sciences Southwest Forestry University Kunming P. R. China
| | - Xue Sun
- Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Ministry of Education, and College of Life Sciences Southwest Forestry University Kunming P. R. China
| |
Collapse
|
23
|
Haji F, Cheon J, Baek J, Wang Q, Tam KC. Application of Pickering emulsions in probiotic encapsulation- A review. Curr Res Food Sci 2022; 5:1603-1615. [PMID: 36161224 PMCID: PMC9493384 DOI: 10.1016/j.crfs.2022.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Probiotics are live microorganisms that confer health benefits to host organisms when consumed in adequate amounts and are often incorporated into foods for human consumption. However, this has negative implications on their viability as large numbers of these beneficial bacteria are deactivated when subjected to harsh conditions during processing, storage, and passage through the gastrointestinal tract. To address these issues, numerous studies on encapsulation techniques to protect probiotics have been conducted. This review focuses on emulsion technology for probiotic encapsulation, with a special focus on Pickering emulsions. Pickering emulsions are stabilized by solid particles, which adsorb strongly onto the liquid-liquid interfaces to prevent aggregation. Pickering emulsions have demonstrated enhanced stability, high encapsulation efficiency, and cost-effectiveness compared to other encapsulation techniques. Additionally, Pickering emulsions are regarded as safe and biocompatible and utilize natural materials, such as cellulose and chitosan derived from plants, shellfish, and fungi, which may also be viewed as more acceptable in food systems than common synthetic and natural molecular surfactants. This article reviews the current status of Pickering emulsion use for probiotic delivery and explores the potential of this technique for application in other fields, such as livestock farming, pet food, and aquaculture. Probiotics play an important role in maintaining the health of humans and animals. Encapsulation improves probiotic viability in harsh environments. Probiotics can be encapsulated by many techniques such as emulsification. Pickering emulsions use particles instead of molecules to stabilize emulsions. Natural particles are more acceptable to some consumers than synthetic emulsifiers.
Collapse
Affiliation(s)
- Fatemah Haji
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
| | - James Cheon
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
| | - Jiyoo Baek
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road W, Guelph, ON, N1G 5C9, Canada
| | - Qi Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road W, Guelph, ON, N1G 5C9, Canada
| | - Kam Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
- Corresponding author.
| |
Collapse
|
24
|
The extent and mechanism of the effect of protectant material in the production of active lactic acid bacteria powder using spray drying: A review. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Guo Q, Li S, Tang J, Chang S, Qiang L, Du G, Yue T, Yuan Y. Microencapsulation of Lactobacillus plantarum by spray drying: Protective effects during simulated food processing, gastrointestinal conditions, and in kefir. Int J Biol Macromol 2022; 194:539-545. [PMID: 34808148 DOI: 10.1016/j.ijbiomac.2021.11.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 01/07/2023]
Abstract
Probiotics are incorporated into food products because of numerous favorable effects on human health. The viability of probiotics is often affected by unfavorable interference during processing. The encapsulation can provide protection to probiotics during mechanical processing, storage, and gastrointestinal digestion. This study aimed to evaluate the protective effect of whey protein isolate (WPI) and dextran (DX) conjugates for Lactobacillus plantarum. The WPI-DX conjugate was prepared by Maillard-based glycation and confirmed by gel electrophoresis. Extending the heating time from 1 to 5 h decreased the content of tryptophan residues and increased the amide I and amide II bands. The enhanced protective ability of Maillard reaction products (MRPs) for L. plantarum was observed under conditions of stress (pH, heat, and salt) and in vitro digestion. In situ viability tests showed that encapsulation improved the survival of bacteria in kefir during 15 days of storage at 4 °C. Overall, our results provide valuable information for the development of functional probiotic food products.
Collapse
Affiliation(s)
- Qi Guo
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Shidong Li
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Jiaxin Tang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Shuaidan Chang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Liyue Qiang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Gengan Du
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; College of Food Science and Techonology, Northwest University, Xi'an, 710069, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.
| |
Collapse
|
26
|
Ghorbani S, Maryam A. Encapsulation of lactic acid bacteria and Bifidobacteria using starch‐sodium alginate nanofibers to enhance viability in food model. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sahel Ghorbani
- Department of Food Hygiene Faculty of Veterinary Medicine Amol University of Special Modern Technologies Amol Iran
| | - Azizkhani Maryam
- Department of Food Hygiene Faculty of Veterinary Medicine Amol University of Special Modern Technologies Amol Iran
| |
Collapse
|
27
|
Bennacef C, Desobry-Banon S, Probst L, Desobry S. Advances on alginate use for spherification to encapsulate biomolecules. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106782] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Qi X, Lan Y, Ohm JB, Chen B, Rao J. The viability of complex coacervate encapsulated probiotics during simulated sequential gastrointestinal digestion affected by wall materials and drying methods. Food Funct 2021; 12:8907-8919. [PMID: 34378612 DOI: 10.1039/d1fo01533h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The objective of this study was to investigate the impact of protein type (sodium caseinate and pea protein isolate) and protein to sugar beet pectin mixing ratio (5 : 1 and 2 : 1) on complex coacervate formation, as well as the impact of the finishing technology (freeze-drying and spray-drying) for improving the viability of encapsulated Lactobacillus rhamnosus GG (LGG) in complex coacervates during simulated sequential gastrointestinal (GI) digestion. The physicochemical properties of LGG encapsulated microcapsules in liquid and powder form were evaluated. The state diagram and ζ-potential results indicated that pH 3.0 was the optimum pH for coacervate formation in the current systems. Confocal laser scanning microscopy (CLSM), viscoelastic analysis, and Fourier transform infrared spectroscopy (FTIR) confirmed that the gel-like network structure of the complex coacervates was successfully formed between the protein and SBP at pH 3.0 through electrostatic interaction. In terms of physiochemical properties and viability of LGG encapsulated in the microcapsule powder, the drying method played a crucial role on particle size, microstructure and death rate of encapsulated LGG during simulated sequential GI digestion compared to protein type and biopolymer mixing ratio. For example, the microstructure of spray-dried microcapsules exhibited smaller spherical particles with some cavities, whereas the larger particle size of freeze-dried samples showed a porous sponge network structure with larger particle sizes. As a result, spray-dried LGG microcapsules generally had a lower death rate during simulated sequential gastrointestinal digestion compared to their freeze-dried counterparts. Among all samples, spray-dried PPI-SBP microcapsules demonstrated superior performance against cell loss and maintained more than 7.5 log CFU per g viable cells after digestion.
Collapse
Affiliation(s)
- Xiaoxi Qi
- Food Ingredients and Biopolymers Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA.
| | - Yang Lan
- Food Ingredients and Biopolymers Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA.
| | - Jae-Bom Ohm
- USDA-ARS, Red River Valley Agricultural Research Center, Cereal Crops Research Unit, Hard Spring and Durum Wheat Quality Lab., Fargo, ND 58108, USA
| | - Bingcan Chen
- Food Ingredients and Biopolymers Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA.
| | - Jiajia Rao
- Food Ingredients and Biopolymers Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA.
| |
Collapse
|
29
|
Atraki R, Azizkhani M. Survival of probiotic bacteria nanoencapsulated within biopolymers in a simulated gastrointestinal model. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Development of coffee kombucha containing Lactobacillus rhamnosus and Lactobacillus casei: Gastrointestinal simulations and DNA microbial analysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Hao F, Fu N, Ndiaye H, Woo MW, Jeantet R, Chen XD. Thermotolerance, Survival, and Stability of Lactic Acid Bacteria After Spray Drying as Affected by the Increase of Growth Temperature. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-020-02571-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Beldarrain-Iznaga T, Villalobos-Carvajal R, Leiva-Vega J, Sevillano Armesto E. Influence of multilayer microencapsulation on the viability of Lactobacillus casei using a combined double emulsion and ionic gelation approach. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Gheorghita Puscaselu R, Lobiuc A, Dimian M, Covasa M. Alginate: From Food Industry to Biomedical Applications and Management of Metabolic Disorders. Polymers (Basel) 2020; 12:E2417. [PMID: 33092194 PMCID: PMC7589871 DOI: 10.3390/polym12102417] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022] Open
Abstract
Initially used extensively as an additive and ingredient in the food industry, alginate has become an important compound for a wide range of industries and applications, such as the medical, pharmaceutical and cosmetics sectors. In the food industry, alginate has been used to coat fruits and vegetables, as a microbial and viral protection product, and as a gelling, thickening, stabilizing or emulsifying agent. Its biocompatibility, biodegradability, nontoxicity and the possibility of it being used in quantum satis doses prompted scientists to explore new properties for alginate usage. Thus, the use of alginate has been expanded so as to be directed towards the pharmaceutical and biomedical industries, where studies have shown that it can be used successfully as biomaterial for wound, hydrogel, and aerogel dressings, among others. Furthermore, the ability to encapsulate natural substances has led to the possibility of using alginate as a drug coating and drug delivery agent, including the encapsulation of probiotics. This is important considering the fact that, until recently, encapsulation and coating agents used in the pharmaceutical industry were limited to the use of lactose, a potentially allergenic agent or gelatin. Obtained at a relatively low cost from marine brown algae, this hydrocolloid can also be used as a potential tool in the management of diabetes, not only as an insulin delivery agent but also due to its ability to improve insulin resistance, attenuate chronic inflammation and decrease oxidative stress. In addition, alginate has been recognized as a potential weight loss treatment, as alginate supplementation has been used as an adjunct treatment to energy restriction, to enhance satiety and improve weight loss in obese individuals. Thus, alginate holds the promise of an effective product used in the food industry as well as in the management of metabolic disorders such as diabetes and obesity. This review highlights recent research advances on the characteristics of alginate and brings to the forefront the beneficial aspects of using alginate, from the food industry to the biomedical field.
Collapse
Affiliation(s)
- Roxana Gheorghita Puscaselu
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.P.); (A.L.)
| | - Andrei Lobiuc
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.P.); (A.L.)
| | - Mihai Dimian
- Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.P.); (A.L.)
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
34
|
Xiao Y, Lu C, Liu Y, Kong L, Bai H, Mu H, Li Z, Geng H, Duan J. Encapsulation of Lactobacillus rhamnosus in Hyaluronic Acid-Based Hydrogel for Pathogen-Targeted Delivery to Ameliorate Enteritis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36967-36977. [PMID: 32702229 DOI: 10.1021/acsami.0c11959] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Probiotics were found to be effective in ameliorating the microbial dysbiosis and inflammation caused by intestinal pathogens. However, biological challenges encountered during oral delivery have greatly limited their potential health benefits. Here, a model probiotic (Lactobacillus rhamnosus) was encapsulated in an intestinal-targeted hydrogel to alleviate bacterial enteritis in a novel mode. The hydrogel was prepared simply by the self-cross-linking of thiolated hyaluronic acid. Upon exposure to H2S which were excreted by surrounding intestinal pathogens, the hydrogel can locally degrade and rapidly release cargos to compete with source pathogens in turn for binding to the host. The mechanical properties of hydrogel were studied by rheological analysis, and the ideal stability was achieved at a polymer concentration of 4% (w/v). The morphology of the optimal encapsulation system was further measured by a scanning electron microscope, exhibiting uniform payload of probiotics. Endurance experiments indicated that the encapsulation of L. rhamnosus significantly enhanced their viability under gastrointestinal tract insults. Compared with free cells, encapsulated L. rhamnosus exerted better therapeutic effect against Salmonella-induced enteritis with negligible toxicity in vivo. These results demonstrate that this redox-responsive hydrogel may be a promising encapsulation and delivery system for improving the efficacy of orally administered probiotics.
Collapse
Affiliation(s)
- Yao Xiao
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunbo Lu
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yinyin Liu
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - LiLi Kong
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hu Bai
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haibo Mu
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zehao Li
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiling Geng
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinyou Duan
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
35
|
Wang Y, Hao F, Lu W, Suo X, Bellenger E, Fu N, Jeantet R, Chen XD. Enhanced thermal stability of lactic acid bacteria during spray drying by intracellular accumulation of calcium. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.109975] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Yilmaz MT, Taylan O, Karakas CY, Dertli E. An alternative way to encapsulate probiotics within electrospun alginate nanofibers as monitored under simulated gastrointestinal conditions and in kefir. Carbohydr Polym 2020; 244:116447. [PMID: 32536387 DOI: 10.1016/j.carbpol.2020.116447] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/14/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Mustafa Tahsin Yilmaz
- King Abdulaziz University, Faculty of Engineering, Department of Industrial Engineering, 21589, Jeddah, Saudi Arabia.
| | - Osman Taylan
- King Abdulaziz University, Faculty of Engineering, Department of Industrial Engineering, 21589, Jeddah, Saudi Arabia
| | - Canan Yagmur Karakas
- Yıldız Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, 34210, İstanbul, Turkey
| | - Enes Dertli
- Yıldız Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, 34210, İstanbul, Turkey
| |
Collapse
|
37
|
Chang Y, Yang Y, Xu N, Mu H, Zhang H, Duan J. Improved viability of Akkermansia muciniphila by encapsulation in spray dried succinate-grafted alginate doped with epigallocatechin-3-gallate. Int J Biol Macromol 2020; 159:373-382. [PMID: 32422255 DOI: 10.1016/j.ijbiomac.2020.05.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 01/03/2023]
Abstract
We explored the possibility of improving the viability of Akkermansia muciniphila by encapsulating it in succinate-grafted alginate doped with epigallocatechin-3-gallate (EGCG). In this study, the determined surface properties of microcapsules and modified materials and the measured viability of probiotics after spray drying showed that the modified sodium alginate made the surfaces of microcapsules smoother and denser during the spray drying, thus preventing damages. EGCG enhanced the antioxidant capacity of probiotics by filling the pores inside microgels. Moreover, we analyzed the long-term storage vitality changes, oxidation resistance, uniformity, particle size and Zeta potential of microcapsules and found that spray-dried modified sodium alginate microcapsules with EGCG showed the better storability and stability. In addition, we experimentally analyzed the resistances of different microcapsules to the gastrointestinal fluid and found that EGCG-modified sodium alginate microcapsules better protected the probiotic activity from gastrointestinal fluid. This study provides a slimming product with industrial application potential.
Collapse
Affiliation(s)
- Yifan Chang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yu Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ningning Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haibo Mu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongli Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Xianyang, Shaanxi, China..
| | - Jinyou Duan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China..
| |
Collapse
|
38
|
Liu H, Xie M, Nie S. Recent trends and applications of polysaccharides for microencapsulation of probiotics. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.11] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Huan Liu
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| |
Collapse
|
39
|
Qi X, Simsek S, Ohm JB, Chen B, Rao J. Viability of Lactobacillus rhamnosus GG microencapsulated in alginate/chitosan hydrogel particles during storage and simulated gastrointestinal digestion: role of chitosan molecular weight. SOFT MATTER 2020; 16:1877-1887. [PMID: 31994592 DOI: 10.1039/c9sm02387a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sodium alginate hydrogel particles coated with cationic biopolymers have been shown to be one of the promising means for probiotic encapsulation and protection. In this study, we aimed to systematically explore the effect of molecular weight of chitosan coating on the functional performance of sodium alginate hydrogel particles for improving the viability of Lactobacillus rhamnosus GG (LGG). We first electrostatically deposited three different molecular weights of chitosan coatings, i.e., chitosan oligosaccharide (COS), low molecular weight chitosan (LMW-chitosan) and medium molecular weight chitosan (MMW-chitosan) on sodium alginate hydrogel particles. Both SEM and FTIR results indicated that chitosan was successfully deposited onto the surface of the hydrogel particles. We then evaluated the effect of chitosan MW on the viability of LGG encapsulated in the hydrogels during long-term storage and simulated gastrointestinal digestion. Among them, the hydrogel particles coated with COS prevented the viability loss of LLG during long-term storage at different temperatures (4, 25 and 37 °C). However, we did not find any improvement in the viability of the encapsulated LGG by all three chitosan coatings during simulated digestion.
Collapse
Affiliation(s)
- Xiaoxi Qi
- Food Ingredients and Biopolymers Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Senay Simsek
- Food Ingredients and Biopolymers Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Jae-Bom Ohm
- Edward T. Schafer Agricultural Research Center, Cereal Crops Research Unit, Hard Spring and Durum Wheat Quality Lab, USDA-ARS, Fargo, North Dakota 58108, USA
| | - Bingcan Chen
- Food Ingredients and Biopolymers Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Jiajia Rao
- Food Ingredients and Biopolymers Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
40
|
Abstract
The use of enzyme-assisted aqueous extraction to extract soybean oil will produce soy protein hydrolysates (SPH) that have good antioxidant properties but are bitter and hygroscopic. To microencapsulate these hydrolysates, soy protein isolate/maltodextrin mixtures were used as the carrier. The effects of spray-drying and freeze-drying on the bitterness, hygroscopicity, and antioxidant properties were compared. The properties of different dried samples were compared using solubility, hygroscopicity, moisture content, water activity, flowability, and glass transition temperature (Tg). The results showed that the spray-drying was more effective than freeze-drying. Hygroscopicity was reduced to 18.2 g/100 g, and the Tg value was raised to 80.8°C. The morphology was analyzed using scanning electron microscopy, and the antioxidant properties of the samples were measured using the ABTS˙+ radical scavenging activity. The results showed that spray-dried SPH had more carrier masking, which weakened bitterness, reduced moisture absorption, and had no significant negative impact on its oxidation resistance, solubility, and flowability, and spray-drying after carrier encapsulation of SPH improved the recovery rate.
Collapse
|
41
|
Bevilacqua A, Speranza B, Santillo A, Albenzio M, Gallo M, Sinigaglia M, Corbo MR. Alginate-microencapsulation of Lactobacillus casei and Bifidobacterium bifidum: Performances of encapsulated microorganisms and bead-validation in lamb rennet. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
42
|
Liu H, Cui SW, Chen M, Li Y, Liang R, Xu F, Zhong F. Protective approaches and mechanisms of microencapsulation to the survival of probiotic bacteria during processing, storage and gastrointestinal digestion: A review. Crit Rev Food Sci Nutr 2019; 59:2863-2878. [PMID: 28933562 DOI: 10.1080/10408398.2017.1377684] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In recent years, there is a rising interest in the number of food products containing probiotic bacteria with favorable health benefit effects. However, the viability of probiotic bacteria is always questionable when they exposure to the harsh environment during processing, storage, and gastrointestinal digestion. To overcome these problems, microencapsulation of cells is currently receiving considerable attention and has obtained valuable effects. According to the drying temperature, the commonly used technologies can be divided into two patterns: high temperature drying (spray drying and fluid bed drying) and low temperature drying (ultrasonic vacuum spray drying, spray chilling, electrospinning, supercritical technique, freeze drying, extrusion, emulsion, enzyme gelation, and impinging aerosol technique). Furthermore, not only should the probiotic bacteria maintain high viability during processing but they also need to keep alive during storage and gastrointestinal digestion, where they additionally suffer from water, oxygen, heat as well as strong acid and bile conditions. This review focuses on demonstrating the effects of different microencapsulation techniques on the survival of bacteria during processing as well as protective approaches and mechanisms to the encapsulated probiotic bacteria during storage and gastrointestinal digestion that currently reported in the literature.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , China.,School of Food Science and Technology, Jiangnan University , Wuxi , China
| | - Steve W Cui
- Guelph Food Research Centre, Agriculture and Agri-Food Canada , Guelph , Ontario , Canada
| | - Maoshen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , China.,School of Food Science and Technology, Jiangnan University , Wuxi , China
| | - Yue Li
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , China.,School of Food Science and Technology, Jiangnan University , Wuxi , China
| | - Rong Liang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi , China
| | - Feifei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , China.,School of Food Science and Technology, Jiangnan University , Wuxi , China
| | - Fang Zhong
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , China.,School of Food Science and Technology, Jiangnan University , Wuxi , China
| |
Collapse
|
43
|
Improved viability of spray-dried Lactobacillus bulgaricus sp1.1 embedded in acidic-basic proteins treated with transglutaminase. Food Chem 2019; 281:204-212. [DOI: 10.1016/j.foodchem.2018.12.095] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022]
|
44
|
Alginate/soy protein system for essential oil encapsulation with intestinal delivery. Carbohydr Polym 2018; 200:15-24. [DOI: 10.1016/j.carbpol.2018.07.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 12/24/2022]
|