1
|
Kaczynska K, Wouters AGB, Delcour JA. Air-water interfacial and foaming properties of nanoparticles based on commercial and lab-scale isolated maize (Zea mays L.) zein. Food Res Int 2024; 195:114977. [PMID: 39277242 DOI: 10.1016/j.foodres.2024.114977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Maize zein based nanoparticles (ZNPs) can have applications as food dispersion stabilizers. It has not been documented to what extent the used zein isolation method and conditions thereof impact the structure and functionality of nanoparticles (NPs) based thereupon. Here, zein extracted from maize flour on lab scale (LS-zein) was compared with a commercial zein powder (CS-zein). On a dry matter basis, CS-zein contained 96.5% protein, while LS-zein contained 74.5% protein, 12.7% lipid, 2.9% ash, and a residual fraction, likely starch remnants. SE-HPLC analysis showed that 27.8% of CS-zein protein occurred in an aggregated and insoluble form, while LS-zein mainly contained mono-/dimeric proteins but also approximately 30% hydrophilic peptides. These differences resulted in notably different behavior in the functionality of ZNPs based on CS- and LS-zein (CS-ZNPs and LS-ZNPs, respectively) produced via liquid antisolvent precipitation. CS-ZNPs had poor foaming properties regardless of the pH, in line with their low interfacial dilatational moduli (12.9-15.0 mN/m). The foaming properties of LS-ZNPs were notably better. The high LS-ZNP foam stability (FS) at pH 8.0 and 10.0 was attributed to electrostatic repulsive effects between interfaces of adjacent air bubbles due to the adsorption of peptides and to synergistic protein-lipid interaction effects at the air-water interface. The LS-ZNP FS at pH 4.0 was low despite a high interfacial dilatational modulus (52.6 mN/m). It is hypothesized that intact LS-ZNPs in the liquid thin films between gas bubbles negatively affect FS by a bridging de-wetting effect. Overall, it can be concluded that the (partial) co-isolation of lipids with zein may positively influence foaming properties of NPs based thereupon, while extensive zein purification as applied in industrial zein isolation leads to (partial) zein aggregation and overall low foaming capacity of the obtained CS-ZNPs.
Collapse
Affiliation(s)
- Katarzyna Kaczynska
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Arno G B Wouters
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| |
Collapse
|
2
|
Kim W, Yiu CCY, Wang Y, Zhou W, Selomulya C. Toward Diverse Plant Proteins for Food Innovation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408150. [PMID: 39119828 DOI: 10.1002/advs.202408150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Indexed: 08/10/2024]
Abstract
This review highlights the development of plant proteins from a wide variety of sources, as most of the research and development efforts to date have been limited to a few sources including soy, chickpea, wheat, and pea. The native structure of plant proteins during production and their impact on food colloids including emulsions, foams, and gels are considered in relation to their fundamental properties, while highlighting the recent developments in the production and processing technologies with regard to their impacts on the molecular properties and aggregation of the proteins. The ability to quantify structural, morphological, and rheological properties can provide a better understanding of the roles of plant proteins in food systems. The applications of plant proteins as dairy and meat alternatives are discussed from the perspective of food structure formation. Future directions on the processing of plant proteins and potential applications are outlined to encourage the generation of more diverse plant-based products.
Collapse
Affiliation(s)
- Woojeong Kim
- School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | | | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, 117542, Singapore
| | | |
Collapse
|
3
|
Schmid T, Kinner M, Stäheli L, Steinegger S, Hollenstein L, de la Gala D, Müller N. Effect of Press Cake-Based Particles on Quality and Stability of Plant Oil Emulsions. Foods 2024; 13:2969. [PMID: 39335896 PMCID: PMC11431225 DOI: 10.3390/foods13182969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Palm fat has uniquely optimal melting characteristics that are difficult to replace in products such as baked goods and chocolate-based items. This study investigates the efficacy of using Pickering emulsions derived from Swiss plant oils and their micromilled press cakes. Emulsification was carried out at both the lab and pilot scales using sunflower- and rapeseed-based recipes, with and without additional surfactants, for both oil-in-water and water-in-oil emulsions. The resulting emulsions were measured for viscosity and short- and long-term stability and linked to the properties of the raw materials. The results indicated that the contact angle, size, and macronutrient composition of the particles significantly impact emulsion quality, though differences in oil pressing methods might predominate these effects. The combination of particles and surfactants demonstrated a clear advantage with respect to interface stabilisation, with a suggested link between the wax content of the oil and particles and the resulting emulsion quality and stability.
Collapse
Affiliation(s)
- Tamara Schmid
- Zurich University of Applied Sciences, Institute of Food and Beverage Innovation, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland; (T.S.); (M.K.); (L.S.); (S.S.)
| | - Mathias Kinner
- Zurich University of Applied Sciences, Institute of Food and Beverage Innovation, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland; (T.S.); (M.K.); (L.S.); (S.S.)
| | - Luca Stäheli
- Zurich University of Applied Sciences, Institute of Food and Beverage Innovation, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland; (T.S.); (M.K.); (L.S.); (S.S.)
| | - Stefanie Steinegger
- Zurich University of Applied Sciences, Institute of Food and Beverage Innovation, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland; (T.S.); (M.K.); (L.S.); (S.S.)
| | - Lukas Hollenstein
- Zurich University of Applied Sciences, Institute of Computational Life Sciences, Schloss 4, 8820 Wädenswil, Switzerland; (L.H.); (D.d.l.G.)
| | - David de la Gala
- Zurich University of Applied Sciences, Institute of Computational Life Sciences, Schloss 4, 8820 Wädenswil, Switzerland; (L.H.); (D.d.l.G.)
| | - Nadina Müller
- Zurich University of Applied Sciences, Institute of Food and Beverage Innovation, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland; (T.S.); (M.K.); (L.S.); (S.S.)
| |
Collapse
|
4
|
Cen S, Li S, Meng Z. Advances of protein-based emulsion gels as fat analogues: Systematic classification, formation mechanism, and food application. Food Res Int 2024; 191:114703. [PMID: 39059910 DOI: 10.1016/j.foodres.2024.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Fat plays a pivotal role in the appearance, flavor, texture, and palatability of food. However, excessive fat consumption poses a significant risk for chronic ailments such as obesity, hypercholesterolemia, and cardiovascular disease. Therefore, the development of green, healthy, and stable protein-based emulsion gel as an alternative to traditional fats represents a novel approach to designing low-fat food. This paper reviews the emulsification behavior of proteins from different sources to gain a comprehensive understanding of their potential in the development of emulsion gels with fat-analog properties. It further investigates the emulsifying potential of protein combined with diverse substances. Then, the mechanisms of protein-stabilized emulsion gels with fat-analog properties are discussed, mainly involving single proteins, proteins-polysaccharides, as well as proteins-polyphenols. Moreover, the potential applications of protein emulsion gels as fat analogues in the food industry are also encompassed. By combining natural proteins with other components such as polysaccharides, polyphenols, or biopolymers, it is possible to enhance the stability of the emulsion gels and improve its fat-analog texture properties. In addition to their advantages in protecting oil oxidation, limiting hydrogenated oil intake, and delivering bioactive substances, protein-based emulsion gels have potential in food 3D printing and the development of specialty fats for plant-based meat.
Collapse
Affiliation(s)
- Shaoyi Cen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Shaoyang Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Wang M, Zhou Y, Fan L, Li J. Stabilization of all-natural water-in-oil high internal phase pickering emulsion by using diosgenin/soybean phosphatidylethanolamine complex: Characterization and application in 3D printing. Food Chem 2024; 448:139145. [PMID: 38555692 DOI: 10.1016/j.foodchem.2024.139145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
This study aimed to prepare an all-natural water-in-oil high internal phase Pickering emulsion (W/O-HIPPE) using diosgenin/soybean phosphatidylethanolamine complex (DGSP) and investigate the 3D printing performance. Results suggested that the self-assembly of diosgenin crystal was modified by SP in DGSP (diosgenin-SP ratios at 3:1 and 1:1), revealing a variation from large-size outward radiating needle-like to small-size granular-like shape, which facilitated closely packing at the interface. Hydrophilicity of DGSP was also increased (contact angle varying from 133.3 o to 106.4 o), ensuring more adequate interfacial adsorption to reduce interfacial tension more largely (6.5 mN/m). Thus, the W/O-HIPPE made by DGSP with diosgenin-SP = 1:1, exhibited smaller droplets and better freeze/thawing stability. The W/O-HIPPE was also measured improved rheological properties for 3D printing: satisfied shear-thinning behavior, higher recovery and self-supporting (viscoelasticity and deformation resistance). Consequently, the W/O-HIPPE allowed for printing more delicate patterns. This work provided guidance to prepare W/O-HIPPE for 3D printing.
Collapse
Affiliation(s)
- Mengzhu Wang
- State Key Laboratory of Food Science and Recourse, Jiangnan University, Wuxi 214122, China
| | - Yulin Zhou
- State Key Laboratory of Food Science and Recourse, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Recourse, Jiangnan University, Wuxi 214122, China; Guangxi Key Laboratory of Health Care Food Science and Technology, Hezhou University, Hezhou 542899, China.
| | - Jinwei Li
- State Key Laboratory of Food Science and Recourse, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Li Y, Zhou L, Zhou W, Zhang H, Qin X, Liu G. Whey protein isolate and inulin-glycosylated conjugate affect the physicochemical properties and oxidative stability of pomegranate seed oil emulsion. Food Chem 2024; 444:138649. [PMID: 38330610 DOI: 10.1016/j.foodchem.2024.138649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Glycosylated protein was obtained by the reaction of whey protein isolate(WPI) with inulin of different polymerization degrees and was used to stabilize a pomegranate seed oil emulsion. The physicochemical and antioxidative properties of the emulsions were assessed, and the impacts of accelerated oxidation on pomegranate seed oil were examined. The interfacial tension of WPI and short-chain inulin (SCI)-glycosylated conjugate (WPI-SCI) gradually decreased with increasing glycosylation reaction time. Emulsions stabilized by WPI-SCI (72 h) were the most stable, with a thick interfacial film on the surface of the droplets. After accelerated oxidation for 72 h, WPI-SCI inhibited the oxidation of oil in the emulsion. GC-IMS results showed that the production of harmful volatile components in oil was inhibited, and the peroxide strength was less than 30 mmol/kg oil. This study contributes to understanding of stable storage of lipids.
Collapse
Affiliation(s)
- Yaochang Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lian Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenhao Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Haizhi Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education 430023, China
| | - Xinguang Qin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education 430023, China.
| | - Gang Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education 430023, China
| |
Collapse
|
7
|
Wang Y, Guo Y, Dong P, Lin K, Du P, Cao J, Cheng Y, Cheng F, Yun S, Feng C. Water-in-oil Pickering emulsion using ergosterol as an emulsifier solely. Food Res Int 2024; 186:114374. [PMID: 38729731 DOI: 10.1016/j.foodres.2024.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
As a crucial component of the fungal cell membranes, ergosterol has been demonstrated to possess surface activity attributed to its hydrophobic region and polar group. However, further investigation is required to explore its emulsification behavior upon migration to the oil-water interface. Therefore, this study was conducted to analyze the interface properties of ergosterol as a stabilizer for water in oil (W/O) emulsion. Moreover, the emulsion prepared under the optimal conditions was utilized to load the water-soluble bioactive substance with the chlorogenic acid as the model molecules. Our results showed that the contact angle of ergosterol was 117.017°, and its dynamic interfacial tension was obviously lower than that of a pure water-oil system. When the ratio of water to oil was 4: 6, and the content of ergosterol was 3.5 % (ergosterol/oil phase, w/w), the W/O emulsion had smaller particle size (438 nm), higher apparent viscosity, and better stability. Meanwhile, the stability of loaded chlorogenic acid was improved under unfavorable conditions (pH 1.2, 90 °C, ultraviolet irradiation, and oxidation), which were 73.87 %, 59.53 %, 62.53 %, and 69.73 %, respectively. Additionally, the bioaccessibility of chlorogenic acid (38.75 %) and ergosterol (33.69 %), and the scavenging rates of the emulsion on DPPH radicals (81.00 %) and hydroxyl radicals (82.30 %) were also enhanced. Therefore, a novel W/O Pickering emulsion was prepared in this work using ergosterol as an emulsifier solely, which has great potential for application in oil-based food and nutraceutical formulations.
Collapse
Affiliation(s)
- Yaxin Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yuanhao Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Pengfei Dong
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Kai Lin
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Pengya Du
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Feier Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Shaojun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China.
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
8
|
Zhen Zhou F, Swinkels PJM, Wei Yin S, Velikov KP, Schall P. Pickering stabilization mechanism revealed through direct imaging of particles with tuneable contact angle in a phase-separated binary solvent. J Colloid Interface Sci 2024; 662:471-478. [PMID: 38364472 DOI: 10.1016/j.jcis.2024.02.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Pickering emulsions have attracted increasing attention from multiple fields, including food, cosmetics, healthcare, pharmaceutical, and agriculture. Their stability relies on the presence of colloidal particles instead of surfactant at the droplet interface, providing steric stabilization. Here, we demonstrate the microscopic attachment and detachment of particles with tunable contact angle at the interface underlying the Pickering emulsion stability. We vary the interfacial tension continuously by varying the temperature offset of a phase-separated binary liquid from its critical point, and employ confocal microscopy to directly observe the particles at the interface to determine their coverage and contact angle as a function of the varying interfacial tension. When the interfacial tension decreases upon approaching the binary liquid's critical point, the contact angle and detachment energy (ΔE) drop, and the particles move out of the interface. Microscopic imaging suggests necking and capillary interactions lead to clustering of the particles, before they eventually desorb from the interface. Macroscopic measurements show that concomitantly, coalescence takes place, and the emulsion loses its stability. These results reveal the interplay of interfacial energies, contact angle and surface coverage that underlies the Pickering emulsion stability, opening up ways to manipulate and design the stability through the microscopic behavior of the adsorbed particles.
Collapse
Affiliation(s)
- Fu Zhen Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China; Institute of Physics, University of Amsterdam, Amsterdam, The Netherlands; Research and Development Center of Food Proteins, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Department of Food Science and Technology, South China University of Technology, Guangzhou, 51640, PR China
| | - Piet J M Swinkels
- Institute of Physics, University of Amsterdam, Amsterdam, The Netherlands
| | - Shou Wei Yin
- Research and Development Center of Food Proteins, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Department of Food Science and Technology, South China University of Technology, Guangzhou, 51640, PR China; Sino-Singapore International Joint Research Institute, Guangzhou 510640, PR China
| | - Krassimir P Velikov
- Institute of Physics, University of Amsterdam, Amsterdam, The Netherlands; Unilever Innovation Centre Wageningen, Bronland 14, 6708 WH, Wageningen, The Netherlands; Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Peter Schall
- Institute of Physics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Sun Y, Wang Y, Xie Y, Li T, Wang Y, Zhang X, Xia B, Huang J, Wang S, Dong W. Ultra-stable pickering emulsion stabilized by anisotropic pea protein isolate-fucoidan conjugate particles through Maillard reaction. Int J Biol Macromol 2024; 264:130589. [PMID: 38437935 DOI: 10.1016/j.ijbiomac.2024.130589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Bio-based emulsifiers hold significant importance in various industries, particularly in food, cosmetics, pharmaceuticals and other related fields. In this study, pea protein isolate (PPI) and fucoidan (FUD) were conjugated via the Maillard reaction, which is considered safe and widely used in the preparation of food particle. The PPI-FUD conjugated particles exhibit an anisotropic non-spherical structure, thereby possessing a high detachment energy capable of preventing emulsion coalescence and Ostwald ripening. Compared to emulsions previously prepared in other studies (< 500 mM), the Pickering emulsion stabilized by PPI-FUD conjugate particles demonstrates outstanding ionic strength resistance (up to 5000 mM). Furthermore, when encapsulating curcumin, the Pickering emulsion protects the curcumin from oxidation. Additionally, the formulated emulsions demonstrated the capability to incorporate up to 60 % (v/v) oil phase, revealing remarkable performance in terms of storage stability, pH stability, and thermal stability.
Collapse
Affiliation(s)
- Yue Sun
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yijie Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yunpeng Xie
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Bihua Xia
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jing Huang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Shibo Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
10
|
Wu M, He X, Feng D, Li H, Han D, Li Q, Zhao B, Li N, Liu T, Wang J. The Emulsifying Properties, In Vitro Digestion Characteristics and Storage Stability of High-Pressure-Homogenization-Modified Dual-Protein-Based Emulsions. Foods 2023; 12:4141. [PMID: 38002198 PMCID: PMC10670896 DOI: 10.3390/foods12224141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The droplet size, zeta potential, interface protein adsorption rate, physical stability and microrheological properties of high-pressure-homogenization (HPH)-modified, dual-protein-based whey-soy (whey protein isolate-soy protein isolate) emulsions containing different oil phase concentrations (5%, 10% and 15%; w/w) were compared in this paper. The in vitro digestion characteristics and storage stability of the dual-protein emulsions before and after HPH treatment were also explored. The results show that with an increase in the oil phase concentration, the droplet size and interface protein adsorption rate of the untreated dual-protein emulsions increased, while the absolute value of the zeta potential decreased. When the oil phase concentration was 10% (w/w), HPH treatment could significantly reduce the droplet size of the dual-protein emulsion, increase the interface protein adsorption rate, and improve the elasticity of the emulsion. Compared with other oil phase concentrations, the physical stability of the dual-protein emulsion containing a 10% (w/w) oil phase concentration was the best, so the in vitro digestion characteristics and storage stability of the emulsions were studied. Compared with the control group, the droplet size of the HPH-modified dual-protein emulsion was significantly reduced after gastrointestinal digestion, and the in vitro digestibility and release of free amino groups both significantly increased. The storage stability results show that the HPH-modified dual-protein emulsion showed good stability under different storage methods, and the storage stability of the steam-sterilized dual-protein emulsion stored at room temperature was the best. These results provide a theoretical basis for the development of new nutritional and healthy dual-protein liquid products.
Collapse
Affiliation(s)
- Meishan Wu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiaoye He
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Duo Feng
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Hu Li
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Di Han
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Qingye Li
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Boya Zhao
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Li
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Tianxin Liu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
11
|
Xu Y, Wei Z, Xue C. Pickering emulsions stabilized by zein-gallic acid composite nanoparticles: Impact of covalent or non-covalent interactions on storage stability, lipid oxidation and digestibility. Food Chem 2023; 408:135254. [PMID: 36566547 DOI: 10.1016/j.foodchem.2022.135254] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Studies have shown that covalent and non-covalent zein-polyphenol complexes exhibit significant differences in structure and properties, but their effects on the characteristics of Pickering emulsions are still unclear. In this study, zein nanoparticles (ZNPs), non-covalent (N-ZGANPs) and covalent (C-ZGANPs) zein-gallic acid nanoparticles were fabricated to investigate the influence of complexation types on the properties of an algal oil-in-water Pickering emulsion. Results indicated that the addition of gallic acid was associated with the decrease of interfacial tension of particles. C-ZGANPs possessed the strongest interfacial adsorption capacity, which contributed to the optimum physical stability of the covalent emulsion during storage. The rheological experiment demonstrated that C-ZGANPs decreased the viscoelasticity of the emulsion, while N-ZGANPs showed the opposite effect. Moreover, the emulsions stabilized by C-ZGANPs significantly delayed the oxidation of the encapsulated algal oil, protected astaxanthin (AST) from heat, as well as increased the bioaccessibility of AST in simulated digestion.
Collapse
Affiliation(s)
- Yanan Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
12
|
Xu W, Sun H, Jia Y, Jia Y, Ning Y, Wang Y, Jiang L, Luo D, Shah BR. Pickering emulsions synergistic stabilized with konjac glucomannan and xanthan gum/lysozyme nanoparticles: Structure, protection and gastrointestinal digestion. Carbohydr Polym 2023; 305:120507. [PMID: 36737181 DOI: 10.1016/j.carbpol.2022.120507] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
The effect of konjac glucomannan (KGM) on the stability and digestion characteristics of xanthan gum/lysozyme nanoparticles (XG/Ly NPs) stabilized Pickering emulsions was investigated. Results indicated that the high viscosity of KGM prompted the particles to be adsorbed toward the interface, which decreased the particle size and increased the stability of emulsions. As the concentration of KGM increased, the G' and G″ of emulsions became larger and approached a "solid-like" state. When the KGM concentration was ≥0.2 %, the large amplitude sweeps of the emulsion exhibited a "weak strain overshoot". The network structure formed by KGM molecular chain and particles was intertwined around the droplets to form a polysaccharide layer and fibrous network structure. Emulsions containing KGM showed a "spider web" epidermal network pattern. It was found by illumination for 4 h that samples with 0.2 % KGM concentration increased the retention of β-carotene by 18.74 %. KGM decreased the release rate of fatty acids and bioaccessibility by hindering bile salt and lipase adsorption.
Collapse
Affiliation(s)
- Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China.
| | - Haomin Sun
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yongxian Jia
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yin Jia
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yuli Ning
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Ying Wang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Lanxi Jiang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Denglin Luo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Bakht Ramin Shah
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Na Sádkách, 1780, 37005 České Budějovice, Czech Republic
| |
Collapse
|
13
|
Lim HP, Ng SSD, Dasa DB, Adnan SA, Tey BT, Chan ES, Ho KW, Ooi CW. Dual (pH and thermal) stimuli-responsive Pickering emulsion stabilized by chitosan-carrageenan composite microgels. Int J Biol Macromol 2023; 232:123461. [PMID: 36720328 DOI: 10.1016/j.ijbiomac.2023.123461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/29/2022] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Formulation of water-in-oil (W/O) Pickering emulsion (PE) for food applications has been largely restricted by the limited choices of food-grade Pickering emulsifiers. In this study, composite microgels made of chitosan and carrageenan were explored as a dual (pH and thermal) stimuli-responsive Pickering emulsifier for the stabilization of W/O PE. The chitosan-carrageenan (CS-CRG) composite microgels not only exhibited pH- and thermo-responsiveness, but also displayed enhanced lipophilicity as compared to the discrete polymers. The stability of the CS-CRG-stabilized W/O PE system (CS-CRG PE) was governed by CS:CRG mass ratio and oil fractions used. The CS-CRG PE remained stable at acidic pH and at temperatures below 40 °C. The instability of CS-CRG composite microgels at alkaline pH and at temperatures above 40 °C rendered the demulsification of CS-CRG PE. This stimuli-responsive W/O PE could unlock new opportunities for the development of stimuli-responsive W/O PE using food-grade materials.
Collapse
Affiliation(s)
- Hui-Peng Lim
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Selangor, Malaysia
| | - Shiuh-Shen Desmond Ng
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Selangor, Malaysia
| | - Dhanushkaa Buddha Dasa
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Selangor, Malaysia
| | - Sarah Anisa Adnan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Selangor, Malaysia
| | - Beng-Ti Tey
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Selangor, Malaysia
| | - Eng-Seng Chan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Selangor, Malaysia
| | - Kiang-Wei Ho
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Selangor, Malaysia
| | - Chien-Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Selangor, Malaysia.
| |
Collapse
|
14
|
Lu Y, Zhang R, Jia Y, Gao Y, Mao L. Effects of nanoparticle types and internal phase content on the properties of W/O emulsions based on dual stabilization mechanism. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
15
|
Shu M, Fan L, Zhang J, Li J. Research progress of water-in-oil emulsion gelated with internal aqueous phase: gel factors, gel mechanism, application fields, and future direction of development. Crit Rev Food Sci Nutr 2023; 64:6055-6072. [PMID: 36591896 DOI: 10.1080/10408398.2022.2161994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The W/O emulsion is a promising system. Its special structure can keep the sensory properties of fat while reducing the fat content. Improving the stability and physical properties of W/O emulsions is generally oriented toward outer oil-phase modified oil gels and inner water-phase modified inner hydrogels. In this paper, the research progress of internal aqueous gel was reviewed, and some gel factors suitable for internal aqueous gel and the gel mechanism of main gel factors were discussed. The advantages of this internal aqueous gel emulsion system allow its use in the field of fat substitutes and encapsulating substances. Finally, some shortcomings and possible research directions in the future were proposed, which would provide a theoretical basis for the further development of internal water-phase gelled W/O emulsion in the future.
Collapse
Affiliation(s)
- Mingjun Shu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiaxiang Zhang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Jinan, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
16
|
Zhou FZ, Yu XH, Luo DH, Yang XQ, Yin SW. Pickering water in oil emulsions prepared from biocompatible gliadin/ethyl cellulose complex particles. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
17
|
Liu L, Wei J, Ho KM, Chiu KY, Ngai T. Capsules templated from water-in-oil Pickering emulsions for enzyme encapsulation. J Colloid Interface Sci 2023; 629:559-568. [PMID: 36179576 DOI: 10.1016/j.jcis.2022.09.106] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
Abstract
HYPOTHESIS Encapsulation of sensitive water-soluble bioactive materials such as fragrances, polyphenols and enzymes poses an immense challenge with capsules templated from water-in-oil (w/o) emulsions. Generation of radicals, heating, and extreme pH that are necessary for shell formation through interfacial reactions may have undesired influences on the active ingredients and thus lower their activity. EXPERIMENTS To overcome these limitations, we present a method to encapsulate sensitive ingredients, whereby capsules are templated from a w/o Pickering emulsion stabilized by binary particles of different hydrophilicity levels; the particles assembled at the water/oil interface are then crosslinked by polydiisocyanate (PHDI) at room temperature and neutral pH. Zein and casein nanoparticles were used as hydrophilic stabilizers and lipase was chosen as a model sensitive biomolecule that was encapsulated in the water core. FINDINGS Our results indicated that the enzymes encapsulated in colloid capsules had higher activity than those encapsulated in traditional w/o Pickering emulsion without shell crosslinking. The capsule structure effectively protected enzymes from the outer environment. This method is well suited for the encapsulation and protection of sensitive ingredients and shows great application in food, drug, and cosmetic industries.
Collapse
Affiliation(s)
- Liangdong Liu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Jingjing Wei
- Department of Fine Chemical Engineering, Shenzhen Polytechnic, Nanshan District, Shenzhen, Guangdong, China.
| | - Kin Man Ho
- Xianhong Science (Hong Kong) Co. Ltd, Room 1604, Nanyang Plaza, No. 57 Hung To Road, Kwun Tong, Kowloon, Hong Kong, China
| | - Kwan Yeung Chiu
- Xianhong Science (Hong Kong) Co. Ltd, Room 1604, Nanyang Plaza, No. 57 Hung To Road, Kwun Tong, Kowloon, Hong Kong, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
18
|
Sun Y, Wei Z, Xue C. Development of zein-based nutraceutical delivery systems: A systematic overview based on recent researches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
19
|
Wang C, Jiang H, Li Y. Water-in-Oil Pickering Emulsions Stabilized by Phytosterol/Chitosan Complex Particles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Jiang H, Hu X, Jiang W, Guan X, Li Y, Ngai T. Water-in-Oil Pickering Emulsions Stabilized by Hydrophobized Protein Microspheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12273-12280. [PMID: 36172706 DOI: 10.1021/acs.langmuir.2c01904] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Water-in-oil (w/o) Pickering emulsions have gained considerable attention in colloid science and daily applications. However, for the formation of w/o emulsions, especially those with high internal water content, the particulate stabilizers are required to be sufficiently hydrophobic, and synthetic or chemically modified particles have been mostly reported until now, which are not biocompatible and sustainable. We present a zein protein-based microsphere derived from the Pickering emulsion template, in which protein microspheres are feasibly in situ hydrophobized by silica nanoparticles, enabling the stabilization of w/o Pickering emulsions. The effects of microsphere concentration, water/oil volume ratio, oil types, and pH on the stabilization of prepared w/o emulsions are systematically studied, revealing prominent characteristics of the controllable size, high water fraction, universal adaptation of oils, as well as broad pH stability. As a demonstration, the Pickering emulsion effectively encapsulates vitamin C and shows high stability for long storage duration against ultraviolet radiation/heat. Therefore, this novel proteinaceous particle-stabilized w/o Pickering emulsion has great potential in the delivery and protection of water-soluble bioactive substrates.
Collapse
Affiliation(s)
- Hang Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiaofeng Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Weijie Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Xin Guan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T, Hong Kong 00852, P. R. China
| | - Yunxing Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T, Hong Kong 00852, P. R. China
| |
Collapse
|
21
|
Souza EM, Ferreira MR, Soares LA. Pickering emulsions stabilized by zein particles and their complexes and possibilities of use in the food industry: A review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Mao L, Dai H, Du J, Feng X, Ma L, Zhu H, Chen H, Wang H, Zhang Y. Gelatin microgel-stabilized high internal phase emulsion for easy industrialization: Preparation, interfacial behavior and physical stability. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
23
|
Wightman R. An Overview of Cryo-Scanning Electron Microscopy Techniques for Plant Imaging. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091113. [PMID: 35567113 PMCID: PMC9106016 DOI: 10.3390/plants11091113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 05/02/2023]
Abstract
Many research questions require the study of plant morphology, in particular cells and tissues, as close to their native context as possible and without physical deformations from some preparatory chemical reagents or sample drying. Cryo-scanning electron microscopy (cryoSEM) involves rapid freezing and maintenance of the sample at an ultra-low temperature for detailed surface imaging by a scanning electron beam. The data are useful for exploring tissue/cell morphogenesis, plus an additional cryofracture/cryoplaning/milling step gives information on air and water spaces as well as subcellular ultrastructure. This review gives an overview from sample preparation through to imaging and a detailed account of how this has been applied across diverse areas of plant research. Future directions and improvements to the technique are discussed.
Collapse
Affiliation(s)
- Raymond Wightman
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| |
Collapse
|
24
|
Ethyl cellulose-chitosan complex particles stabilized W/O Pickering emulsion as a recyclable bio-catalytic microreactor. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Cheng C, Gao H, McClements DJ, Zeng H, Ma L, Zou L, Miao J, Wu X, Tan J, Liang R, Liu W. Impact of polysaccharide mixtures on the formation, stability and EGCG loading of water-in-oil high internal phase emulsions. Food Chem 2022; 372:131225. [PMID: 34614463 DOI: 10.1016/j.foodchem.2021.131225] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Water-in-oil (W/O) high internal phase emulsions (HIPEs) were prepared using polyglycerol polyricinoleate (PGPR) and polysaccharide blends consisting of konjac glucomannan (KGM) and octenyl succinic anhydride starch (OSA-starch). The formation, stability, and functionality of these emulsions were varied by adjusting the ratio of KGM and OSA-starch. Interfacial tension measurements indicated that the OSA-starch co-adsorbed to the water-oil interface with PGPR, which would have led to the formation of a polysaccharide-layer that helped prevent separation of the HIPEs. The centrifugal stability, rheological and microstructural results indicated that the W/O HIPEs exhibited well pH, ionic and thermal stability. The encapsulation efficiency, stability, and bioaccessibility of the EGCG in the W/O HIPEs were evaluated by using EGCG as a model hydrophilic nutraceutical. This study provides useful insights into the utilization of emulsion technology to reduce the fat content and improve the nutritional profile of foods with oily continuous phases, such as spreads.
Collapse
Affiliation(s)
- Ce Cheng
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Hongxia Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Huaying Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Li Ma
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China.
| | - Jinyu Miao
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Xiaolin Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - JiaNeng Tan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Ruihong Liang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
26
|
Li M, He S. Utilization of zein-based particles in Pickering emulsions: A review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2015377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ming Li
- College of Food Science and Engineering, Tonghua Normal University, Tonghua, Jilin, PR China
- Development Engineering Center of Edible Plant Resources of Changbai Mountain, Tonghua Normal University, Tonghua, Jilin, PR China
| | - Shudong He
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| |
Collapse
|
27
|
Wang M, Yan W, Zhou Y, Fan L, Liu Y, Li J. Progress in the application of lecithins in water-in-oil emulsions. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Ribeiro E, Morell P, Nicoletti V, Quiles A, Hernando I. Protein- and polysaccharide-based particles used for Pickering emulsion stabilisation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106839] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Kirtil E, Aydogdu A, Svitova T, Radke CJ. Assessment of the performance of several novel approaches to improve physical properties of guar gum based biopolymer films. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Hong X, Zhao Q, Liu Y, Li J. Recent advances on food-grade water-in-oil emulsions: Instability mechanism, fabrication, characterization, application, and research trends. Crit Rev Food Sci Nutr 2021; 63:1406-1436. [PMID: 34387517 DOI: 10.1080/10408398.2021.1964063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to their promising application prospects, water-in-oil (W/O) emulsions have aroused continuous attention in recent years. However, long-term stability of W/O emulsions remains a particularly challenging problem in colloid science. With the increasing demand of consumers for natural, green, and healthy foods, the heavy reliance on chemically synthesized surfactants to achieve long-term stability has become the key technical defect restricting the application of W/O emulsions in food. To design and manufacture W/O emulsions with long-term stability and clean label, a comprehensive understanding of the fundamentals of the W/O emulsion system is required. This review aims to demystify the field of W/O emulsions and update its current research progress. We first provide a summary on the essential basic knowledge regarding the instability mechanisms, including physical and chemical instability in W/O emulsions. Then, the formulation of the W/O emulsion system is introduced, particularly focusing on the use of natural stabilizers. Besides, the characterization and application of W/O emulsions are also discussed. Finally, we propose promising research trends, including (1) developing W/O high internal phase emulsions (HIPEs) as fat mimetic and substitute, (2) promising formulation routine for long-term stable double emulsions, and (3) searching for novel plant-derived stabilizers of W/O emulsions.
Collapse
Affiliation(s)
- Xin Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Qiaoli Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
31
|
Xu W, Zheng S, Sun H, Ning Y, Jia Y, Luo D, Li Y, Shah BR. Rheological behavior and microstructure of Pickering emulsions based on different concentrations of gliadin/sodium caseinate nanoparticles. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03827-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Tao S, Jiang H, Gong S, Yin S, Li Y, Ngai T. Pickering Emulsions Simultaneously Stabilized by Starch Nanocrystals and Zein Nanoparticles: Fabrication, Characterization, and Application. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8577-8584. [PMID: 34219459 DOI: 10.1021/acs.langmuir.1c01088] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Using two types of colloidal particles having natural origins to synergistically stabilize Pickering emulsions is essential for food, cosmetics, and pharmaceutics, especially when neither particle can stabilize the Pickering emulsions alone. The use of two natural stabilizers avoids the complicated surface treatments of particles and the introduction of poisonous or harmful chemicals. In this work, we report an all-natural Pickering emulsion stabilized synergistically by starch nanocrystals and zein protein nanoparticles. Our result shows that the electrostatic interaction between the two types of particles greatly affects their assembled structure at the oil/water interface, which is closely related to the emulsion stability. Specifically, particle bilayers could form with oppositely charged particles at the interface to endow the emulsion with improved stability. As a demonstration, the resultant Pickering emulsions effectively carry β-carotene and have high stability against high temperatures and ultraviolet radiation. This type of all-natural Pickering emulsion is a promising tool to protect and deliver liposoluble bioactive components.
Collapse
Affiliation(s)
- Shengnan Tao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hang Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Suijing Gong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Shouwei Yin
- Research and Development Center of Food Proteins, Department of Food Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yunxing Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong
| |
Collapse
|
33
|
Pang XH, Yang Y, Bian X, Wang B, Ren LK, Liu LL, Yu DH, Yang J, Guo JC, Wang L, Zhang XM, Yu HS, Zhang N. Hemp ( Cannabis sativa L.) Seed Protein-EGCG Conjugates: Covalent Bonding and Functional Research. Foods 2021; 10:foods10071618. [PMID: 34359488 PMCID: PMC8304514 DOI: 10.3390/foods10071618] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
In order to make HPI have a wide application prospect in the food industry, we used EGCG to modify HPI. In this study, we prepared different concentrations (1, 2, 3, 4, and 5 mM) of (-)-epigallocatechin gallate (EGCG) covalently linked to HPI and use methods such as particle size analysis, circular dichroism (CD), and three-dimensional fluorescence spectroscopy to study the changes in the structure and functional properties of HPI after being covalently combined with EGCG. The particle size data indicated that the covalent HPI-EGCG complex was larger than native HPI, and the particle size was mainly distributed at about 200 μm. CD and three-dimensional fluorescence spectroscopy analyses showed that the conformation of the protein was changed by conjugation with EGCG. The β-sheet content decreased from 82.79% to 66.67% after EGCG bound to the protein, and the hydrophobic groups inside the protein were exposed, which increased the hydrophobicity of the protein and changed its conformation. After HPI and 1 mM of EGCG were covalently bonded, the solubility and emulsifying properties of the covalent complex were improved compared with native HPI. These results indicated that HPI-EGCG conjugates can be added in some foods.
Collapse
Affiliation(s)
- Xin-Hui Pang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Songbei District, Harbin 150076, China; (X.-H.P.); (Y.Y.); (X.B.); (B.W.); (L.-K.R.); (L.-L.L.); (D.-H.Y.); (J.Y.)
| | - Yang Yang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Songbei District, Harbin 150076, China; (X.-H.P.); (Y.Y.); (X.B.); (B.W.); (L.-K.R.); (L.-L.L.); (D.-H.Y.); (J.Y.)
| | - Xin Bian
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Songbei District, Harbin 150076, China; (X.-H.P.); (Y.Y.); (X.B.); (B.W.); (L.-K.R.); (L.-L.L.); (D.-H.Y.); (J.Y.)
| | - Bing Wang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Songbei District, Harbin 150076, China; (X.-H.P.); (Y.Y.); (X.B.); (B.W.); (L.-K.R.); (L.-L.L.); (D.-H.Y.); (J.Y.)
| | - Li-Kun Ren
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Songbei District, Harbin 150076, China; (X.-H.P.); (Y.Y.); (X.B.); (B.W.); (L.-K.R.); (L.-L.L.); (D.-H.Y.); (J.Y.)
| | - Lin-Lin Liu
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Songbei District, Harbin 150076, China; (X.-H.P.); (Y.Y.); (X.B.); (B.W.); (L.-K.R.); (L.-L.L.); (D.-H.Y.); (J.Y.)
| | - De-Hui Yu
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Songbei District, Harbin 150076, China; (X.-H.P.); (Y.Y.); (X.B.); (B.W.); (L.-K.R.); (L.-L.L.); (D.-H.Y.); (J.Y.)
| | - Jing Yang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Songbei District, Harbin 150076, China; (X.-H.P.); (Y.Y.); (X.B.); (B.W.); (L.-K.R.); (L.-L.L.); (D.-H.Y.); (J.Y.)
| | - Jing-Chun Guo
- Heilongjiang Academy of Sciences, Harbin 150000, China; (J.-C.G.); (L.W.)
| | - Lei Wang
- Heilongjiang Academy of Sciences, Harbin 150000, China; (J.-C.G.); (L.W.)
| | - Xiu-Min Zhang
- Beijing Academy of Food Sciences, Beijing 100068, China;
| | - Han-Song Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
- Correspondence: (H.-S.Y.); (N.Z.)
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Songbei District, Harbin 150076, China; (X.-H.P.); (Y.Y.); (X.B.); (B.W.); (L.-K.R.); (L.-L.L.); (D.-H.Y.); (J.Y.)
- Correspondence: (H.-S.Y.); (N.Z.)
| |
Collapse
|
34
|
Zhang X, Lei Y, Luo X, Wang Y, Li Y, Li B, Liu S. Impact of pH on the interaction between soybean protein isolate and oxidized bacterial cellulose at oil-water interface: Dilatational rheological and emulsifying properties. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106609] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Biomolecule-based pickering food emulsions: Intrinsic components of food matrix, recent trends and prospects. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106303] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Lan M, Song Y, Ou S, Zheng J, Huang C, Wang Y, Zhou H, Hu W, Liu F. Water-in-Oil Pickering Emulsions Stabilized Solely by Water-Dispersible Phytosterol Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14991-14998. [PMID: 33256410 DOI: 10.1021/acs.langmuir.0c02301] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Water-in-oil (W/O) Pickering emulsions were successfully synthesized by water-dispersible phytosterol (PS) particles formed through simple antisolvent precipitation. The effects of the organic/aqueous ratio on the particle morphology, crystallinity, and contact angle were investigated. Sheet-like PS particles with reduced crystallinity were further used as W/O Pickering emulsion stabilizers. The properties of the formed W/O emulsions could be transformed by changing the oil type, water-phase fraction, or particle contents. Results showed that emulsions with 80% water fraction could be stabilized by 3% particles in the aqueous phase, where dodecane was used as the oil phase. W/O Pickering emulsions stabilized by PS particles showed temperature responsiveness. When dried, PS particles could be well dispersed either in the water or oil phase to stabilize W/O Pickering emulsions. Therefore, this kind of PS particles could not only enrich the family of food-grade Pickering stabilizers, especially the W/O type, but also provide a smart Pickering stabilizer to fabricate environmental-responsive emulsion products.
Collapse
Affiliation(s)
- Manyu Lan
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, PR China
| | - Yuan Song
- Out-patient Department of University, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, PR China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, PR China
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, PR China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, PR China
| | - Hua Zhou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, PR China
| | - Wenzhong Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Fu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, PR China
| |
Collapse
|
37
|
Pickering and high internal phase Pickering emulsions stabilized by protein-based particles: A review of synthesis, application and prospective. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106117] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Feng X, Dai H, Ma L, Fu Y, Yu Y, Zhou H, Guo T, Zhu H, Wang H, Zhang Y. Properties of Pickering emulsion stabilized by food-grade gelatin nanoparticles: influence of the nanoparticles concentration. Colloids Surf B Biointerfaces 2020; 196:111294. [DOI: 10.1016/j.colsurfb.2020.111294] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 01/25/2023]
|
39
|
Water-in-oil emulsions stabilized by surfactants, biopolymers and/or particles: a review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Sarkar A, Dickinson E. Sustainable food-grade Pickering emulsions stabilized by plant-based particles. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.04.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Zembyla M, Lazidis A, Murray BS, Sarkar A. Stability of water-in-oil emulsions co-stabilized by polyphenol crystal-protein complexes as a function of shear rate and temperature. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.109991] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Development of food-grade Pickering emulsions stabilized by a biological macromolecule (xanthan gum) and zein. Int J Biol Macromol 2020; 153:747-754. [DOI: 10.1016/j.ijbiomac.2020.03.078] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/23/2020] [Accepted: 03/10/2020] [Indexed: 01/27/2023]
|
43
|
Zheng Y, Li Z, Zhang C, Zheng B, Tian Y. Effects of microwave-vacuum pre-treatment with different power levels on the structural and emulsifying properties of lotus seed protein isolates. Food Chem 2020; 311:125932. [DOI: 10.1016/j.foodchem.2019.125932] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/25/2019] [Accepted: 11/19/2019] [Indexed: 11/28/2022]
|
44
|
Jafari SM, Sedaghat Doost A, Nikbakht Nasrabadi M, Boostani S, Van der Meeren P. Phytoparticles for the stabilization of Pickering emulsions in the formulation of novel food colloidal dispersions. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Emulsification of oil-in-water emulsions with eggplant (Solanum melongena L.). J Colloid Interface Sci 2020; 563:17-26. [DOI: 10.1016/j.jcis.2019.12.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/11/2019] [Accepted: 12/14/2019] [Indexed: 11/18/2022]
|
46
|
Novel food-grade Pickering emulsions stabilized by tea water-insoluble protein nanoparticles from tea residues. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Tatry MC, Laurichesse E, Perro A, Ravaine V, Schmitt V. Kinetics of spontaneous microgels adsorption and stabilization of emulsions produced using microfluidics. J Colloid Interface Sci 2019; 548:1-11. [DOI: 10.1016/j.jcis.2019.04.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 12/14/2022]
|
48
|
Zembyla M, Murray BS, Radford SJ, Sarkar A. Water-in-oil Pickering emulsions stabilized by an interfacial complex of water-insoluble polyphenol crystals and protein. J Colloid Interface Sci 2019; 548:88-99. [DOI: 10.1016/j.jcis.2019.04.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/13/2019] [Accepted: 04/03/2019] [Indexed: 11/29/2022]
|
49
|
|
50
|
Ma Y, Hao J, Zhao K, Ju Y, Hu J, Gao Y, Du F. Biobased polymeric surfactant: Natural glycyrrhizic acid-appended homopolymer with multiple pH-responsiveness. J Colloid Interface Sci 2019; 541:93-100. [DOI: 10.1016/j.jcis.2019.01.088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
|