1
|
Gonçalves YG, Kravicz M, Massaro TNC, Aldana-Mejía JA, Bastos JK, L Bentley MVB, Marcato PD. Rational design of solid lipid-polymer hybrid nanoparticles: An innovative glycoalkaloids-carrier with potential for topical melanoma treatment. Colloids Surf B Biointerfaces 2024; 242:114098. [PMID: 39067191 DOI: 10.1016/j.colsurfb.2024.114098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Despite the promising potential of Solanum plant glycoalkaloids in combating skin cancer, their clinical trials have been halted due to dose-dependent toxicity and poor water solubility. In this study, we present a rational approach to address these limitations and ensure colloidal stability of the nanoformulation over time by designing solid lipid-polymer hybrid nanoparticles (SLPH). Leveraging the biocompatible and cationic properties of polyaspartamides, we employed a new polyaspartamide derivative (P1) as a raw material for this class of nanostructures. Subsequently, we prepared SLPH through a one-step process involving hot-melt emulsification followed by ultrasonication. The physicochemical properties of the SLPH were thoroughly characterized using dynamic light scattering (DLS), ζ-potential analysis, nanoparticle tracking analysis (NTA), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM). The optimized formulation exhibited long-term stability over six months under low temperatures, maintaining a particle size around 200 nm, a polydispersity index (PdI) lower than 0.2, and a ζ-potential between +35-40 mV. Furthermore, we evaluated the cytotoxic effect of the SLPH against human cutaneous melanoma cells (SK-MEL-28) compared to human foreskin fibroblast cells (HFF-1). Encapsulation of glycoalkaloids into the nanoparticles (SLPH-GE) resulted in a two-fold greater selective cytotoxic profile for melanoma cells than glycoalkaloids-free (GE). The nanoparticles disrupted the stratum corneum barrier with a penetration depth of approximately 77 μm. These findings underscore the potential of the developed nanosystem as an effective glycoalkaloid carrier with suitable colloidal and biological properties for further studies in topical treatment strategies for cutaneous melanoma.
Collapse
Affiliation(s)
- Yasmim G Gonçalves
- GNanoBio, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Marcelo Kravicz
- School of Surgery and Medicine, University of Milano-Bicocca, Italy
| | - Taís N C Massaro
- GNanoBio, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Jennyfer A Aldana-Mejía
- School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Jairo K Bastos
- School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Maria Vitória B L Bentley
- School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Priscyla D Marcato
- GNanoBio, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
2
|
Elmizadeh A, Goli SAH, Mohammadifar MA, Rahimmalek M. Fabrication and characterization of pectin-zein nanoparticles containing tanshinone using anti-solvent precipitation method. Int J Biol Macromol 2024; 260:129463. [PMID: 38237820 DOI: 10.1016/j.ijbiomac.2024.129463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Tanshinone compounds are secondary metabolites which their application in food and pharmaceutical industry is limited due to the low solubility in water and sensitivity to heat. This study aimed to develop a novel biopolymer nanocarriers system based on pectin/zein for the encapsulation of tanshinone compounds using the anti-solvent precipitation method. The concentration of pectin and mass ratio of tanshinone/zein in the final formulation of nanoparticles were optimized. According to the results, a pectin concentration of 1 g/L and a tanshinone/zein ratio of 0.1:1 g/g were considered the optimal nanoparticle formulation. The resulting nanoparticles exhibited a spherical core-shell structure, with approximate values for size, zeta potential, TSI, and encapsulation efficiency of 132 ± 0.002 nm, -38.6 ± 0.019 mV, 0.600 ± 0.084, and 79.41 ± 0.62 %, respectively. The FTIR test confirmed the presence of hydrophobic, hydrogen, and electrostatic interactions among the constituents within the nanoparticles. Additionally, XRD and DSC tests verified the amorphous nature of the nanoparticles. Morphological examination conducted through TEM, and SEM revealed the characteristics of the resulting nanoparticles. Furthermore, this carrier system significantly enhanced the solubility of tanshinone compounds in water.
Collapse
Affiliation(s)
- Ameneh Elmizadeh
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Sayed Amir Hossein Goli
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran.
| | - Mohammad Amin Mohammadifar
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Mehdi Rahimmalek
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran; Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| |
Collapse
|
3
|
Ahmed T, Liu FCF, Wu XY. An update on strategies for optimizing polymer-lipid hybrid nanoparticle-mediated drug delivery: exploiting transformability and bioactivity of PLN and harnessing intracellular lipid transport mechanism. Expert Opin Drug Deliv 2024; 21:245-278. [PMID: 38344771 DOI: 10.1080/17425247.2024.2318459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Polymer-lipid hybrid nanoparticle (PLN) is an emerging nanoplatform with distinct properties and functionalities from other nanocarrier systems. PLN can be optimized to overcome various levels of drug delivery barriers to achieve desired therapeutic outcomes via rational selection of polymer and lipid combinations based on a thorough understanding of their properties and interactions with therapeutic agents and biological systems. AREAS COVERED This review provides an overview of PLN including the motive and history of PLN development, types of PLN, preparation methods, attestations of their versatility, and design strategies to circumvent various barriers for increasing drug delivery accuracy and efficiency. It also highlights recent advances in PLN design including: rationale selection of polymer and lipid components to achieve spatiotemporal drug targeting and multi-targeted cascade drug delivery; utilizing the intracellular lipid transport mechanism for active targeting to desired organelles; and harnessing bioreactive lipids and polymers to magnify therapeutic effects. EXPERT OPINION A thorough understanding of properties of PLN components and their biofate is important for enhancing disease site targeting, deep tumor tissue penetration, cellular uptake, and intracellular trafficking of PLN. For futuristic PLN development, active lipid transport and dual functions of lipids and polymers as both nanocarrier material and pharmacological agents can be further explored.
Collapse
Affiliation(s)
- Taksim Ahmed
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Fuh-Ching Franky Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
4
|
Salel S, Iyisan B. Polymer-lipid hybrid nanoparticles as potential lipophilic anticancer drug carriers. DISCOVER NANO 2023; 18:114. [PMID: 37713009 PMCID: PMC10504175 DOI: 10.1186/s11671-023-03897-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
Nanocarrier systems are widely used for drug delivery applications, but limitations such as the use of synthetic surfactants, leakage of toxic drugs, and a poor encapsulation capacity remain as challenges. We present a new hybrid nanocarrier system that utilizes natural materials to overcome these limitations and improve the safety and efficacy of drug delivery. The system comprises a biopolymeric shell and a lipid core, encapsulating the lipophilic anticancer drug paclitaxel. Bovine serum albumin and dextran, in various molecular weights, are covalently conjugated via Maillard reaction to form the shell which serves as a stabilizer to maintain nanoparticle integrity. The properties of the system, such as Maillard conjugate concentration, protein/polysaccharide molar ratio, and polysaccharide molecular weight, are optimized to enhance nanoparticle size and stability. The system shows high stability at different pH conditions, high drug loading capacity, and effective in vitro drug release through the trigger of enzymes and passive diffusion. Serine proteases are used to digest the protein portion of the nanoparticle shell to enhance the drug release. This nanocarrier system represents a significant advancement in the field of nanomedicine, offering a safe and effective alternative for the delivery of lipophilic drugs.
Collapse
Affiliation(s)
- Sedef Salel
- Biofunctional Nanomaterials Design (BiND) Laboratory, Institute of Biomedical Engineering, Bogazici University, 34684, Istanbul, Turkey
| | - Banu Iyisan
- Biofunctional Nanomaterials Design (BiND) Laboratory, Institute of Biomedical Engineering, Bogazici University, 34684, Istanbul, Turkey.
- Partner Group of Max Planck Institute for Polymer Research Mainz (Germany) at Bogazici University, 34684, Istanbul, Turkey.
| |
Collapse
|
5
|
Tahmouzi S, Meftahizadeh H, Eyshi S, Mahmoudzadeh A, Alizadeh B, Mollakhalili‐Meybodi N, Hatami M. Application of guar ( Cyamopsis tetragonoloba L.) gum in food technologies: A review of properties and mechanisms of action. Food Sci Nutr 2023; 11:4869-4897. [PMID: 37701200 PMCID: PMC10494631 DOI: 10.1002/fsn3.3383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 09/14/2023] Open
Abstract
With the world continuing to push toward modernization and the consumption of processed foods growing at an exponential rate, the demand for texturizing agents and natural additives has also risen as a result. It has become increasingly common to use thickening agents in food products to modify their rheological and textural properties and enhance their quality characteristics. They can be divided into (1) animal derived (chitosan and isinglass), (2) fermentation produced (xanthan and curdlan), (3) plant fragments (pectin and cellulose), (4) seaweed extracts (agar and alginate), and (5) seed flours (guar gum and locust bean gum). The primary functions of these materials are to improve moisture binding capacity, modify structural properties, and alter flow behavior. In addition, some have another responsibility in the food sector, such as the main ingredient in the delivery systems (encapsulation) and nanocomposites. A galactomannan polysaccharide extracted from guar beans (Cyamopsis tetragonolobus), known as guar gum (GG), is one of them, which has a wide range of utilities and possesses popularity among scientists and consumers. In the world of modernization, GG has found its way into numerous industries for use in food, cosmetics, pharmaceuticals, textiles, and explosives. Due to its ability to form hydrogen bonds with water molecules, it imparts significant thickening, gelling, and binding properties to the solution as well as increases its viscosity. Therefore, this study is aimed to investigate the characteristics, mechanisms, and applications of GG in different food technologies.
Collapse
Affiliation(s)
- Sima Tahmouzi
- Department of Food Sciences and TechnologySchool of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Heidar Meftahizadeh
- Department of Nature EngineeringFaculty of Agriculture & Natural ResourcesArdakan UniversityArdakanIran
| | - Saba Eyshi
- Department of Food Sciences and TechnologySchool of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Amin Mahmoudzadeh
- Department of Food Science and TechnologyFaculty of AgricultureUniversity of TabrizTabrizIran
| | - Behnam Alizadeh
- Department of Food Sciences and TechnologySchool of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Neda Mollakhalili‐Meybodi
- Department of Food Sciences and TechnologySchool of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Mehrnaz Hatami
- Department of Medicinal PlantsFaculty of Agriculture and Natural ResourcesArak UniversityArakIran
| |
Collapse
|
6
|
de Araujo MM, Borgheti-Cardoso LN, Praça FG, Marcato PD, Bentley MVLB. Solid Lipid-Polymer Hybrid Nanoplatform for Topical Delivery of siRNA: In Vitro Biological Activity and Permeation Studies. J Funct Biomater 2023; 14:374. [PMID: 37504869 PMCID: PMC10381295 DOI: 10.3390/jfb14070374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Small interfering RNA (siRNA) molecules have limited transfection efficiency and stability, necessitating the use of delivery systems to be effective in gene knockdown therapies. In this regard, lipid-polymeric nanocarriers have emerged as a promising class of nanoparticles for siRNA delivery, particularly for topical applications. We proposed the use of solid lipid-polymer hybrid nanoparticles (SLPHNs) as topical delivery systems for siRNA. This approach was evaluated by assessing the ability of SLPHNs-siRNA complexes to internalize siRNA molecules and both to penetrate skin layers in vitro and induce gene knocking down in a skin cell line. The SLPHNs were formed by a specific composition of solid lipids, a surfactant polymer as a dispersive agent, and a cationic polymer as a complexing agent for siRNA. The optimized nanocarriers exhibited a spherical shape with a smooth surface. The average diameter of the nanoparticles was found to be 200 nm, and the zeta potential was measured to be +20 mV. Furthermore, these nanocarriers demonstrated excellent stability when stored at 4 °C over a period of 90 days. In vitro and in vivo permeation studies showed that SLPHNs increased the cutaneous penetration of fluorescent-labeled siRNA, which reached deeper skin layers. Efficacy studies were conducted on keratinocytes and fibroblasts, showing that SLPHNs maintained cell viability and high cellular uptake. Furthermore, SLPHNs complexed with siRNA against Firefly luciferase (siLuc) reduced luciferase expression, proving the efficacy of this nanocarrier in providing adequate intracellular release of siRNA for silencing specific genes. Based on these results, the developed carriers are promising siRNA delivery systems for skin disease therapy.
Collapse
Affiliation(s)
- Margarete Moreno de Araujo
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Livia Neves Borgheti-Cardoso
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Priscyla Daniely Marcato
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Maria Vitória Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| |
Collapse
|
7
|
Tincu R, Mihaila M, Bostan M, Teodorescu F, Istrati D, Badea N, Lacatusu I. Novel Bovine Serum Albumin-Decorated-Nanostructured Lipid Carriers Able to Modulate Apoptosis and Cell-Cycle Response in Ovarian, Breast, and Colon Tumoral Cells. Pharmaceutics 2023; 15:1125. [PMID: 37111611 PMCID: PMC10144507 DOI: 10.3390/pharmaceutics15041125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
A novel nanoscale approach was developed for the improved cellular internalization of hybrid bovine serum albumin-lipid nanocarriers loaded with piperine (NLC-Pip-BSA) in different tumor cells. The effect of the BSA-targeted-NLC-Pip and untargeted-NLC-Pip on the viability, proliferation, and levels of cell-cycle damage and apoptosis in the colon (LoVo), ovarian (SKOV3) and breast (MCF7) adenocarcinoma cell lines was comparatively discussed. NLCs were characterized concerning particle size, morphology, zeta potential, phytochemical encapsulation efficiency, ATR-FTIR, and fluorescence spectroscopy. The results showed that NLC-Pip-BSA showed a mean size below 140 nm, a zeta potential of -60 mV, and an entrapment efficiency of 81.94% for NLC-Pip and 80.45% for NLC-Pip-BSA. Fluorescence spectroscopy confirmed the coating of the NLC with the albumin. By MTS and RTCA assays, NLC-Pip-BSA showed a more pronounced response against the LoVo colon cell line and MCF-7 breast tumor cell lines than against the ovarian SKOV-3 cell line. Flow cytometry assay demonstrated that the targeted NLC-Pip had more cytotoxicity and improved apoptosis than the untargeted ones in MCF-7 tumor cells (p < 0.05). NLC-Pip caused a significant increase in MCF-7 breast tumor cell apoptosis of ~8X, while NLC-Pip-BSA has shown an 11-fold increase in apoptosis.
Collapse
Affiliation(s)
- Robert Tincu
- Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Polizu No. 1, 011061 Bucharest, Romania
- “C.D. Nenitzescu” Institute of Organic and Supramolecular Chemistry of the Romanian Academy, 202B Splaiul Independentei, 060023 Bucharest, Romania
| | - Mirela Mihaila
- Stefan S. Nicolau Institute of Virology, Mihai Bravu Street No. 285, 030304 Bucharest, Romania
- Faculty of Pharmacy, Titu Maiorescu University, 040314 Bucharest, Romania
| | - Marinela Bostan
- Stefan S. Nicolau Institute of Virology, Mihai Bravu Street No. 285, 030304 Bucharest, Romania
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Florina Teodorescu
- “C.D. Nenitzescu” Institute of Organic and Supramolecular Chemistry of the Romanian Academy, 202B Splaiul Independentei, 060023 Bucharest, Romania
| | - Daniela Istrati
- Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Polizu No. 1, 011061 Bucharest, Romania
| | - Nicoleta Badea
- Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Polizu No. 1, 011061 Bucharest, Romania
| | - Ioana Lacatusu
- Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Polizu No. 1, 011061 Bucharest, Romania
| |
Collapse
|
8
|
Afzal O, Rizwanullah M, Altamimi AS, Alossaimi MA, Kamal M, Ahmad J. Harnessing natural polysaccharides-based nanoparticles for oral delivery of phytochemicals: Knocking down the barriers. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
9
|
Rosa A, Nieddu M, Pitzanti G, Pireddu R, Lai F, Cardia MC. Impact of solid lipid nanoparticles on 3T3 fibroblasts viability and lipid profile: The effect of curcumin and resveratrol loading. J Appl Toxicol 2023; 43:272-286. [PMID: 35978497 PMCID: PMC10087382 DOI: 10.1002/jat.4379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/25/2022] [Accepted: 08/13/2022] [Indexed: 01/17/2023]
Abstract
This study focused on the impact in 3T3 fibroblasts of several types of empty and curcumin- and resveratrol-loaded solid lipid nanoparticles (SLN) on cell viability and lipid metabolism in relation to their lipid content and encapsulated drug. SLN, prepared by hot homogenization/ultrasonication, were characterized with respect to size, polydispersity index, and zeta potential. Compritol® 888 ATO at different concentrations (4%, 5%, and 6% wt/wt) was chosen as lipid matrix while Poloxamer 188 (from 2.2% to 3.3% wt/wt) and Transcutol (TRC; 2% or 4%) were added as nanoparticle excipients. Prepared SLN were able to encapsulate high drug amount (encapsulation efficiency percentage of about 97-99%). All empty SLN did not show cytotoxicity (by MTT assay, at 24 h of incubation) in 3T3 cells independently of the lipid and TRC amount, while a viability reduction in the range 5-11% and 12-27% was observed in 3T3 cells treated with curcumin-loaded and resveratrol-loaded SLN, respectively. SLN without TRC did not affect cell lipid metabolism, independently from the lipid content. Empty and loaded SLN formulated with 4% of Compritol and 4% of TRC significantly affected, after 24 h of incubation at the dose of 5 μl/ml, cell polar lipids (phospholipids and free cholesterol) and fatty acid profile, with respect to control cells. Loaded compounds significantly modulated the impact of the corresponding empty formulation on cell lipids. Therefore, the combined impact on lipid metabolism of SLN and loaded drug should be taken in consideration in the evaluation of the toxicity, potential application, and therapeutic effects of new formulations.
Collapse
Affiliation(s)
- Antonella Rosa
- Department of Biomedical Science, University of Cagliari, Cagliari, Italy
| | - Mariella Nieddu
- Department of Biomedical Science, University of Cagliari, Cagliari, Italy
| | - Giulia Pitzanti
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Rosa Pireddu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Francesco Lai
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Cristina Cardia
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
10
|
Li D, Liu Y, Ma Y, Liu Y, Wang S, Guo Z, Li J, Wang Y, Tan B, Wei Y. Fabricating hydrophilic fatty acid-protein particles to encapsulate fucoxanthin: Fatty acid screening, structural characterization, and thermal stability analysis. Food Chem 2022; 382:132311. [PMID: 35149467 DOI: 10.1016/j.foodchem.2022.132311] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/09/2022] [Accepted: 01/29/2022] [Indexed: 11/04/2022]
Abstract
Biomacromolecules are used to encapsulate carotenoids, but their poor absorption-enhancing ability restricts their application. This study integrated dietary fatty acids (FAs) into the protein-based encapsulation of fucoxanthin (FUCO) due to its positive role in carotenoid absorption. The results showed that of the 14 tested FAs, only myristic, palmitic, stearic, oleic, linoleic, and docosahexaenoic acid obviously promoted FUCO absorption. FAs were employed for FUCO encapsulation using bovine serum albumin (BSA) to fabricate FUCO-FA-BSA systems, with an encapsulation efficiency of > 98%, a particle size ranging from 113.1 nm to 193.5 nm, and a Zeta-potential between -32.8 mV and -38.3 mV. Electron microscopy and Fourier transform infrared spectroscopy revealed complete FUCO encapsulation, while the FUCO-loading particles exhibited a "core-shell" structure. The retention rate of the encapsulated FUCO increased 2.16-4.06 times when heated at 80.0 °C for 200 min. These results suggested that FA-BSA complexes might provide a promising strategy for embedding carotenoids.
Collapse
Affiliation(s)
- Donghui Li
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Yunjun Liu
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Yu Ma
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Yixiang Liu
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China; Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Shengnan Wang
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Zixin Guo
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Jie Li
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Yanbo Wang
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Bin Tan
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Ying Wei
- The Department of Food Engineering, China National Research Institute of Food & Fermentation Industries Corporation Limited, Beijing 100015, China
| |
Collapse
|
11
|
Surapaneni SG, Ambade AV. Poly( N-vinylcaprolactam) containing solid lipid polymer hybrid nanoparticles for controlled delivery of a hydrophilic drug gemcitabine hydrochloride. RSC Adv 2022; 12:17621-17628. [PMID: 35765442 PMCID: PMC9194946 DOI: 10.1039/d2ra02845j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022] Open
Abstract
Folic acid tagged and hydrophilic polymer containing solid lipid nanoparticles (SLNs) were formulated for the controlled and targeted delivery of gemcitabine, a hydrophilic drug. Drug loaded SLNs were prepared by double emulsion method and optimized by 32 level factorial design. Then, a hydrophilic polymer, namely, poly(N-vinylcaprolactam) (PVCL) was incorporated in the optimized SLN batch in the first aqueous phase (W1) to obtain solid lipid polymer hybrid nanoparticles (SLPHNs) that were further decorated with folic acid (F-SLPHNs). TEM analysis of SLNs and SLPHNs revealed the spherical shape with no aggregation while SLPHNs showed higher % EE. SLPHNs exhibited limited burst release of gemcitabine compared to SLNs as well as lower overall % release. All the formulations showed good cytocompatibility against MDA-MB-231 cell lines and folic acid-tagged hybrid particles (F-SLPHNs) showed remarkably higher cellular uptake.
Collapse
Affiliation(s)
- Sai Geetika Surapaneni
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road Pune - 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 201002 India
| | - Ashootosh V Ambade
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road Pune - 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 201002 India
| |
Collapse
|
12
|
W/O emulsions featuring ethylcellulose structuring in the water phase, interface and oil phase for multiple delivery. Carbohydr Polym 2022; 283:119158. [DOI: 10.1016/j.carbpol.2022.119158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/24/2022]
|
13
|
Xue J, Luo Y, Balasubramanian B, Upadhyay A, Li Z, Luo Y. Development of novel biopolymer-based dendritic nanocomplexes for encapsulation of phenolic bioactive compounds: A proof-of-concept study. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
|
15
|
Lu Y, Zhang Y, Yuan F, Gao Y, Mao L. Emulsion gels with different proteins at the interface: Structures and delivery functionality. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106637] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
16
|
Liu E, Zhao S, Li X, Meng X, Liu B. Preparation, characterization of PLGA/chitosan nanoparticles as a delivery system for controlled release of DHA. Int J Biol Macromol 2021; 185:782-791. [PMID: 34216672 DOI: 10.1016/j.ijbiomac.2021.06.190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022]
Abstract
In this work, a novel DHA-loaded nanoparticle with PLGA and chitosan (PCSDNP) was successfully prepared. The structure of PCSDNP and DHA-loaded PLGA nanoparticles was measured by transmission electron microscope, scanning electron microscope, and differential scanning calorimeter. The interaction strength between DHA, PLGA, and chitosan was evaluated through Fourier transform infrared spectroscopy. The curves of controlled DHA release and stabilities for different environmental factors of two NPs were evaluated. Importantly, two NPs were almost regularly spherical and the interactions were hydrogen bonds and electrostatic interactions between PLGA and chitosan. These NPs had a good encapsulation rate (80.45%) and high-water solubility than the free DHA molecule. In simulated gastrointestinal fluid, two NPs showed a controlled-release pattern. Overall, PCSDNP had better stability and controlled-release effect with the synergy between CS and PLGA under the conditions of pH (2- 7), ionic strength (0- 500 mM), storage time (0- 42 d), and temperature (30- 80 °C).
Collapse
Affiliation(s)
- Enchao Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Shenghan Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiao Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Bingjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
17
|
Chemically modified phytoglycogen: Physicochemical characterizations and applications to encapsulate curcumin. Colloids Surf B Biointerfaces 2021; 205:111829. [PMID: 34023786 DOI: 10.1016/j.colsurfb.2021.111829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022]
Abstract
Phytoglycogen (PG), a water-soluble glycogen-like α-d-glucan, exists as natural dendritic nanoparticles which are known as a promising solubility enhancer and delivery vehicle for lipophilic compounds. However, the practical applications of PG in food and pharmaceutical fields are limited by their high hydrophilicity and relatively low encapsulation efficiency compared with other delivery systems. The objectives of this work were to chemically modify native PG nanoparticles with hydrophobic groups and to characterize their physicochemical properties, as well as to evaluate the application feasibility of modified PG (mPG) nanoparticles as a carrier for hydrophobic bioactive compounds. The surface hydroxyl groups of PG nanoparticles were capped with various anhydrides, e.g., acetic, valeric, and N-caprylic, to obtain the PG nanoparticles with different hydrophobicity. Successful modification by acyl groups was evidenced by both Fourier-transform infrared and nuclear magnetic resonance spectroscopies. The mPG nanoparticles exhibited a more compact structure and homogeneous size distribution as revealed by dynamic light scattering measurement and visualized by transmission electron microscope, while their size slightly increased with the chain length of anhydride. Rheological measurement revealed that the viscosity of mPG at low shear rate was increased with the increase of degree of substitution due to the intermolecular hydrophobic association. A novel pH-driven method to load curcumin showed significantly higher encapsulation efficiency and greater antioxidant activity compared with traditional ethanol mediated loading method. Hydrophobic modification of natural dendritic PG nanostructures demonstrates promising potential to develop food-grade nanocarriers for lipophilic bioactive compounds with improved bioactivity.
Collapse
|
18
|
Jafari SM, Arpagaus C, Cerqueira MA, Samborska K. Nano spray drying of food ingredients; materials, processing and applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Food colloids binary and ternary nanocomplexes: Innovations and discoveries. Colloids Surf B Biointerfaces 2020; 196:111309. [DOI: 10.1016/j.colsurfb.2020.111309] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
|
20
|
Luo Y, Wang Q, Zhang Y. Biopolymer-Based Nanotechnology Approaches To Deliver Bioactive Compounds for Food Applications: A Perspective on the Past, Present, and Future. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12993-13000. [PMID: 32134655 DOI: 10.1021/acs.jafc.0c00277] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Food nanotechnology is an emerging and rapidly evolving field that encompasses an extremely broad range of disciplines and has found various applications in different food sectors. The objective of this perspective is to update the current knowledge on the nanotechnology-based approaches to prepare delivery vehicles for bioactive compounds. Research progress on the development of nanoparticles made from food biopolymers (i.e., protein and polysaccharide) is particularly highlighted. In addition, two types of most recently developed nanoscale delivery systems, i.e., protein-polysaccharide complex and lipid-biopolymer hybrid nanoparticles, are introduced, and their relevant applications are discussed. Finally, suggestions for future research directions on developing safe, effective, and edible nanoscale delivery vehicles for food applications are provided.
Collapse
Affiliation(s)
- Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut 06259, United States
| | - Qin Wang
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Yaqiong Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
21
|
Chen Y, Xue J, Luo Y. Encapsulation of Phloretin in a Ternary Nanocomplex Prepared with Phytoglycogen-Caseinate-Pectin via Electrostatic Interactions and Chemical Cross-Linking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13221-13230. [PMID: 32255614 DOI: 10.1021/acs.jafc.9b07123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we chemically modified a phytoglycogen structure to introduce negative surface charge via carboxymethylation (CMPG) and then prepared CMPG-based ternary nanocomplex particles through electrostatic interactions with sodium caseinate (core) and chemical cross-linking with pectin (shell). The chemical cross-linking process by glutaradehyde was systematically optimized under various temperatures and durations. The cross-linked ternary nanocomplex was comprehensively characterized, and our results showed that it had a size of 86 nm with a spherical shape, smooth surface, homogeneous distribution, and negative surface charge. The chemical cross-linking process significantly improved colloidal stability of the nanocomplex under simulated gastrointestinal fluids with digestive enzymes. The as-prepared nanocomplex exhibited exceptional capability to encapsulate phloretin, a natural dihydrochalcone, as a model lipophilic bioactive compound. The nanocomplex not only showed a slow and sustained kinetic release of phloretin under simulated gastrointestinal fluids but also dramatically enhanced its antioxidant activity under an aqueous environment compared to pure phloretin dissolved in ethanol. Findings from this work revealed the promising features of the as-prepared ternary nanocomplex as a potential oral delivery system for lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Yuhao Chen
- Department of Nutritional Sciences, University of Connecticut, 27 Manter Road, Storrs, Connecticut 06269, United States
| | - Jingyi Xue
- Department of Nutritional Sciences, University of Connecticut, 27 Manter Road, Storrs, Connecticut 06269, United States
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, 27 Manter Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
22
|
Wang X, Peng F, Liu F, Xiao Y, Li F, Lei H, Wang J, Li M, Xu H. Zein-pectin composite nanoparticles as an efficient hyperoside delivery system: Fabrication, characterization, and in vitro release property. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109869] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Chen Y, Xue J, Wusigale, Wang T, Hu Q, Luo Y. Carboxymethylation of phytoglycogen and its interactions with caseinate for the preparation of nanocomplex. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105390] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
24
|
Jaymand M. Chemically Modified Natural Polymer-Based Theranostic Nanomedicines: Are They the Golden Gate toward a de Novo Clinical Approach against Cancer? ACS Biomater Sci Eng 2019; 6:134-166. [DOI: 10.1021/acsbiomaterials.9b00802] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| |
Collapse
|
25
|
Rodriguez NJ, Hu Q, Luo Y. Oxidized Dextran as a Macromolecular Crosslinker Stabilizes the Zein/Caseinate Nanocomplex for the Potential Oral Delivery of Curcumin. Molecules 2019; 24:molecules24224061. [PMID: 31717559 PMCID: PMC6891680 DOI: 10.3390/molecules24224061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
In this study, we prepared complex nanoparticles from a combination of two proteins and one polysaccharide for the encapsulation and delivery of lipophilic bioactive compounds. Two proteins, zein and sodium caseinate (NaCas), provided a hydrophobic core for the encapsulation of a lipophilic compound (curcumin), while a polysaccharide dialdehyde, oxidized dextran, served as the coating material and macromolecular crosslinker to create covalent linkage with two proteins for stabilization purposes. The heating time and crosslinker concentration were optimized to achieve the desirable colloidal stability in simulated gastric and intestinal fluids. Our results suggested that heating time played a more important role than the concentration of oxidized dextran. The optimized complex nanoparticles had a particle size of around 150 nm with a PDI < 0.1 and negative surface charge. Morphological observation by transmission electron microscopy revealed a spherical shape and uniform size distribution. Fourier transform infrared and fluorescence spectroscopies evidenced the formation of Schiff base complex, confirming the validity of covalent crosslinking. Furthermore, the complex nanoparticles demonstrated superior encapsulation properties for curcumin, showing an efficiency of >90% at 10% loading. A rather slow kinetic release profile of curcumin from complex nanoparticles was observed under simulated gastrointestinal conditions. The complex nanoparticles prepared from zein, NaCas, and oxidized dextran hold promising potential for the oral delivery of lipophilic bioactive compounds.
Collapse
Affiliation(s)
| | | | - Yangchao Luo
- Correspondence: ; Tel.: +1-860-486-2180; Fax: +1-860-486-3674
| |
Collapse
|
26
|
Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100397] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Development of Emulsion Gels for the Delivery of Functional Food Ingredients: from Structure to Functionality. FOOD ENGINEERING REVIEWS 2019. [DOI: 10.1007/s12393-019-09194-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Wang T, Luo Y. Biological fate of ingested lipid-based nanoparticles: current understanding and future directions. NANOSCALE 2019; 11:11048-11063. [PMID: 31149694 DOI: 10.1039/c9nr03025e] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In recent decades, lipid-based nanoparticles (LN) have received considerable attention as nanoscale delivery systems to improve oral bioavailability of poorly absorbed bioactive compounds for health promotion and disease prevention. However, scientific studies on the biological fate of orally administered LN are very limited and the molecular mechanisms by which they are absorbed through the intestinal lumen into the circulation remain unclear. This paper aims to provide an overview of the biological fate of orally administered LN by reviewing recent studies on both cell and animal models. In general, the biological fate of ingested LN in the gastrointestinal tract is primarily determined by their initial physicochemical characteristics (such as the particle size, surface properties, composition and structure), and their absorption mainly occurs within the small intestine. In particular, depending upon the composition, LN can be either digestible or indigestible, with two distinct biological fates for each type of LN. The detailed absorption mechanisms and uptake pathways at molecular, cellular and whole body levels for each type of LN are discussed in detail. Limitations of current research and our vision for future directions to study the biological fate of ingested LN are also provided in this critical review.
Collapse
Affiliation(s)
- Taoran Wang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
29
|
Massaro M, Riela S. Organo-Clay Nanomaterials Based on Halloysite and Cyclodextrin as Carriers for Polyphenolic Compounds. J Funct Biomater 2018; 9:E61. [PMID: 30400319 PMCID: PMC6306943 DOI: 10.3390/jfb9040061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 11/17/2022] Open
Abstract
Hybrid material based on halloysite covalently linked to a hyper-reticulated cyclodextrin network was investigated as a potential carrier for polyphenolic compounds. The absorption ability of the hybrid system was studied in different pH conditions as well as the kinetic release of curcumin, chosen as a drug model. A preliminary study was performed to assess the antioxidant capacity of the obtained carrier. The obtained results highlighted that the curcumin molecule can have sustained release from the carrier over the time, retaining its antioxidant properties due to the combination of two different host systems that give rise to an hyper-reticulated structure, allowing an increase in the drug loading and stabilization. Therefore, this work puts forward an efficient strategy to prepare organic-inorganic hybrids with three different cavities that could encapsulate two or more drug molecules with different physico-chemical properties.
Collapse
Affiliation(s)
- Marina Massaro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University o Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
| | - Serena Riela
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University o Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
| |
Collapse
|
30
|
Wang T, Luo Y. Chitosan Hydrogel Beads Functionalized with Thymol-Loaded Solid Lipid⁻Polymer Hybrid Nanoparticles. Int J Mol Sci 2018; 19:ijms19103112. [PMID: 30314297 PMCID: PMC6213168 DOI: 10.3390/ijms19103112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 11/22/2022] Open
Abstract
In this study, the innovative and multifunctional nanoparticles–hydrogel nanocomposites made with chitosan hydrogel beads and solid lipid–polymer hybrid nanoparticles (SLPN) were prepared through conjugation between SLPN and chitosan beads. The SLPNs were first fabricated via coating the bovine serum albumin (BSA)-emulsified solid lipid nanoparticles with oxidized dextran. The aldehyde groups of the oxidized dextran on the surface of the SLPN enabled an in situ conjugation with the chitosan beads through the Schiff base linkage. The obtained nano-on-beads composite exhibited a spherical shape with a homogeneous size distribution. The successful conjugation of SLPN on the chitosan beads was confirmed by a Fourier transform infrared spectroscopy and a scanning electron microscope. The effects of the beads dosage (50, 100, 200, and 300 beads) and the incubation duration (30, 60, 90, 120, and 150 min) on the conjugation efficiency of SLPN onto the beads were comprehensively optimized. The optimal formulations were found to be a 200 bead dosage, with 30–90 min incubation duration groups. The optimal formulations were then used to encapsulate thymol, an antibacterial agent, which was studied as a model compound. After encapsulation, the thymol exhibited sustained release profiles in the phosphate buffer saline. The as-prepared nanoparticles–hydrogel nanocomposites reported in this proof-of-concept study hold promising features as a controlled-release antibacterial approach for improving food safety.
Collapse
Affiliation(s)
- Taoran Wang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|